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Time-reversal-invariant topological superconductors have a full paring gap in the bulk and gapless
Majorana states at the edge or on the surface. Here, we theoretically propose topological super-
conductivity in a doped quantum spin Hall insulator. We study the pairing symmetry of a doped
two-dimensional tin film within a two-orbital model, and find that a novel spin-triplet pairing is
favored when the interorbital attractive interaction is stronger than the intraorbital interaction. We
propose that a doped tin film is a good candidate for a 2d topological superconductor. Edge channels
are studied in a tight-binding model numerically. Finally, we discuss the robustness of topological
superconductivity in two-dimensional tin films by comparing to 3d superconductivity in bulk tin.

PACS numbers: 74.20.Rp 74.20.Pq 73.43.-f 74.45.+c

I. INTRODUCTION

The search for topological states of quantum mat-
ter has generated intensive interest in condensed mat-
ter physics1–4. Recently, the quantum spin Hall (QSH)
state in two dimensions (2D) and topological insulators in
three dimensions (3D) have been theoretically predicted
and experimentally observed in a number of materials5–8,
and both of them are characterized by the Z2 topolog-
ical indices9–11. Soon afterwards, the concept of time-
reversal-invariant (TRI) topological superconductors has
been proposed12–14. Closely related to QSH state and
topological insulators, the 2d and 3d TRI topological su-
perconducting state has a full pairing gap in the bulk, and
gapless Majorana states at the edge and on the surface,
respectively, which have potential applications in fault-
tolerant topological quantum computation15. Moreover,
an emergent supersymmetry is naturally present in these
systems as a consequence of the time-reversal symme-
try12. Great efforts have been made to search for topo-
logical superconductors, however, finding candidate ma-
terials for these new topological phases of matter is still
challenging.

A simple and general criterion has been proposed to
test for TRI topological superconductor based on the
pairing amplitude on the Fermi surface16. A 2d TRI su-
perconductor is nontrivial if there are an odd number of
Fermi surfaces with a negative pairing order parameter16.
This physical criteria suggests to search for topologi-
cal superconductors in nonconventional superconducting
materials with inversion symmetry breaking16 and strong
correlation17. Recently, superconductivity has been real-
ized in a doped topological insulator CuxBi2Se3

18. Such
material has been proposed to be a 3d topological super-
conductor, where a novel spin-triplet pairing with odd
parity is favored by strong spin-orbit coupling (SOC)
based on a two-orbital model19. However, the pair-
ing symmetry in doped Bi2Se3 is still under active de-
bates20–23. On the other hand, the 2d TRI topological
superconductor has not yet been discovered. There are
some theoretical discussions on possible TRI topological

superconductivity in noncentrosymmetric superconduc-
tors with the Rashba spin splitting24–26. The key point
here is for the spin split bands, one is paired into (px+ipy)
state, the other is paired into (px−ipy) state. However, to
realize TRI topological superconductor, the spin triplet
p-wave pairing should be dominant over spin singlet s-
wave pairing in the two spin split bands12,24.

Doped band insulators with strong SOC may be good
candidate materials in realizing an exotic pairing27. QSH
effect has been realized in heterostructures3, these sys-
tems have the advantage of great controllability of struc-
ture, doping, symmetry, and SOC. In this paper, we
theoretically propose topological superconductivity in a
doped QSH insulator. We study the pairing symmetry of
the newly predicted QSH insulator in decorated stanene
films SnX (X = -OH, -F, -Cl, -Br, and -I)28 within a two-
orbital model for its band structure. When the interor-
bital attractive interaction is stronger than the intraor-
bital interaction, the resulting state realizes a topological
superconductor. We explicitly calculate the Majorana
edge spectrum in a tight-binding model. Finally, we dis-
cuss the robustness of topological superconductivity in
doped SnX films by comparing to 3d superconductivity
in bulk β-tin.

