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A Proposed Definition of Crystal Substructure and Substructural Similarity

Lusann Yang, Stephen Dacek, and Gerbrand Ceder∗

Department of Materials Science and Engineering
Massachusetts Institute of Technology

There is a clear need for a practical and mathematically rigorous description of local structure
in inorganic compounds so that structures and chemistries can be easily compared across large
data sets. A new method for decomposing crystal structures into substructures is given, and a
similarity function between those substructures is defined. The similarity function is based upon
both geometric and chemical similarity. This construction allows for large-scale data mining of
substructural properties, and the analysis of substructures and void spaces within crystal structures.
The method is validated via the prediction of Li ion intercalation sites for the oxides. Tested on
databases of known Li-ion containing oxides, the method reproduces all Li-ion sites in an oxide with
a maximum of 4 incorrect guesses 80% of the time.

PACS numbers: 61.50.Ah, 61.66.Fn, 61.68.+n

I. INTRODUCTION

Growing materials databases, computational power,
and better computational techniques have made it an
exciting time in computational materials science.1,2 The
Materials Project has published ab initio computa-
tions of nearly 50,000 compounds online, including over
20,000 band structures.3 The Inorganic Crystal Structure
Database, a database of experimentally determined com-
pound crystal structures, now contains 161,030 entries.4

Growing databases of materials incur the necessity to de-
velop methods with which to organize such knowledge,
and allow for the possibility of systematically mining this
data for patterns.

When mining data for patterns, it is often useful to de-
velop similarity or difference functions that quantify the
relationships between structures. Such similarity func-
tions provide the ability to cluster similar structures to-
gether and imposes a natural ordering on the space of
crystal structures. A similarity function between two
crystal structures typically consists of two components;
a component that measures similarity in chemistry, and
a component that measures geometric similarity. Un-
like traditional symmetry or unit-cell based methods of
structure description, methods of geometric comparison
should be based upon continuous functions of ion posi-
tion, which allows for structures with similar ionic posi-
tions to be grouped together. Additionally, these func-
tions of ion position should be invariant under rotation,
translation, and choice of unit cell.

There have been several definitions of continuous,
quantitative similarity functions on the space of crys-
tal structures. The works of Willighagen and Oganov
combine radial distribution functions with ion-specific
information such as charge state or neutron scattering
length to describe crystal structure.5,6 De Gelder de-
rives his similarity function using weighted cross correla-
tions of the powder diffraction pattern,7 while Rupp et
al have used a matrix representation of structure based
upon the Coulomb interaction between ions.8 All of the
above methods combine two components: Each method

features a description of the geometrc arrangement of
ions (either embedded in the radial distribution pattern,
the powder diffraction pattern, or the strength of the
Coulomb interaction), and a chemical descriptor for each
ion (embedded in the scattering pattern or the strength
of the charges in the Coulomb interaction).

In this paper, we will develop a continuous, quanti-
tative similarity function between substructures that al-
lows chemically and topologically similar structures to be
grouped together despite the fact that they may have dif-
ferent unit cells, composition, and symmetry. Substruc-
ture based analyses of materials properties have a rich
history in materials science, as breaking crystal struc-
tures into substructures allows for the study of sites,
defects, void spaces, and the packing of substructures.
Linus Pauling’s Principles determining the structure of
complex ionic crystals9, colloquially known as the Paul-
ing rules, describe a set of rules for deriving ionic crys-
tal substructures based upon geometry and local pack-
ing rules. Daams and Villars presented in 200010 an en-
lightening study in which they decomposed 200,000 in-
organic crystal structures in 5,000 structural prototypes
into chemistry-independent atomic environment topolo-
gies. Interestingly, they showed that only 20 of the most
frequent atomic environment types were necessary to ac-
count for 80% of the prototypes seen; only another 70
rarer atomic environment types were necessary to ac-
count for their entire data set. Methods that quantify
the similarity of crystal structures can be used to predict
the existance and packing of substructures, which would
prove useful in the prediction of novel crystal structures.
Mellot-Draznieks et al. have published a number of excit-
ing studies predicting the structures of inorganic materi-
als by assembling secondary building units via simulated
annealing methods.11–13

Given the high degree of structure that Daams and Vil-
lars have found in the atomic environments of inorganic
compounds, alongside Pauling’s intuitive and compelling
physical arguments for the existence of a set of highly or-
dered substructures, decomposing crystal structures into
substructural units is a natural next step. In previous
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work, we developed a similarity between ionic composi-
tions and used it to validate the correlation between sim-
ilar compositions and crystal structure prototypes.14 The
ionic similarity function measures to what extent pairs of
ions behave similarly in terms of crystal structure forma-
tion. Hence, it can also be thought of as the probability
with which one ion will substitute for another while re-
taining the same structure prototype. Breaking crystal
structures down into substructures allows us to further
subdivide the data set of known compounds and their
structures, yielding more points in a richer database. A
database of 5,500 oxides contains millions of substruc-
tures. In this paper we use the previously developed
ionic substitutional similarity as our method of chemi-
cal comparison, and a weighted Voronoi construction by
O’Keefe15 as our method geometric comparison, to con-
struct a similarity function between substructures.

