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The surface of a 3+1d topological insulator hosts an odd murobgapless Dirac fermions when charge
conjugation and time-reversal symmetries are preserveaved as a purely 2+1d system, this surface theory
would necessarily explicitly break parity and time-reerahen coupled to a fluctuating gauge field. Here
we explain why such a state can exist on the boundary of a 3ydtéra without breaking these symmetries,
even if the number of boundary components is odd. This israptished from two complementary perspectives:
topological quantization conditions and regularizatidre first discuss the conditions under which (continuous)
large gauge transformations may exist when the theory éwves boundary of a higher-dimensional spacetime.
Next, we show how the higher-dimensional bulk theory is eakin providing a parity-invariant regularization
of the theory living on the lower-dimensional boundary ofedé

PACS numbers:

. INTRODUCTION

Itis well known that a 2+1d theory consisting of an odd nurdfeyapless Dirac fermions interacting with a fluctuatinggau
field must break parity#) and time-reversalll) symmetries [1-4]. It is also well-established that thexistetopologically
non-trivial band structures for fermions on a lattice irethspatial dimensions (i.e., 3+1d topological insulatem®)se surfaces
harbor an odd number of gapless Dirac fermions [5—-7]. Th&egsthe question: Must topological insulators br&a#ndT on
their boundaries when coupled to a fluctuating gauge field?pLinpose of this paper is to explain why this does not occur.

Strong topological insulators in 3+1d (3DTI) are distirghed by the presence of gapless surface states that artstabhlP
andT invariant perturbations (with respect to the boundary theihat conserve electric charge [8]. Provided that therdbal
potential is fine-tuned to the Dirac point, these gaplestasarmodes can be described at low energies by an odd number of
2-component Dirac fermions, which are charged under thetrelmagnetid/ (1)g\ gauge field® In a purely 2+1d theory of
this type (i.e., QED3), gauge invariance (under both largksamall gauge transformations) is preserved if and only if
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where N is the number of flavors of 2-component Dirac fermions arid the level of the Chern-Simons (CS) term for the
gauge fielc?® When N, is odd, a non-zero half-integral level CS term must suppterties effective action.

This is known as the parity anomaly. It is the gauge-invadniagularization of the theory that results in the additidrihe
half-integral level CS term to the effective action wh&n is odd. This CS term explicitly breakB andZ". Physically, the
anomaly means that parity and time-reversal invariancexgpticitly broken when a theory with an odd number of 2+1ddoir
fermions is coupled to a fluctuating gauge field.

Anomaly considerations establish a relationship betweetain topologically ordered phases of matter and the gapi®des
living on their boundaries [9-12]. The quantum Hall effeatyides, perhaps, the most famous example of how anomaly con
siderations can be used to better understand these gaplessdary modes in a model independent way [10,11]. In thisge,
theU(1)gMm charge conservation symmetry is gauged by the electroniiadiedd, whose (possibly fractionally) quantized low
energy Hall response implies an effective bulk descriptipa CS theory. Equivalently, the non-dissipative Hall entrequires
charge-carrying chiral edge modes. The potentially anoosdl (1)gy gauge symmetry provides the link between these two
descriptions. In the presence of a boundary, neither the ®8l theory nor the boundary chiral theory is individuallyuga
invariant; however, their anomalous variations cancelamather so that the underlyidg(1) gy Symmetry is maintained in the
system as a whole. Thus in the presence of a boundary, thehmdky cannot exist without the gapless boundary modes, and
vice versa.

This effect is known as anomaly inflow [13]. A classical andntd the bulk effective action is cancelled byacal quantum
mechanical anomaly of the boundary theory. Intuitively tancellation occurs because charge flows out from the mak a
along the boundary of the system at a rate determined by thleedpexternal field. Because this relationship readilyeasgs to
interacting systems, it is a powerful demonstration of titmustness of the gapless boundary modes [12].

Anomaly inflow does not, however, define the relationshipdeen bulk and boundary theories for 3+1d topological insuta
This is because local violation of charge or momentum caasiein can only occur when the spatial dimension is odd [4164,
as is the case for the 1+1d boundary of a 2+1d quantum Hakmsysinstead, possible anomalies relevant to theories in eve



spatial dimension necessarily involve so-called largeggatansformations. This is the case for the parity anomahstaint
(1), which is potentially relevant to the surface of a 3+1piogical insulatop!