The organization of this paper is as follows. After this
introductory section, Sec. II describes the effective two-
orbital model for the superconductivity in a doped QSH
insulator. Section III presents the results on the pairing
symmetry, phase diagram and edge state. Section IV
presents discussion and possible experimental realization
of topological superconductivity in tin film.

II. MODEL

Study of superconductivity in a doped QSH insulator
requires the knowledge of its band structure and pairing
mechanism. The general results presented in this Let-
ter is generic for any doped QSH insulators. Here, we
would like to start from a simple model describing the
2D QSH insulator SnX for concreteness28. In fact, 3D
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FIG. 1. (color online) (a) Crystal structure for SnI film with Ag adatom from the side (top) view [upper (lower)]. Inversion
symmetry is broken due to Ag doping. (b) First-principles calculations of band structure for SnI with one Ag adatom on a
4× 4 surface supercell. The Fermi level is indicated by the dashed line. Inset shows the spin splitting. (c) Fermi energy vs Ag
doping concentration.

β-Sn was one of the first superconductors to be studied
experimentally, with the critical transition temperature
3.72 K. Therefore, it is likely that doped SnX film is also
a superconductor. In the following, we assume that 2D
SnX is superconducting, and study under what condition
it would also be a 2d TRI topological superconductor. We
leave the discussion on pairing mechanism to the end.

A low-buckled geometry for 2D SnI is shown in
Fig. 1(a), where they have a stable sp3 configuration
analogous to graphane. The lattice symmetry is D3d.
As shown in Fig. 1(b) by first-principles calculations, the
band structure of AgxSnI is similar to its parent com-
pound SnI. The low-energy bands of SnI consist of an
antibonding state of s orbital and a bonding state of px,y
orbitals, labeled by |s−, ↑ (↓)〉 and |p+

x,y, ↑ (↓)〉, respec-

tively, which is similar as for HgTe quantum well5. The
effective Hamiltonian describing these four bands near
the Γ point is given by the model of Bernevig, Hughes
and Zhang5:

H0(k) = ε(k)+M(k)1⊗σ3+A(kxs3⊗σ1−ky1⊗σ2), (1)

here, si and σi (i = 1, 2, 3) are Pauli matrices acting
spin and orbital, respectively. To the lowest order in k,
M(k) = M0 +M1(k2

x + k2
y) and ε(k) = D0 +D1(k2

x + k2
y)

account for the particle-hole asymmetry29. M0 > 0 and
M1 < 0 guarantee that the system is in the inverted
regime. The basis of Eq. (1) is |s−, ↑〉, |p+

x,y, ↑〉, |s−, ↓〉,
|p+
x,y, ↓〉, and the ± in the basis stand for the even and

odd parity and ↑, ↓ represent spin up and down states,
respectively.

With the chemical doping by Ag adatom or electrical
gating, the lattice symmetry is reduced to D3. There-
fore, additional Rashba terms will be added into effective
Hamiltonian due to inversion symmetry breaking30. To
the lowest order, the only possible term is

HR(k) = α (s2kx − s1ky)⊗ (σ3 + 1), (2)

where α determines the strength of spin splitting. The
effective model for AgxSnI is given by H = H0 + HR.
The band structure is plotted in Fig. 1(b), and the bands
show small spin splitting which can be tuned to be large
by gating. Because of Ag doping, the Fermi energy µ lies
in the conduction band approximately 0.31 eV above the
band edge, which leads to a small Fermi surface respect-
ing full rotation symmetry around the z axis. Fig. 1(c)
shows the linear relation between chemical potential and
doping concentration, matches well with the parabolic
band structure in 2D.