The proposed similarity function provides a robust
method to describe and quantify the differences be-
tween substructures. It allows for the organization of
a database of substructures, and for the analysis of both
sites and void spaces within crystal structure. We vali-
date our work with the application to an important prob-
lem in the design of better lithium ion battery materials.
As electrode materials function by reversibly inserting
and extracting Li ions into their crystal structure, it is
important when designing new electrode compounds to
have algorithms that can identify potential Li sites. Us-
ing cross validation, we will evaluate how well the pro-
posed substructure similarity function can be trained on
known Li sites and then used to predict Li sites.

II. METHODS

In this section we will present a description of substruc-
ture and a similarity function between substructures that
respects both geometric and chemical similarity. Ma-
terials databases such as the Inorganic Crystal Struc-
ture Database4 contain hundreds of thousands of crystal
structures which can be decomposed into millions of sub-
structures. These substructures will vary in both compo-
sition and geometry. For example, the perovskite crystal
structures shown in Figure 1 feature several common dis-
tortions of the coordination polyhedra around the central
ion. These distorted polyhedra should be considered ge-
ometrically similar. Furthermore, it is not uncommon
for differing crystal structures to share the same proto-
type, save for the substitution of one ion for another. In
the cases in which similar ions inhabit similar substruc-
tures, these substructures must be considered chemically
similar.

A. Defining Substructure

With the requirements for substructural similarity in
mind, we present a definition of substructure that con-

FIG. 1. Variations on the perovskite crystal structure. Three
perovskite crystal structures are shown. The first structure
SrTiO3, is the perovskite crystal structure. The next two
structures are variations on perovskite. The second features
a slight orthorhombic distortion and alternating Fe and Mo
ions, while the third features distorted octahedra. While the
octahedral environments vary in both chemistry and geometry
in all three structures, they are nonetheless similar.

tains information regarding both chemistry and geome-
try. This definition of substructure should be well defined
and continuous versus small perturbations in atomic po-
sition. In the field of machine learning, the term feature
vector selection is used to describe the problem of finding
and choosing the variables that influence the outcome of
the problem at hand. The choice of feature vector should
not only include all of the factors that may influence the
outcome of the problem, but it should also be dense: To
the greatest extent possible, it should not include infor-
mation that does not influence the outcome of the prob-
lem.

With respect to the problem at hand, we believe that a
good feature vector for substructure prediction and data
mining should fulfill the following criterion.

1. The feature vector should include geometric infor-
mation about a substructure. At a minimum, the
feature vector should be able to distinguish be-
tween several commonly found coordinations such
as tetrahedral, octahedral, cubic, etc. More geo-
metric information, for example distortions in oc-
tahedral site, or the chemical identities of next-
nearest neighbors, could also prove useful. As we
are expecting millions of substructures, it is also
useful to minimize computational complexity by
limiting feature vector size.

2. The feature vector should be continuous with re-
spect to small variations in geometry.

3. The feature vector should include chemical infor-
mation, allowing for the subsequent similarity func-
tion to cluster similar chemistries together.

4. Lastly, the feature vector should be clearly, simply,
and intuitively defined.

Motivated by the work of Villars10, we design a fea-
ture vector based upon a substructure around a central
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ion. This choice allows for a clear decomposition of a
given crystal structure into substructures; every ion is
the center of it’s own substructure. While Villars uses an
atomic environment based upon Brunner and Schwarzen-
bach’s maximum gap rule16 for the radial distribution
function, in this paper we chose to describe a feature
vector based upon a weighted Voronoi polyhedron de-
scribed by OKeeffe.15 Both methods include geometric
information that is independent of symmetry and con-
tinuous against small perturbations in crystal structure,
but the clarity of the maximum gap rule breaks down
when a maximum gap in the radial distribution function
is not clearly discernable.

O’Keeffe’s method is based upon the Voronoi decom-
position of a crystal structure.15 A crystal structure c
can be decomposed into a set of Voronoi polyhedra with
one central ion x inside each polyhedron.17 The space
enclosed by each polyhedron represents the set of points
that are closer to the central ion x than any other ion.
Each face of the polyhedron surrounding x is generated
by the plane bisecting the line between x and a neighbor-
ing ion y, and subtends a solid angle Ωy from the central
ion. Following the work of OKeeffe, for a given polyhe-
dron, the neighbor y corresponding to the greatest solid
angle is assigned a weight wy = wmax = 1, and every
other neighbor z is assigned a weight wz = Ωz/Ωmax.
O’Keeffe’s method is illustrated in Figure 2.