A (topological) band insulator is necessarily a system thatbe realized on the lattice so it is worth reviewing theveon
tional wisdom regarding anomalies in lattice systems. Bseedhe lattice itself provides a gauge-invariant reguédion, any
system that can be realized on the lattice cannot be anomalkhat this is true follows immediately from fermion dourgji
[17]. For example, a purely 2+1d lattice system of fermioiith relativistic dispersion necessarily contains an evemiper of
(low energy) Dirac fermions in the absencefvaindT breaking. The parity anomaly constraint (1) is satisfiedigylow energy
effective theory for all deformations preserving #€1) symmetry — even those that breBlor T' [18]. The striking feature of
topological insulators is that the gapless surface mode®texhibit fermion doubling because they live on the boupdéa
higher-dimensional system.

Thus, we must ask whether (1) is obeyed on each boundaryrast,ihow this is consistent with an overall gauge-invariant
theory. Because of th&, nature of the parity anomaly, a topological insulator witlo t((separate) boundaries automatically
satisfies (1). However, there is no fundamental reason whp@dgical insulator must have an even number of bounddades
example, a solid sphere or torus of 3+1 d topological insulabuld have a single boundary, potentially violating (1).

In this work, we explain why (1) need not be satisfied by the ém&rgy theory describing surface Dirac fermions intenati
with a bulk gauge field. Specifically, we shall explain how thgher-dimensional bulk theory from which the surface nmsde
descend eliminates the potential anomaly of the surfaceeMfthasize that this conclusion is quite different from wdwturs
in the quantum Hall case [10] and other examples studied lhy[[R#], where the potential anomaly of the surfaceascelled
by a comparable anomaly in the bulk.

In fact, we find that% + k is half-integral at each boundary surface of a 3+1d topckdgnsulator only in the limit that the
bulk gapm, is infinitely large compared to any T-breaking perturbagion the boundary. The corrections appearing at finite
mg iImply that the CS levek need not be quantizeat half-integral (or indeed at any rational) values, evea ion-interacting
system. This was first noted in Ref. [19].

The conclusion that the surface states do not exhibit thigypmamomaly —in the sense that they do not obey (1) — is of clear
importance for the low energy properties of a topologicaulator: a non-zero bare CS term bredksandT', and would
therefore drastically affect the low energy physics. Witilese surface properties are well established (or at lezlkbelieved)
theoretically for the case of topological band insulatorsclr need not be coupled to a fluctuating gauge field in ordéeto
defined, our analysis is equally applicable to the case okragotic fractional topological insulators, such as thosscdbed
in [20-23], in which the presence of a fluctuating “interngdiuge field is inevitable. Thus, our result is important ari€ying
why P andT invariant gapless boundary modes exist in these systemselbas in understanding their topological order.

We would like to point out that in the context of topologiaagulators, a different definition of the parity anomaly im&times
used. It is sometimes said that the surface modes exhibjitatity anomaly because the parity-violating current eiguat
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is satisfied on any boundary perturbed by and7" odd interaction. For a topological insulator boundaryd@@snotmean that
there exists a zero magnetic field Hall conductance (in eshto a purely 2+1d system); rather, a Hall effect occurg aftér a
time-reversal breaking perturbation has been appliedastnface, as we shall explain. ((2) follows directly frore tffective
action calculated in Section 4.) In the present work, whersayethat the surface modes of a 3+1d topological insulatorado
exhibit the parity anomaly, we mean that they do not satiséydonstraint (1) requiring integral; /2 + k (on each boundary
component). It is important to note this difference in taralogy in order to avoid possible confusiéh.

The remainder of the paper is organized as follows. We begReiction 2 with a brief introduction to the specific model

we wish to study. We then turn to the explanation for why rltmgral% + k is consistent with a gauge-invariant theory.
To do so, we make use of two complementary perspectivesidgigal quantization conditions in Section 3 and pertuxigat
regularization in Section 4. We summarize and conclude ati@e5.

The paper contains five (count them!) appendices summgrizgues that are related, but not essential, to the abavelin
argument, although they may be of some interest. Appendigmains a review of domain wall fermions and their relation t
continuum models of topological insulators. In Appendix, discuss anomaly inflow intuition for line and domain waldfekts
in three spatial dimensions. In Appendix C, we recall how fhsertion arguments can be used to define a strong topologica
insulator in the presence of disorder or other interactitméppendix D, we repeat the perturbative analysis of actiin the
technically simpler, but conceptually equivalent casetfd allowing direct contact with the work of Goldstone anddaik
[24]. In Appendix E, we elaborate in detail upon the leadingrence structure arising from the interaction betwadk and
boundary modes in our toy model of a topological insulateeréby confirming the conclusions of Section 4.