As for the fermion pairing, we consider the following
short-range density-density interactions,

Hint(x) = −U
[
n2

1(x) + n2
2(x)

]
− 2V n1(x)n2(x), (3)

where nσ=1,2(x) =
∑
s=↑,↓ c

†
σs(x)cσs(x) is the electron

density in orbital σ. σ = 1, 2 represent s− and p+
x,y,

respectively. U and V are effective intraorbital and in-
terorbital interaction, respectively. We assume that at
least one of them is attractive, say due to phonons as in
the case of superconductivity of 3D tin. The two-orbital
U -V model for 2D AgxSnI is

H =

∫
dkc†k [H(k)− µ] ck +

∫
drHint(r). (4)

In the following, we shall apply the criterion of Ref. 16
to investigate topological superconductivity in this non-
centrosymmetric model.

III. RESULTS

A. Pairing symmetry

To determine the superconducting phase diagram of
the U -V model, we construct the Bogoliubov-de Gennes
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TABLE I. Three possible nonvanishing pairing potentials of
the two-orbital U -V model, ∆1, ∆2, and ∆3. Matrix repre-
sentation are off-diagonal elements of BdG Hamiltonian.

∆ Matrix Rz T

∆1 1⊗ 1, 1⊗ σ3 0 +

∆2 (s3 ⊗ σ2, 1⊗ σ1) 1 +

∆3 (s1 ⊗ σ2, s2 ⊗ σ2) 2 +

(BdG) Hamiltonian with mean-field approximation

HBdG =

∫
dkΞ†k [(H(k)− µ) τ3 + ∆(k)τ1] Ξk. (5)

Here τx,z are Pauli matrices in Nambu space and the basis

Ξ†k ≡(c†1k↑, c
†
2k↑, c

†
1k↓, c

†
2k↓, c1−k↓, c2−k↓,−c1−k↑,−c2−k↑).

The low energy physics with a small Fermi surface has
full rotation symmetry around the z axis Rz instead of
3-fold rotation symmetry C3 of the point group D3 in the
lattice. We classify all possible pairing potential ∆(k)
according to time-reversal symmetry T ≡ (is2 ⊗ 1)K
with K complex conjugation, and Rz = ei(θ/2)Σz with
Σz = s3 ⊗ (2 − σ3). In the weak coupling limit with
purely short-range interaction, the mean-field pairing
potential is k independent. In Table I, only 6 forms can
have nonzero values among the 16 possible products of
(1, s1, s2, s3) and (1, σ1, σ2, σ3). We find three different
pairing symmetries with angular momentum lz = 0, 1, 2
under Rz. The form of the corresponding pairing order
parameter ∆i, i = 1, 2, 3 is shown explicitly

∆1 : c1↑c1↓ + c2↑c2↓, c1↑c1↓ − c2↑c2↓,
∆2 : (i(c1↑c2↓ + c1↓c2↑), c1↑c2↓ − c1↓c2↑) , (6)

∆3 : (c1↑c2↑ + c1↓c2↓, i(c1↑c2↑ − c1↓c2↓)) .

∆1 is a spin-singlet, whereas ∆2 and ∆3 are interorbital
spin-triplets. The symmetry properties of ∆i are shown
in Table I.

B. Phase diagram

The excitation energy of quasiparticle are obtained
by diagonalizing the BdG Hamiltonian Eq. (5) with
fixing the pairing potential to each ∆i. We find su-
perconducting gap for ∆2 has point nodes (in the kx-
direction when one choose s3 ⊗ σ2), and the others have
full gap. To obtain the phase diagram, we estimate
the superconducting critical temperature Tc by analyz-
ing superconducting susceptibility for each pairing po-
tentials. The standard pairing susceptibility χ0 is de-
fined as χ0 = −T

∑
k,n Tr[τ1G(k, iωn)τ1G(k, iωn)], with

G(k, iωn) = [iωn−(H(k)−µ)τ3]−1 the Matsubara Green

-0.5
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FIG. 2. (color online) Phase diagram of superconductivity
in the two-orbital U -V model, showing highest Tc phase as a
function of M0/µ and U/V . ∆2 cannot be leading instability
in this phase diagram, for all the pairing states in ∆1,3 are
fully gapped. Solid (blue) and dashed (red) line are phase
boundary for α 6= 0 and α = 0, respectively.