Neighboring ions with greater Voronoi weights tend to
be closer to the central ion i; they also tend to have
fewer nearby neighbors within the same solid angle from
the central ion. Correspondingly, neighbors with small
Voronoi weights tend to be further away from the central
ion i, and tend to have more nearby neighbors. O’Keeffe’s
method is elegant, continuous, and calculable with Bar-
ber’s Quickhull algorithm.18 Additionally, O’Keeffe’s al-
gorithm is intuitive and rigorously mathematically de-
fined.

For the purposes of this paper, we represent the sub-
structure s of a central ion i in a crystal structure c with
the following data structure:

• We identify the central ion and its ionic specie i

• We keep an unordered list of neighboring ions, rep-
resented by (ionic species x and Voronoi weight wx

) pairs, {(x,wx)}.

For example, a phosphate tetrahedron would be stored
thus:

• Central ion: P5+

• Peripheral ions: (O2−, 1), (O2−, 1), (O2−, 1),
(O2−, 1)

This choice of feature vector allows us to represent the
atomic environment of an ion in a chemistry and geomet-
rically sensitive manner. Furthermore, the feature vector
will remain unchanged if the crystal structure is rescaled
by a constant, allowing us to robustly compare the atomic

Ωmax 

FIG. 2. The Voronoi polyhedron around a central ion is shown
in gray. Faces of the Voronoi polyhedron are generated by
the perpendicular bisectors of the lines between the central
ion and all other ions in the crystal structure. Each face of
the Voronoi polyhedron is thus caused by the existence of a
neighboring ion y. The neighboring ion whose polyhedron
face subtends the largest solid angle Ωmax has weight 1; all
other neighboring ions have weights proportional to the angle
subtended by their polyhedron faces.

environments of ions of differing radii. We note that the
proposed definition of a substructure is mathematically
rigorous in that it can be calculated for every crystal
structure. It is independent of symmetry, and it is con-
tinuous against small variations in crystal structure with
respect to both small perturbations of ion position and
small changes in lattice vector.

B. Similarity between Substructures

In this section we develop a similarity function between
two substructures. This function should be higher if two
substructures are chemically similar, and higher if two
substructures are geometrically similar. This function
should be 1 if two substructures are identical, and should
always be greater than 0.

A similarity function between substructures must have
a method of quantifying geometric similarity as well as
a method of quantifying chemical similarity. In this sec-
tion, we quantify the chemical similarity between ions
via a previously developed data mined ionic substitu-
tional similarity function14,19. This function, denoted
Simion(i1, i2), grows with the probability of two ions sub-
stituting for each other within the same structure proto-
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type and captures the similarity of two ions with respect
to crystal structure formation. The ionic substitutional
similarity of two identical ions is 1, and it decreases to a
minimum of 0.

As a substructural similarity function balances chem-
ical similarity versus geometric similarity, we introduce
a tunable ionic similarity function that allows us to re-
weight the importance of chemical similarity. This tun-
able ionic similarity function is constructed by passing
the ionic substitutional similarity Simion(i1, i2) through
a sigmoid function.

Sigmoidσ, µ(x) =
1

σ
√

2πσ

∫
e

−(x− µ)2

2σ2 dx (1)

Setting µ sets the threshold above which ions are con-
sidered similar, and setting σ sets how sharply the func-
tion differentiates similar and dissimilar ions. Large σ
values broaden the width of the Gaussian, minimizing
the penalty for starkly differing chemistries. The func-
tion that quantifies the similarity between two ions i1, i2
is given by Sim

σ, µ
ion (i1, i2):

Sim
σ, µ
ion (i1, i2) = Sigmoidσ, µ(Simion(i1, i2)) (2)

Given the ionic substitutional similarity which quan-
tifies chemical similarity two ions, we now develop a
method for quantifying both the geometric and chemi-
cal similarity between two substructures. We will be-
gin by developing a score that quantifies the geometric
and chemical similarity between two peripheral ions in
a substructure, and then define the similarity between
two substructures via a best matching of the ions in one
substructure to the ions in the other.

Two substructures si and sj have central ions i and j
and sets of neighbors Ni and Nj . Each neighboring ion
x ∈ Ni and y ∈ Nj has an associated weight wx or wy

that satisfies 0 ≤ w ≤ 1.
We define a score between two peripheral ions x and

y:

Score(x, y) = Sim
σ, µ
ion (x, y) min(wx, wy)e

−(wx,wy)2

c2 (3)

This score satisfies the following properties:

• It is greater if the two ions are chemically similar,
due to the contribution of the ionic substitution
similarity function.

• It is greater if the weights of the two ions are higher,
due to the contribution of the minimum of the two
weights, and

• it is greater if the weights of the two ions are close to
each other, due to the contribution of the Gaussian
function.

The parameter c allows the user to tune the sensitiv-
ity with which the score penalizes different weights. A
higher value of c yields a wider spread in the Gaussian,
allowing for greater differences between the weights and
lesser geometric sensitivity.

This score represents the similarity of the two neigh-
boring ions to each other, taking into account both chem-
ical and geometric similarity. It tends to be higher if the
neighboring ions are more central to their respective sub-
structures.