II. DOMAIN WALL FERMIONS, THE 6-TERM, AND TOPOLOGICAL INSULATORS

There are foutZ, topological invariants that characterize the bulk bandcétire of (non-interacting) fermionic insulators
in 3+1d [5-7]. These distinguish between three classesvd-teversal invariant, charge-conserving band insidatarso-
called trivial insulator (with no protected low-energy e modes), a “weak” topological insulator (which has gaplsurface
states that can be gapped without breaking time-reversaistry, but are nonetheless robust to disorder [25]), arsdrarig”
topological insulator (STI), whose gapless surface stzdesiot be eliminated by any time-reversal invariant pegtion®3 In
this paper, we focus on the STI.

At low energies, a STl in 3+1d can be described by a continlngworiy of a single, massive 4-component Dirac fermion [8,26]
In this continuum formulation, the STl is distinguishedrfrits trivial counterpart by the sign of the Dirac fermion rmas The
existence of two distinct insulators distinguished by tlgga ©f m is the continuum version of the notion of topological band
structure: these two insulators cannot be adiabaticaliyeoted without either closing the bulk gap or choosing aneoting
path in parameter space that breékandT" (e.g., by interpolating over complex fermion masses).

To exhibit the difference, we consider the action,

S = /d4:c (1[_11'7“(@‘ —ieA,)Y + m(a:)d_nj}), 3)

where is a 4-component spinor that describes the massive bulkidarmith spatially dependent mass(x) coupled to
the U(1) gauge field4,, which may represent the electromagnetic field. The spati@tying mass allows us to study the
interface between a topologically non-trivial and a togidally trivial insulator, where the parity anomaly comsitit (1) could
potentially be applied. (We have not included kinetic teffiarsthe gauge field, since their specific form does not affect o
results.) In (3)y) = ¥i4°, {4#,4*} = 29 for u,v = 0,1,2,3 wheren*” = diag(1, -1, —1, —1). Further, we define the
matrix+y; = iv%y'y?~3 which anti-commutes with al,,.

Let us begin by reviewing the claim that the sign of the fermimass distinguishes between two distinct bulk phases of
matter. Ifm(z) is constant, the two states are distinguished by the presanabsence of a topologicélterm in their low-
energy effective action [26—28]. We can see this by considehe effect of chiral rotationg — exp(iays)y on the effective
action (3). These rotate the fermion mass according to

mph — mabe®54) = m cos(2a)Pep + im sin(2a)ihysi) (4)

rendering it complex unless is an integer multiple ofr/2. Importantly, chiral rotations also contribute an anomalterm to
the action from the path integral measure:
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By the chiral rotatior2a = 7 — which is nothing more than a change of path integratioratées — we may change the sign
of the fermion mass at the expense of creating a topologitadm (5) with coefficient = . Thus, the effective continuum
actions for the topologically non-trivial and trivial inlstiors with constant masses everywhere in space, but wjgbsie sign,
differ precisely by the topological term (5) with= .

Now consider the scenario in which there is a single domaihseparating a region of STk¢ > 0) from a region of the
vacuum or trivial insulatorf; < 0). As we review in Appendix A, if we take

mlggoo m(xs) = £mg, mo >0 (6)
with m(x3) passing through zero exactly oncegzat= 0, there is a single massless 2+1d Dirac fermion localized nga- 0,
wherem(z) changes sign [29].

Based on the result (5), we might expedi-term with a spatially varying coefficient taking the valsay,0 = 0 for z3
large and negative, artd= = for z3 large and positive when we integrate out the massive bulkemAdulk §-term integrates
by parts to a boundary CS term at level= 6/27. This suggests that the low energy boundary action mighy ¢bewith
the half-integer CS level, obtained from a bélterm, compensating for the odd number of domain wall fermsidf true, this
half-integral Chern-Simons term would break P and T exthfiait the surface of a topological insulator, even in situad where
the purely fermionic model (with no fluctuating gauge fielgdsP and T invariant. In particular, a magnetic perturbathoat
opens up a gap in the surface fermion spectrum would implytagral Hall effect, along with the consequent change of the
Kerr and Faraday angles for light passing through a singfasei [26,30,31].

In the remainder of the paper, we show that this is not the: caseshould think of the domain wall as associatgither
with the presence of an odd number of gapless 2+1d Dirac éersnor (if these are gapped) with a half-integral surface Hall
conductivity which may be understood as arising from a afigtvarying 8-term. This conclusion is equally true for theories
of fermions coupled to other, possibly non-Abelian, gaugtl§, as is relevant for describing strongly interactiragfional

topological insulators. In other words, the surface of thotogical insulator fails to obey (1%—f + k is half-integral (in the
limit mg — 00).