function. All other susceptibilities χ1, χ2, and χ3 can be
obtained by replacing τ1 with their corresponding pairing
potential τ11⊗ σ3, τ1s3⊗ σ2 (or τ11⊗ σ1), and τ1s1⊗ σ2

(or τ1s2 ⊗ σ2) in Table I. A straightforward calculation
shows that they can be expressed by χ0, which contains
the logarithmic divergence at the Fermi surface. The lin-
earized gap equations for Tc in each pairing channel are
as

∆1 : det

[
U

(
χ0(Tc) χ01(Tc)
χ10(Tc) χ1(Tc)

)
− 1

]
= 0,

∆2,3 : V χ2,3(Tc) = 1.

(7)

Using the band structure ofH, we can calculate the phase
diagram numerically. In the limit of α→ 0, we obtain the
values of χ’s analytically: χ0 =

∫
dξD(ξ) tanh(ξ/2T )/2ξ,

D(ξ) is the density of states. χ01 = χ10 = (M0/µ)χ0,
χ1 = (M0/µ)2χ0, χ3 = 2χ2 = [1− (M0/µ)2]χ0. Because
χ2 < χ3, we find that ∆2 always has a lower Tc than ∆3.
From the highest Tc, only ∆1 and ∆3 appear in the phase
diagram. By calculating their Tc’s from (7), we obtain
the phase boundary

U

V
=

1− (M0/µ)2

1 + (M0/µ)2
. (8)

Fig. 2 shows the phase diagram as a function U/V and
M0/µ, for positive (attractive) V . A significant part of
the phase diagram is the ∆3 phase, especially for the
inversion symmetry breaking α 6= 0.

C. Criterion

Next we consider the topological nature of the pairing
state. The present system belongs to the symmetry class
DIII in 2D13,14, which is characterized by a Z2 topologi-
cal invariant in contrast to Z in 3D. Since the system has
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T symmetry without inversion symmetry, the criteria in
Ref. 16 can be applied. Namely, a TRI superconductor is
a topological superconductor if (1) it has a full supercon-
ducting gap and (2) there are an odd number of Fermi
surfaces each of which encloses one TRI point (which sat-
isfy Γa = −Γa up to a reciprocal lattice vector) in the
Brillouin zone and has negative pairing. The Z2 invariant
is

N2D =
∏
j

[sgn(δj)]
mj . (9)

Here j labels the Fermi surface, mj is the number of the
TRI points enclosed by the jth Fermi surface, sgn(δj) ≡
sgn[〈j,k|T ∆†|j,k〉] denotes the sign of the paring ampli-
tude of the jth Fermi surface, |j,k〉 is the eigenvectors
of H(k). Here in our system, the ∆3 pairing has oppo-
site sign on the two Fermi surfaces which gives rise to a
topological superconductor phase, while ∆1 has the same
sign as shown in Fig. 3. If we take the limit α → 0, the
two Fermi surfaces become degenerate, still the only odd-
parity pairing ∆3 phase is topological19,31,32. As shown
in Fig. 2, the topological superconductor phase ∆3 is
more favorable when inversion symmetry is breaking.

D. Edge state

We confirm the system is exactly in the topological
phase under such conditions. To obtain the topologi-
cal protected gapless edge states, we solve the following
tight-binding model describing continuous model Eq. (5)
in the low energy regime,

H =
∑
〈rr′〉

c†rtrr′cr′ −
∑
r

µ′c†rcr +
∑
r

[
c†r∆c

†
r −H.c.