Next, we define a product between two substructures
si and sj :

Product(si, sj) =

max
all matchings

Σ
x,y∈matchingScore(x, y) (4)

where the sum is taken over the pairing of ions x ∈ Ni

to ions y ∈ Nj that maximizes the product. If there are
more ions in one substructure than the other, the excess
ions in the larger substructure will remain unpaired, and
will not contribute to the sum. This product between
two substructures does not take into account the simi-
larity of the central ion, and is thus appropriate for the
analysis of void spaces or the comparison of substructures
for which the central ion remains the same. We use this
product throughout this paper as the application under
consideration is the identification of Li sites.

An alternative product between two substructures that
takes into account the similarity of the central ions should
be used when comparing substructures with differing cen-
tral ions. This product can be formulated by multiplying
the product in equation 4 by the similarity of the central
ions.

Product(si, sj) = Sim
σ, µ
ion (i, j)∗

max
all matchings

Σ
x,y∈matchingScore(x, y) (5)

Finally, we normalize the product of two substructures
to obtain the substructural similarity function. This type
of normalization is necessary to avoid assigning larger
substructures larger similarities due to their greater num-
ber of neighboring ions.

Simsubstruct(si, sj) =

Product(si, sj)√
Product(si, si), P roduct(sj , sj)

(6)

We define substructural similarity to be the resultant
similarity function.

III. APPLICATION TO LI SITE PREDICTION

We now have the ability to parse crystal structures
into substructures and to organize those substructures
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by similarity to each other. We have presented a tool kit
for the systematic and quantitative study of substruc-
tures and void spaces. The methods in this paper can be
used to extract databases of crystal substructures from
existing materials databases, to mine for patterns in the
crystal structures in which they form, to analyze and pre-
dict the environments of specific ions, and to study how
substructures connect to each other.

To validate the capabilities of this set of tools, we
chose an important and straightforward application to
the problem of Li site identification. The search for bet-
ter materials for Li ion batteries involves requires the
identification of Li sites in potential electrode materials.
We will use substructural similarity to characterize Li
sites in the oxides, and use the database of Li sites to
predict where Li ions can be inserted in new materials.

Oxides, defined as compounds consisting of over 20%
oxygen by ion count, were extracted from the Inorganic
Crystal Structure Database4 (ICSD) 2012 and cleaned
of high temperature and high pressure phases, perox-
ides and superoxides, and structures that were improp-
erly reported. Details of the data cleaning procedure can
be found in the appendix. The resultant oxides were
sorted into structure prototypes using an affine mapping
algorithm.20 The data set was further cleaned by remov-
ing duplicates, defined as compounds with the same com-
position and the same structure prototype, resulting in a
final data set of 5,509 oxides.

The complete data set was randomly split into 10
equally sized subsets for cross validation.21 Each subset
served in turn as a test set, while the other 9 subsets
served as the training set. The training set, comprising
90% of the compounds, represents the database of known
compounds to be data mined. The remaining 10%, called
the test set, mimics a set of as-yet-unseen compounds
from which we remove the Li ions and attempt to re-
cover their positions. This test set is used to evaluate
the efficacy of our site prediction algorithm.

A. Site Prediction Algorithm

The ionic substitution similarity functions was ex-
tracted from the training set. The parameters σ and µ,
which were used in the tunable ionic similarity, and the
parameter c, used in the substructural similarity, were
set using nested cross-validation. Each training set was
further subdivided into 5 partitions: Each partition was
held apart as a test set in turn, creating 5 internal cross-
validation sets for each external cross-validation set. The
algorithm described below was run for each internal cross
validation set while we varied each parameter σ, µ, and
c in turn; the set of parameters that yielded the high-
est overall area under curve score (described below) was
chosen. This optimal set of parameters σ = 0.3, µ = 0.7,
and c = 0.05 was then used to generate the results in the
external cross-validation loop.

Each compound in the training set was searched for Li

sites, and a database of Li substructures was compiled.
The ionic substitution similarity and the database of
Li substructures consist of all the information extracted
from the training set.

For each Li-containing compound in the test set, the
Li sites were removed. The resultant, unrelaxed, Li-free
crystal structures represent artificially delithiated oxides
for which we will recover the Li sites. The Voronoi poly-
hedra for the Li-free crystal structures were computed
using the quickhull algorithm by Barber et al.18 The set
of points given by the corners of each Voronoi polyhe-
dron and the centers of each Voronoi polyhedra face con-
stitute a reasonable set of potential lithiation sites; we
call this set of points the Voronoi points of the crystal
structure. The Voronoi polyhedron corners represent the
set of points that are equidistant from their four closest
neighbors, and thus represent the set of points that are
as far away as possible from any other point.17 The face
centers of Voronoi polyhedra are another potential site
for inserted species. Finally, all sites and Voronoi points
for each Li-containing compound were grouped together
into symmetrically identical sites using pyspglib22 to re-
duce computational complexity.