Ill. LARGE GAUGE TRANSFORMATIONS, THE PARITY ANOMALY, ANDT OPOLOGICAL INSULATORS

In order to understand the applicability of constraint @Yhe surface modes of a topological insulator, we first mevte
derivation from the perspective of topological quantiaatconditions in 2+1d. The generalization of this logic tpdtogical
insulators is then immediate.

A. The Fermion Determinant

Recall that there are two types of possible gauge anomdlies effective action: local or global. (For general dis¢oiss,
see Refs. [4,32,33].) The distinction arises from the otddke particular gauge transformation under which theoadils to
be invariant. If a local anomaly is present, the action fglbe invariant under any gauge transformation that is naotisly
deformable to the constant map. The current associatedadttally anomalous symmetry fails to be conserved.

In contrast, the parity anomaly is an example of a global alpman anomaly associated with so-called “large” gauge
transformations. By a large gauge transformation, we megauge transformation that is not continuously deformablihé
constant map. For example, two maps with distinct windingnber from the circle to itself cannot be continuously defedm
into one another.

Invariance of the effective action of QED3 under large gatngesformations requires th%i + k be integral. To see this,
consider first the fermionic contribution to the gauge fidfdaive action,

eiSF(A) _ /[dd)] [dd_J] exp (/@(iDgA) — mo)ﬂl) = (det(DéA) - mO)) Nf/2’ @)

WhereDéA) = 4%(9, — ieA,) is the 2+1d Dirac operator for a given gauge field configuretlo The fermion determinant
is the product over the eigenvalues of the Dirac operator)n $etting the frequency to zero, it is convenient to thifikhis
determinant as the product over the energies of the fermigtaies. These energies are negative for states that te e
chemical potential, and positive for states above it. (is gaper, the chemical potential is fine-tuned to zero sodhatge-
conjugation symmetry in maintained.) The square rootirssrus to only include, say, the filled negative energy stm¢he
product (7).

Therefore, an anomalous transformation of the fermionrdeteant (or anomaly, for short) occurs when an odd number of
fermions are “pumped” from immediately below the Fermi agd to states immediately above it under a large gauge tmransf
mation. (Gauge transformations deformable to the identityhave no such effect.) In such a situation, the fermioerdenant
changes sign. This renders the partition function, whick $sim over all such sectors, ill defined if there is no comperga
bare CS term.

As a concrete example for how this works, consider a Dirami@n on a spatial torus! x S*. We will also assume that all
gauge fields tend to constant values and so are pure gatige asx, effectively imposing periodic boundary conditions iném
on all physical observables. Suppose the fermions are givt+periodic boundary conditions along the two cycleseugthLl
andLL,. Then the allowed fermion momenta (in the absence of anymaitgauge field) aré; = 2” (n1+ ), ko = L2 (n2+ )

with associated band energiBs= ++/k? + k3. Consider the Dirac cone sitting at the time- reversal iivermomentum point
(k1,k2) = (0,0). The allowed momentum states are distributed symmetyieddbut the Dirac point0,0) with the lowest
energy states &k, k2) = (£7-,£7;).

Large gauge transformations in this system correspond derfing magnetic flux quantél; = q} $dr1Ar,ly =

1 fdeAg) through the two non-contractible curves of the torus whaeerhagnetic flux quantum i§, = 2n/e. The
|n|t|al choice ofl; andi, has no effect on the physical spectrum or the allowed mom#émg are all gauge equivalent. When
I, or [, is adiabatically changed from one value to another, howeemust pass through intermediate flux configurations that
cannot simply be gauged away. At a generic intermediate pothe variation, there is an effect on the boundary coadgifor
the fermions, which now feel a Berry phase due to the magﬁatdcas they encircle the torus. If the flux through the two Bole
of the torus ig®,, ®5), the allowed momenth, = %” (ny + % 5+ 5 ) ko = 2’; (no + % 5+ <I’2)

To see the anomaly in action, let us track the fermion spm:tmder alarge gauge transformanon in which we simultasigou
increase the flux through the two non-contractible curvemfd to 2x. It is necessary to insert non-trivial flux through both
cycles; otherwise, there is no zero crossing. As we increséux from(0,0) to (w, 7), the lowest energy fermion states at
(k1, k2) = (££,+£) are shifted so that they sit @k, , k2) = (3= 2”) (0,45), (%%,0), and(0,0), as shown in Fig. 1a. If