]
,

where 〈rr′〉 denotes the nearest-neighbor site. The hop-
ping parameters µ′ = µ−(D0 +4D1)−(M0 +4M1)1⊗σ3,
trr±ax̂ = −(D1 +M11⊗σ3)±(i/2)[As3⊗σ1 +αs2⊗(σ3 +
1)], and trr±aŷ = −(D1 + M11 ⊗ σ3) ∓ (i/2)[A1 ⊗ σ2 +
αs1 ⊗ (σ3 + 1)]. We consider the ∆3 pairing state in the
cylindrical geometry with periodic boundary condition in
the x direction and open one in the y direction. The en-
ergy spectrum of this model is shown in Fig. 3(c). One
can see that there are helical Majorana states crossing
the bulk superconducting gap, where the right-going and
left-going states are spin splitting (very small), and lo-
calized at opposite edges. Therefore, nontrivial Z2 num-
ber in the bulk will lead to helical states at the edge.
However, there are no edge states with ∆1 pairing as in
Fig. 3(d), which are consistent with the previous study
on bulk topological invariant.

IV. DISCUSSION

Finally, we discuss the robustness of topological super-
conductivity obtained from the two-orbital U -V model

1= +

1−

FIG. 3. (color online) Bulk Z2 topological number, Fermi
surface pairing amplitude and edge energy spectrum. (a)
N2D = −1 for ∆3 pairing, and (c) edge spectrum shows that
helical edge modes appears at each edge of the sample in the
superconducting gap; while (b) N2D = +1 for ∆1 pairing, and
(d) no edge states. All parameters are taken from Ref. 29.

and the possible pairing mechanism. As the phase dia-
gram shows, the interorbital spin-triplet ∆3 phase wins
as long as the interorbital interaction exceeds over the
intraorbital one (V > U). This arises from the spe-
cific form of SOC in the band structure, which favors ∆3

pairing. Also, inversion symmetry breaking and multi -
orbital system would result in more unconventional pair-
ing. Therefore, doped QSH insulators with strong SOC
would offer better way to find topological superconduc-
tors. The realistic value of U and V in tin films are diffi-
cult to estimate. Nonetheless, the 3d superconductivity
in bulk β-Sn is s-wave pairing from s orbit via phonon-
mediated mechanism. It is likely that 2D SnX is also
a superconductor with a phonon driven pairing mecha-
nism. The bare value of attractive Uph and Vph are given
by the electron-phonon coupling λ2d as Uph, Vph ∝ λ2

2d.
Such electron-phonon coupling strength λ2d in 2D can be
modulated and could even be larger than that in 3D33.
With 2D SnX film on different insulating substrates such
as CdTe or InAs, the strain from substrate can cause
expansion and shrinkage of interlayer spacing, therefore
the phonon spectrum can be greatly modulated. The
topological property persists in SnX with lattice constant
mismatch from −7% to 5%28. Thus, one could maximize
λ2d without changing the topological properties of SnX.
In reality, Uph is usually larger than Vph, and results in a
largest energy gain by forming the s-wave pairing. How-
ever, the effective interaction given by U and V should
include effects of the Coulomb interaction and other pos-
sible renormalizations. The Coulomb repulsion Ucoul and
Vcoul renormalizes the bare value of Uph and Vph, respec-
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tively. Ucoul � Vcoul due to smaller interorbital wave-
function overlap, and weaker Coulomb screening in 2D
makes Ucoul larger than that in 3D. The effective inter-
action parameters are given by U = Uph − Ucoul, and
V = Vph − Vcoul. Therefore the stronger intraorbital re-
pulsion would lead to U < V .

V. CONCLUSION

In summary, we have studied topological superconduc-
tivity in a doped QSH insulator and propose 2D doped
SnX as a potential candidate. A wealth of QSH insu-
lating materials could lead to the discovery of the TRI
topological superconductor, which supports the existence

of Majorana edge states and Majorana zero energy modes
in vortex cores. We hope the theoretical work here could
aid the search for topological superconductor phases in
real materials.
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rameters A = 4.0 eV·Å, M0 = 0.47 eV, M1 = −6.0 eV·Å2,
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