To test how well our data mined substructural sim-
ilarity can predict favorable environments for Li ions,
we attempted to rediscover the removed Li sites in each
Li-containing compound in the test set. For each sym-
metrically distinct Voronoi point in a crystal structure,
we calculated the substructural similarity between this
Voronoi point and every known Li substructure obtained
from our training set. We ranked each symmetrically dis-
tinct Voronoi point in the structure by its distance to the
most similar Li containing substructure, where distance
is given by 1− similarity, to produce an ordered list. We
evaluated the efficacy of this list in predicting Li sites via
the following rules:

1. If the Voronoi point is within r < 0.5Å of an undis-
covered Li site, it is considered a correct guess.
That Li site and all of its symmetrically distinct
neighbors are now marked as discovered, and can-
not be discovered again.

2. If the Voronoi point is within r < 0.25Å of a previ-
ously guessed Voronoi point, this Voronoi point is
not put forward as a possible interstitial site. This
rule is necessary because Voronoi points are com-
monly found in compact clusters.

It is useful to compare the performance of ranking
Voronoi points by substructural similarity against an-
other ranking method. One simple and interesting rank-
ing method involves ranking the sites by radius, where
the radius is given by the distance from the Voronoi point
to the nearest site. The average Li site radius in the ox-
ide database was 2.1 Å. This is consistent with an oxygen
ionic radius of 1.4 Å, and a lithium ionic radius of 0.7
Å23,24. The following section gives the results for rank-
ing both via the substructural similarity method, and by



6

0.5 0.6 0.7 0.8 0.9 1.0

Probability of finding all Li sites

0

10

20

30

40

50

N
u
m
b
e
r
o
f
in
c
o
rr
e
c
t
g
u
e
s
s
e
s

by sim ilarity

by radius

u
n
fi
n
d
a
b
le

FIG. 3. The Li site identification rate. The solid line shows
the number of incorrect guesses before identifying all the Li
sites in a structure via the substructural similarity method;
the dotted line shows the number of incorrect guesses using
the radius of the site. Substructural similarity finds all the Li
sites within a crystal structure with 9 incorrect guesses 90%
of the time. The striped region on the right represents the
5% of Li sites that are not within 0.5Å of a Voronoi point,
and thus cannot be found by this algorithm.

distance d = |r − 2.1Å|, where r is the site radius given
by the distance from the site to the center of the closest
ion.

B. Results

Figure 3 depicts the results of Li site prediction in the
oxides by the two ranking methods given above. The x
axis shows the probability of achieving a given result for a
specific oxide selected from the data set; the y axis shows
the number of wrong guesses necessary before finding all
the Li sites. The data shown is aggregated across all 10
cross-validated sets, and thus represents Li site prediction
across all unique 302 Li-containing oxides.

Ranking potential Li sites by substructural similarity
fares better than ranking by site radius, consistently re-
quiring 2-3 times fewer incorrect guesses. Substructural
similarity finds all the Li sites within a crystal struc-
ture with 4 incorrect guesses 80% of the time. 50% of
the time, it finds all the Li sites without any incorrect
guesses. On the most difficult 5% of compounds the al-
gorithm requires over 50 incorrect guesses to find all the
Li sites. Upon investigation, we discover this is because
approximately 5% of Li-ion sites are not within 0.5Å of
any Voronoi point, and thus cannot be found by this al-
gorithm. While 5% of Li-ion sites are not within 0.5Å
of any Voronoi point, this does not mean that these 5%
of Li-ion sites are unfindable via substructural similarity

methods, but rather that future implementations should
consider selecting potential Li sites via a method other
than Voronoi decomposition. For example, it would be
possible to discretize a given crystal structure into a 0.5Å
grid, and use the resultant vertices as potential Li sites.

Figure 4 depicts the results of Li site prediction via
a receiver operating characteristic (ROC) curve. A ROC
curve depicts the true positive fraction versus the false
positive fraction for a binary classifier as the predictive
threshold is varied. In this case the binary classifiers at
hand are classifying Voronoi points as Li sites or non
Li sites. The true positive fraction or the sensitivity is
the number of correctly identified Li sites divided by the
number of actual Li sites. The false positive fraction is
the number of non Li sites that have been incorrectly
labeled as Li sites divided by the number of actual non
Li sites. If a Voronoi point x has a similarity to the
most similar Li site in the training set y, it’s distance
to the most similar Li site is given by d = 1 − y. The
predictive threshold is the number p such that if d ≤ p,
point y is predicted to be a Li site. The ROC curve is
generated by varying the predictive threshold p. As the
predictive threshold rises, more sites, both Li and non-Li,
will be labeled as Li sites. The ratio of true positives to
false positives changes as we vary the distance threshold
below which a given Voronoi point is classified as a Li
site.

A perfect classifier should correctly identify all of the
true positives before returning a false positive, and the
ROC curve of a perfect classifier would go straight up
from (0, 0) to (0, 1) before going right to (1, 1). The
area under the ROC curve (AUC) is a commonly used
figure of merit to assess the quality of a binary classifier.
A perfect classifier has AUC = 1.