Ly L2 ' Lo
we now contmue slowly inserting flux, the energies of théestat (i—” , (0, i’;) (%—’;, 0) will remain negative, since they are

separated by a non-zero gap from the positive energy stathe band above However, the energy of the state,&f), which
is exactly0, will change sign, so that this state arrives at its final mmmm(Lll, le) with positiveenergy, having moved up to
the conduction band (Fig. 1 b). Because of the single zergsgrg, the fermion determinant changes sign.
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How do we know that a filled state from the lower band must movéhé upper band during this process? |@} be the
many-body ground state living on the spatial torus and balbiperator that inserts, 7) flux through the two cycles of the torus
®, .. Consider the two many-body statés .|2) andT®, .|2). Kramers degeneracy requires tHad, Q. Q) = 0.
The reason is that the state transported to the tip of thecRioae after an insertion dfr, ) flux is orthogonal to its time-
reversed partner. (For examplg transforms the spin-up state at moment{@y0) to its spin-down partner g0, 0).) We then
apply®, . to each many-body state to obtaby P, |Q?) and®, TP, .|2) ~ |Q2). The resulting many-body states remain
orthogonal. Since the many-body ground state with an iategultiple of2 flux inserted through each cycle is non-degenerate,
the resulting states can be orthogonal only if at least oreentates below the Fermi level is now empty. In other watdse
has been a zero crossing.

More generally, the fact that there are always an odd nunflEsro crossings during the above flux insertion processvial
from a 3+1d Atiyah-Singer index theorem [34]. l.eparametrize the “time” over which the flux insertion processurs. Using

the auxiliaryr direction, we may construct the 3+1d Dirac operdﬂﬁf’) = (0, —ieA,) for p = 0,...,3 with A3 = 0 and
V=03 @7 fori=0,1,2andy3 = o7 ® laxs. The determinant o.DgA) is obtained from the square root of the determinant
of DELA). The number of zero crossings under an adiabatic flux imsepiocess is equal to the number of zero modes of the

four-dimensional Dirac operatdﬁflA) [35]. The index theorem ensures that the number of zeroiogsequalsAl; - Als. Itis
important that the change in flux numh&t; through each cycle is non-zero; otherwise, there would beeno crossing.

B. The Chern-Simons Term

When there are an even number of Dirac com€és i even), the simultaneous sign changes of the two fermiteriskénants
cancel and there is no anomaly. My is odd, however, we require a bare half-integral level Cstar cancel the potential
anomaly from the fermion determinant.

To see this, considéf (1) CS theory at levek on the spatial torus® x S*,

k
SCS = — €uv A &,A . (8)
A (51)3 HYPSTH P

(b)

FIG. 1: Flux insertion and Kramers degeneracy for non-atténg fermions on the surface of the torasunits of flux is sequentially inserted
through both cycles.



FIG. 2: Flux insertion and Kramers degeneracy for non-attng fermions on the surface of the torus. A totaefflux is inserted through
both cycles.

The gauge couplinghas been set to unity in this section. We impose periodic Baryconditions:; = x1 + L1, 22 = o+ Lo
on the gauge field and the condition tht is pure gauge as— oo implies that our spacetime is effective$yf x S x S?.
(The time direction can be thought of as the unit circle if wquireA,(z,y,t — —o0) = A, (z,y,t — oo0) up to gauge
transformations.) Consider a field configuration wittilux quanta passing through the non-contractible curvegalgn

/dIlAl = 271'11. (9)

Let us now adiabatically insett flux quanta through the non-contractible curve:in To do this we must generate an infinites-
imal electric fieldE,(t) = 2X2 0 < ¢ < 1 (for sufficiently largeL,). The change in the Chern-Simons term over the course of

Ly
this flux insertion is

1
6505« = ;/ dt/d(bld,’bgAlEg(t) = 27Tl1l2k. (10)
™ Jo

k plays the same role a@éff This shows that it is a half-integerScs changes byr if we insert a single flux quantum through
both the non-contractible curves alopgandzs.

Thus, both the Chern-Simons contribution to the partitiomction atc = 1/2 and the fermion determinant fof; odd change
sign under large gauge transformations wjth= [ = 1. To avoid the parity anomaly, the overall sign of the gaudd fiartition
function must be invariant under these large gauge tramsftions. This is the origin of the condition (1).

The relationship between the parity anomaly of a singleaserfand the time-reversal protected surface states of the ST
can be established without explicit knowledge of the swtaand structure, as we discuss in Appendix C. This ensuat# th
remains valid if we tune the system away from vanishing cleahgiotential, or in the presence of disorder or strong autons.
Essentially, the statement that each surface, when vieweuh ésolated system, violates the parity anomaly const(a)nis
equivalent to the statement that a bulk system is a STI.