Examining figure 4, the benefits of Li site prediction
by substructural similarity becomes clear. Substructural
similarity achieves a higher area under the curve by cor-
rectly identifying Li sites earlier, before mis-identifying
non-Li sites.

Finally, figure 5 depicts the performance of Li site clas-
sification broken down by compound complexity. Here,
we define the compound complexity as the number of
symmetrically distinct ion sites in the crystal structure;
this number appears to be linearly correlated with the
number of symmetrically distinct Voronoi points in the
crystal structure (shown in black). Again, the number of
guesses required to find all the Li sites by substructural
similarity (shown in blue) is consistently lower than the
number of guesses required to find all the Li sites by ra-
dius (shown in red). Interestingly, the number of guesses
required to find all the Li sites does not appear to be
correlated with the complexity of the compound. This
implies that Li sites are well-separated from non-Li sites
by the local substructural similarity. Finally, there are
a number of outlying poor performers distributed across
several compound complexities which require 100 or more
guesses to identify all the Li sites. This may be because
these poor performers contain Li environments that are
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FIG. 4. The receiver operating characteristic for Li site clas-
sification. The x axis depicts the false positive fraction, or
fraction of non-Li-site Voronoi points that were mistakenly
identified as Li sites. The y axis depicts the true positive
fraction, or the fraction of Li sites that were correctly iden-
tified as Li sites. The black line represents classification by
substructural similarity; the dotted line represents classifica-
tion by site radius.

not well represented in the training sets, and could be
found with more comprehensive data.

IV. DISCUSSION

We have developed a definition of substructure that is
mathematically precise, continuous against small varia-
tions in position, and calculable for every atomic position
in every crystal structure. We built upon that definition
of substructure a similarity function that takes into ac-
count geometric and chemical similarity and produces a
number between 0 and 1 that is higher if the two sub-
structures are more similar. This substructural similar-
ity function allows for the quantitative study of sites,
void spaces, and substructural packings within a crys-
tal structure. We believe this function can be used for
many purposes, including the prediction of substructures
for structure prediction, the quantitative screening both
sites and diffusion paths through a structure, to orga-
nize the space of crystal substructures and to screen for
and analyze materials properties that are related to local
substructures.

We validated the definition of substructure and sub-
structural similarity functions via the prediction Li sites
in oxide compounds, finding all the Li sites within a crys-
tal structure with 9 incorrect guesses 90% of the time.
This application has the potential to greatly reduce com-
putational time in the search for Li insertion sites, as it is
not uncommon for there to be hundreds of symmetrically
distinct Voronoi points per oxide crystal structure. One
of the strengths of the proposed data mining algorithm
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FIG. 5. Performance of Li site prediction by compound com-
plexity. The number of incorrect guesses required to find all
the Li sites is plotted versus the complexity of the oxide host.
The complexity of the host is given by the number of sym-
metrically distinct sites in the host structure. Ranking by
substructural similarity performs equally well on simple ox-
ide structures as it does on more complex oxides.

for interstitial insertion sites is that it is both general and
flexible. While the presented work considers only the in-
sertion of Li ions, there is no reason this work could not
be extended to predict the insertion sites for Na or Mg
ions; indeed, this framework can be used to identify, an-
alyze, and predict the site and void space preferences of
any ion. Ranking Voronoi points by substructural simi-
larity finds the site preferences of an ion first, recovering
the stable sites, but progressing to more unstable sites
has the potential to discover the Voronoi points on the
diffusion path of an ion through a material.

Furthermore, the proposed data mining algorithm was
used to validate the substructure and substructural sim-
ilarity constructions. We present a brief analysis of the
failure modes of this data mining algorithm. Of 312 lithi-
ated oxides, there were 8 structures for which the Li site
finding algorithm required more than 100 guesses to iden-
tify all the Voronoi points that were within 0.5Å of a Li
site. Table I gives summary information for the those
8 lithiated structures. The table shows the number of
symmetrically distinct Li sties, the number of guesses to
find all the Li sites, and the number of Voronoi Points
in the crystal structure. Finally, the table also gives two
other quantities of interest. The minimum distance be-
tween any Voronoi point in the crystal structure and any
Li site in the training set is sometimes pertinent; the av-
erage distance between any voronoi point and any Li site
is approximately 0.6. Therefore if the minimum distance
between any Voronoi point in the structure and any Li
site is higher than 0.9, this crystal structure would be a
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statistical outlier and should be further examined. Sec-
ondly, the distance at which the last Li site was identified
is pertinent as a measure of how unusual the most un-
usual Li site in the crystal structure is. The greater the
distance, the more unusual the site. Table I gives all of
the quantities described above.

Looking through Table I , we notice in the last two
columns two structures with unusually high Voronoi dis-
tances. Li1Nd9Mo16O35 and Li8Rb8B32O56 were both
reported in the ICSD with no charge state information.
When ions are reported without charge state informa-
tion, the algorithm searches for similar ions with a charge
state of 0, yielding very low similarities to known sub-
structures. The minimum distances between any Voronoi
point and all known Li sites for these two structures are
0.92 and 0.95. Error due to unreported charge states can
be easily addressed in future work by assigning reason-
able charge states. Additionally, approximately 5% of Li
sites are never found because 5% of the Li sites are not
within 0.5 Åof a Voronoi point; this is not a flaw in the
ranking of sites by substructural similarity, but rather a
flaw in the construction of the set of possible sites.

The other 6 structures illustrate a weakness of any data
mining algorithm, in that the data mined predictions are
only as good as the data set at hand. The distances
between the last found Li site and the closest Li site in
the training set for each of these structures is greater 0.44,
whereas the average distance between an Li site and the
closest Li site in the training set is 0.31. In contrast,
the average distance between a randomly drawn Voronoi
point and the closest Li site in the training set is 0.57.
The distribution of Li site distances and the number of
guesses necessary to find an Li site is given in figure 6.
The red line and the right hand axis plot the distance
of a site to the closest Li site in the training set versus
the average number of guesses necessary to find it; the
blue line and the left hand axis plot the distance of a
site to the closest Li site in the training set versus the
percentage of Li sites in the test set that are found at
that distance. A good prediction algorithm increases the
lag between the blue curve and the red curve, identifying
all of the Li sites before increasing the number of guesses.
The other 6 structures represent the tail end of the red
curve; the unusually high distances of the last Li sites
to be found indicate that there are no highly similar Li
sites in the training set. This is either because of an usual
chemistry as demonstrated by Li+10As5+22 U6+

26 O2−
138, or an

unusual geometry.

While the substructural data mining methods devel-
oped in this paper are general and could theoretically
be applied to any number of ionic species, the limitation
of a data mining method lies in the quality of the data
set at hand. For example, the quality of the Li site pre-
dictions depends strongly on the number of Li sites in
the database; in this case, the oxide database provided
1631 occurrences of Li in 312 crystal structures across
458 unique substructures. However, if we were to re-
peat this prediction procedure for Mg site predictions,
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FIG. 6. Distance distribution of Li sites and number of
guesses. The x axis depicts the distance as calculated by
the similarity metric between an Li site in the test set and
the closest Li site in the training set. The blue y axis on
the left hand side depicts the distribution of Li sites versus
distance; the red y axis on the right hand side depicts the av-
erage number of guesses at a given distance. An ideal ranking
system would increase the lag between the blue and the red
lines, finding 100% of the Li sites before requiring more than
1 guess.

the same oxide database would provide only 839 occur-
rences of Mg in 140 crystal structures across 176 unique
substructures. For this reason, we expect data mining
predictions to fare less well when applied to less common
chemistries. In such a scenario, it would be reasonable
to use ionic similarity to gather data from across similar
chemistries. We could include data from ions with high
ionic substitutional similarity (like Ca and Ba), weighted
by ionic substitutional similarity, when making predic-
tions for Mg sites.

There are several reasonable extensions of the current
algorithm. We extracted a list of known Li sites and com-
pared potential sites directly to the known sites, ranking
potential sites by similarity to a known site. It would
be reasonable to take into account other factors - for
instance, the radius of the potential site, the ratio of
anions to cations in the host structure, or even the com-
position of the host structure. One could easily extend
the algorithm by conditioning the ranking of the poten-
tial site upon not only substructural similarity to an Li
site, but also substructural similarity to a known Na site.
One could also condition the ranking upon the compo-
sition of the host structure being similar to the compo-
sition of a structure that is known to host Li. Another
algorithm would search through the database for struc-
tures with similar compositions and extract Li sites from
those compositions only. There are many possibilities for
reasonable site prediction algorithms, each with its own
tradeoffs in terms of computational time, dependency on
the robustness of the data set at hand, and quality of
potential results.

Examining the ROC curve shown in figure 4 more
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TABLE I. Failure Modes for Li Site Prediction
Composition Li Sites Guesses Voronoi

Points
Minimum
Distance

Maximum
Li
Distance

Li+3 V3+
2 (P5+O2−

4 )3 2 117 221 0.36 0.51
Li1Nd9Mo16O35 1 186 206 0.92 0.99
Li+56Si4+14 O2−

56 19 190 909 0.33 0.44
Li+18Cr3+6 P5+

16 O2−
58 3 211 1049 0.31 0.44

Li+10As5+22 U6+
26 O2−

138 5 236 1220 0.33 0.44
Li8Rb8B32O56 2 262 349 0.95 0.99
Li+12W6+

6 O2−
24 2 274 396 0.36 0.54

Li+10Cl−2 B3+
14 O2−

25 2 357 615 0.41 0.60

closely, we find that all curves reach their maximum true
positive rate at around 95%. Approximately 5% of the
Li sites are never found because 5% of the Li sites are not
within 0.5Å of a Voronoi point. A reasonable extension
of this work would include a more thorough search for po-
tential Li sites; it is not clear that the Voronoi points are
an optimal set. From figure 5, we infer that the number
of incorrect guesses required by the substructural similar-
ity algorithm does not grow with the number of Voronoi
points, so the performance cost of adding more poten-
tial Li sites is minimal. The cost of computing the sub-
structural similarity is low and easily parallelized. One
could consider discretizing the space within a given crys-
tal structure into 0.5Å cubes and reducing the resultant
points by symmetry.