The analysis above readily extends to more general (camigjugauge groups. Indeed, the parity anomaly was originall
discussed in the context fU (2) gauge theory where the analysis is mathematically somesitmatier [2—4]. Let us briefly
review this analysis as well since the language and notatitbbe useful later.

For a non-abelian gauge theory, s&¥/(2), we may think of spacetime as being topologically the 3-spliy imposing
appropriate boundary conditions. (The anomaly cares dmbyiatopology and not about whether the metric is Lorentpian



Euclidean.) In general, we can think of gauge transformatis maps from spacetime into the gauge group. Such maps are
characterized by their degree or “winding number.” The fimssvinding numbers are determined by the grélgdSU(2)) =
Z and so non-trivial large gauge transformations are elesnehhon-zero degree. (The winding numbers of a U(1) gauge
transformation were denoted byandis.)

For SU(2), the parity anomaly arises because of the following twosfaéiirst, if theSU(2) gauge field is coupled td/;
flavors of 2-component Dirac fermions, then under large gdaransformations of degreg the fermion determinant transforms
by (—1)"s; or equivalently, the gauge field effective action shiftsdiyN . Second, if there is a bare Chern-Simons term in
the action for our gauge field, this term also shifts2ayk under a transformation of degreq36]. The combination of these
observations again gives us (1).

C. Large Gauge Transformations and Domain Wall Fermions

The discussion above highlights the importance of the tupobf spacetime in deriving (1). The essential differeneveen
a topological insulator and these purely 2+1d systems taithée the low energy fermions are localized to a boundarngyefect
in the fermion mass (assuming a large bulk gap), the gaugkisiétee to propagate throughout the bulk. (See AppendixrA fo
a review of this fermion localization.) Thus, we must comesithe role played by the bulk geometry.

Let us gain intuition by first studying the case where the gagi@up isSU(2), where the geometries involved are simpler.
There are two general cases to consider. First, take théoppof spacetime to be the 4-ball. This space hamgle3-sphere
boundary. If we were to forget about the interior of the ba#, could again classify gauge transformation§hySU (2)) = Z.

It is the gauge transformations of non-zero degree thattieadquantization condition on the CS level What becomes of
them when we fill in the 3-sphere to make the 4-ball? Only fiensations of degree zero extend continuously into the li-ba
bulk. This means that non-trivial (from the perspectivehef boundary theory) large gauge transformations are rawedl in
the theory as they do not continuously extend; therefo)eégd not be imposed.

The second situation occurs when the system has topology§$a I, wherel is the unit interval. In this case, the boundary
hastwo components, each living on one end of the interval. A smoxtrsion is now allowed, however, a gauge transformation
of degree different from zero acts in precisely the same wesazh boundary. Because the anomalous transformatiotiaissb
with eachS? boundary component transforms the path integral at mostgiase, the phases associated with each boundary,
being equal and opposite (due to their opposite relativentations), precisely cancel one another. Because theltaim is
automatic, there is no non-trivial constraint to impose.

For a general four-dimensional geometry with some numbéoahdary components, the existence of large gauge transfor
mations follows from a basic result of homotopy called theeesion lemma&?* A map admits a continuous extension if and only
if its total degree (i.e., the sum of its degrees restriovegbtich boundary component) vanishes. This condition essuaelarge
gauge transformations (if they are allowed with non-tlidiegree) have no effect on the partition function of any dihelory as
any accumulated phases (e.g., (10) from a CS term) must ttyutaacel, i.e., there is no anomaly.

The application of this logic to a theory wifli(1) gauge group is now straightforward. In the previous secti@nconsidered
a 2+1d theory living orS(lt) X S(lm) X S(ly . There are two simple ways to form a four-dimensional geoyndiirst, we may
fill in the interior of one of the circles of the 3-torus so thié entire system only contains a single boundary. Withayt a
loss of generality, we may work id, = 0 gauge and consider the field configuratidn, = 2xl, /L, andA, = 2nlst/L, for
0 < t < 1. This configuration is pure gauge (i.e., it can be writtemgs= e~/ (*¥)9,¢/(=:¥)) at timest = 0 andt = 1.