It is worth mentioning that while the framework pre-
sented in this paper captures only local, first-neighbor
interactions, there are a number of potentially meaning-
ful extensions to explore. It would not be difficult to
extend the substructures in this work to include second-
neighbor interactions by representing each substructure
as a graph that includes second-neighbor connections.
Alternatively, one can view each crystal structure as an
overlapping tiling of substructures; each ion participates
not only in the substructure to which it is central, but
also in all of it’s first neighbor substructures. Using this
framework, one can mine for patterns in the intercon-
nectivity of substructures. What substructures tend to
overlap the most? What combination of substructures
allows for Li-ion diffusion?

We have outlined a mechanism for the prediction of Li
sites in the oxides. For the purpose of validation, we be-
gan with lithiated oxide crystal structures, removed the
Li ions, and then predicted the Li sites in the artificially
delithiated structures. This construction allowed us to
recover an experimentally verified set of Li sites. How-
ever, when applying this algorithm to the identification
of Li sites in delithiated structures, we expect to obtain
less accurate results for two reasons. Firstly, structures
relax when Li ions are added or removed. The artifi-
cially delithiated structures we ran our predictions on
were not relaxed; in essence, they were artificially frozen
in a structure with Li-ion vacancies, making it easier to
identify Li-ion sites. Secondly, this algorithm does not

take into account the effect of Li concentration on the Li
sites predicted. In effect, this algorithm is a mechanism
for the prediction of Li sites in the dilute limit. It would
be theoretically possible to insert Li ion-by-ion into a
structure, re-running the prediction algorithm between
each insertion to find the next Li site. As this algorithm
only takes into account local effects, we expect the abil-
ity of this algorithm to predict Li orderings to be limited
Another factor to consider is that in a given lithiated,
test set structure, it is possible that there were more Li
sites than reported experimentally. Perhaps the exper-
imentally reported structure was not fully lithiated. In
this case, our algorithm would have found a number of Li
sites that were counted as incorrect guesses, penalizing
not the accuracy of our model but the performance of
our model under the given test.

We have used a definition of substructural similarity
that can be tuned for greater or lesser geometric and
chemical sensitivities. We set the tuning parameters σ,
µ, and c to maximize the area under the ROC curve for
the application of predicting Li sites in the oxides. How-
ever, differing applications of the substructural similar-
ity function will call for different tunings. For example,
the current algorithm ranks all potential Li sites across
a host of candidate oxide compounds. Another poten-
tial application of substructural similarity would be to
rank potential Li sites within a single oxide compound to
predict diffusion pathways. The substructural similar-
ity function can be used to determine which void spaces
are more likely to hold Li than others. In this second
application, we would expect the optimal tuning of the
substructural similarity to be more sensitive to geomet-
ric differences and less sensitive to chemistry, as finding a
diffusion path requires the ability to distinguish between
small geometric differences.

This paper has presented a definition of substructure
that is mathematically rigorous, continuous with respect
to small displacements in ion position, and dependent
upon both chemistry and geometry. We have further de-
fined a similarity function between any two substructures
that is 1 if the two substructures are identical, and de-
cays towards 0 with growing differences in geometry and
chemistry. This definition of substructure and substruc-
tural similarity allow for the decomposition and analysis
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of crystal structure databases. We have validated sub-
structural analysis via the reproduction of Li sites in the
oxides.
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VI. APPENDIX: DATA SET CLEANING

The data set that we used to validate substructure sim-
ilarity was very similar to the data set used to calculate
composition similarity14. The oxide data set constructed
for the work in this section differs from the one used in
the composition similarity paper in that the compounds
were additionally screened for charge-balanced structures
only; the ICSD database was updated to include all data

from year 2014, and the affine mapping algorithm used to
prototype the database was updated to pymatgen version
2.1.225.

All of the compounds in the Inorganic Crystal Struc-
ture Database4 (ICSD) 2012 were searched for com-
pounds that satisfied the following criteria:

• Compounds must be oxides, as indicated by at least
20% oxygen content by ion count.

• Compounds must not be peroxides or superoxides,
as indicated by O-O bond lengths L < 1.50 Å.

• Compounds must not be marked high pressure, HP,
high temperature, or HT.

• Compounds must not have improbably short (<
1Å) bond lengths.

• Compounds must not have a mismatch between the
reported composition and the ions given in the crys-
tal structure.

• Compounds must not contain hydrogen. The re-
ported crystal structures of compounds containing
hydrogen are often unreliable.

• Compounds must be charge balanced, as indicated
by the total charge of all the species reported sum-
ming to an absolute value < |0.001|.
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