It has non-zero winding aroun@%m) and interpolates in time from dg = 0 to anly = 1 winding aroundS(ly). If we choose

to fill in S(lm), then A, is no longer pure gauge if # 0 as it cannot be removed by a gauge transformation contitgious
extendable into the bulk. This means that only gauge cordtguns of zero winding in: are gauge-equivalentto configurations
with [; = lo = 0; configurations of non-zero winding arourdepresent physically distinct configurations in which arseu
has been added to the interior of the disk. Similarly, fillingither theS(lt) or S(ly) is only compatible withAly = 0. A quick

way of drawing the above conclusion is that, in the absen@ngfsources, the Wilson loop arouﬁ‘@) or the flux through

S(lt) X S(ly) must vanish if any of thé*(la) circles is the boundary of some disc.
Alternatively, we may consider the four-dimensional getsnéS!)? x I. This is the geometry we implicitly used in the
previous section when we discussed flux insertion argumeéraisge gauge transformations are allowed, but they impose n

constraint on the physical theory as their effects on eacimtébary mutually cancel.

In summary, QED3 must satisfy (1) by having integ%ﬂ + k, if itis to be invariant under large gauge transformatiorise
gauge field coupled to the low energy degrees of freedom gb@dgical insulator, however, is not localized to the boanyd
rather, it explores the entire bulk. Therefore, we mustmigitge whether or not non-trivial large gauge transformagiof the
boundary theory extend smoothly into the bulk. If they do, iben the constraint imposed by their existence is liftedl. |
situations for which they do extend, the number of boundasieven (or at least the sum of the “degrees” of the mapsatestr
to each boundary vanishes) and the transformation acttigd#y on each boundary, so that (1) is trivially satisfidthat is to
say, there is no non-trivial constraint.



IV. REGULARIZING THE BOUNDARY THEORY

Regularization provides a complementary way to understla@gbarity anomaly constraint (1). In this section, we pdevi
a fairly detailed treatment of the regularization of thedieg terms in the one-loop effective action for tb€1) gauge field
coupled to the fermionic degrees of freedom of a topologditallator. Our goal is to discuss how the choice of reguleaorin
general affect the form of this action. In particular, westtbat the effective action has half-integr%# + k in the limit that
the bulk gapny — oc.

In general, such a calculation has both IR and UV divergentesnake the calculation well defined in the IR, we endow
the localized fermions with a mass that is small comparetiedoulk gap. The mass acts as an IR regulator and allows us to
completely integrate out all matter fields. However, the sta®aksP andT, and generally induces a CS term on the domain
wall at level 1/2 (in the limit that the domain wall mass is isdmingly small compared with the bulk gap). It is important t
consider whether or not this level is modified by the regaktion procedure. We show explicitly how the UV divergencks
the boundary or defect theory can be removed without a shiifieoCS level, and so there is no parity anomaly. In partigita
the limit of a vanishing? andT" violating mass for the boundary modes, no CS term is gereebgtéhe regularization procedure
—there is no zero magnetic field Hall conductance. This istodntrasted with the situation of a purely 2+1d theory.

Because the section is rather technical, let us providesd tverview. We begin by recalling the situation in 2+1d wéhtte
removal of UV divergences in a gauge-invariant manner tesuthe constraint (1). After this review, we turn to thectdétion
of the domain wall effective action. This proceeds in twapsteWe first calculate the propagator for the modes localiaed
the surface. It turns out that while the propagator behavéisa IR as one would expect for a localized Dirac fermion,uive
behavior is softer, decaying faster at large momentum. €mqrently, its contribution to the effective action remdinge as the
UV cutoff is taken to infinity. (A more careful justificatiorf ¢this claim can be found in Appendix E). The bulk is crucial fo
this effect since the localized modes eventually may mixlie bulk continuum if they are excited to energies comariab
the bulk gap. Given this behavior, it is then possible to shiwat a gauge-invariarf® and7" preserving regularization can be
chosen. While the discussion concerning the regularizatiohe theory is technical, it has a clear physical intetgiren: when
P andT are locally broken on the surface, our result makes it clégradevell /2 CS term is obtained for th& (1) gauge field
as opposed to an integral level (in the limit of vanishingn, whereo is the measure of the magnitude of the loPaandT
breaking at the surface amg, is the bulk gap).

A. 2+1d Regularization Review

Let us now briefly review how the parity anomaly can be undedin the context of the regularization of QED3 [3]. We will
have occasion to make reference to this calculation lagirBwith the action,

S = /d3x )‘((iﬁ“(&z —iedA,) + cr)x, (11)

wherey is a single 2-component Dirac spinor of massy® = (03, —io?,ic!) are 2+1d Dirac matrices. Generally, we expect
the regularized effective action fat, at energies less thanto be a sum of a Maxwell and CS term.

The effective action is found by calculating the fermionegietinant obtained by integrating out the fermions. It ifisight
to consider the leading quadratic termsifand consequently ial as well) in the expansion of the determinant. Working in
momentum space,

Sr(4) = 62/ o Aa(=)T1"(q) Ap(q)

(2m)3
e2 d3q d3p a 7 _ i
= 5/WAQ(—Q)A17(Q)/ (27T)3Tr(7 (pﬂura)wb (p+qmd+a)‘ (12)

The kernellI*®(¢) or gauge boson self-energy is UV divergent by power counting

Thus, we arrive at the delicate (and technical) questiomafive should regularizE®®. The general prescription is to choose
a regularization that preserves as many of the symmetréseptin (11) as possible. The discussion in Section 3 denates
that the CS level must be integral in a purely 2+1d gappedttir@rder that (11) be invariant under large gauge tramsédions.
We are interested in maintaining this invariance in our theo we must choose Pauli-Villars regularization as we neyiew.

In Pauli-Villars regularization, we first impose an UV cutafon the momentum integral determinifig® to find

sgn(o , c " "
% (q) = c;An™ + gg—;)eab%qc + f(ffn b —q¢") + O(1/A), (13)

wherecy, ¢ are non-zero, finite constants. The UV cutoff can be takeretinbersely proportional to an underlying lattice
spacing. The first term is the UV divergence which manifastdfiin a gauge non-invariant mass féy. Such a term generally
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appears when a strict cutoff is applied to loop integralsgaage theory. (Dimensional regularization simply sgts- 0.) The
second and third terms are a le¥g¢R CS term and the Maxwell term, respectively.

Next, we introduce a single Pauli-Villars field coupled4q. The propagator for this field has the same form as that for
x except for the replacement «++ M with o < M. Additionally, the Pauli-Villars field is taken to have baso statistics.
Thus, its contribution tdI*® is identical in structure to (14) except for an overall signacge of all terms. Adding these two
contributions together gives,

1ot q) — ) — S8 ey o, M=z oy 1 oy, 14)
8 oM
We can now take the cutof — oo. Notice, however, that decoupling the Pauli-Villars fieddwes behind a non-zero contri-
bution to the CS level. This “spur” is the manifestation of frarity anomaly. Parity (and time-reversal) are anomailotise
following sense. I — 0, the starting action is classically and7" invariant. Maintaining gauge invariance in the quantum or
regularized theory results in the breakingfofindT due to the contribution from the Pauli-Villars regulatotdie

We note that the usual choice of dimensional regularizadioes not result in a gauge-invariant effective action; gatli
fermions are present to compensate for the l&y2ICS term present in the resulting action.

Within this regularization scheme, it is not possible to omby some clever choice of Pauli-Villars fields the gauge-no
invariant UV divergence without a non-zero shift of the C8rteThis conclusion is in complete agreement with the topicial
argument of the previous section and we will, therefore,padRauli-Villars as our regularization prescription. Tlh&tthe
requirement of invariance of the low energy action undegdagauge transformations is satisfied within the Paulia¥éliregu-
larization scheme, but not within dimensional regulai@at

The lesson is that there is a physical difference betweeemiional and Pauli-Villars regularization in 2+1d. If inance
of the theory under large gauge transformations is to be taiaed, then Pauli-Villars regularization must be used paudty
is broken. From the discussion of the previous section, viieipate that there is no physically observable differebeaveen
Pauli-Villars and dimensional regularization when theottydives on the boundary of a contractible higher-dimenalspace
because there do not exist large gauge transformationgxkextid continuously into the bulk in any such theory. In thgtn
section, we show explicitly how this equivalence comes abou

B. Propagator

We now turn to the calculation of the regularized effectigian for the localized modes described at low energies &y. (1
Lest we run into a contradiction with the conclusion of Saet, the action (11) must only be a low energy approximaton t
the physics. We will find that the 3+1d bulk, which is impligitany low energy domain wall action, will play an essentaér

In order to derive the action, we first determine the full @gator for the domain wall modes by generalizing the nicekwabr
Chandrasekharan [37]. Perhaps surprisingly, the formeptiopagator is partially determined by the massive bulkeso@®ur
derivation is contrasted with an anomaly inflow argument pp@ndix B. We have also repeated in Appendix D the calculatio
in this section for the analogous system in the simpler 1-atdext.

As we reviewed irg2, we describe the 3+1d topological insulator by the action,

S = /d4x &(iv“(@u —ieA,) +m(z) + i750)w, (15)

where is a 4-component spinor that describes the massive bulkidermith spatially dependent mags(z) coupled to the
U (1) gauge field4,, which may represent the electromagnetic field. The spgti@tying mass allows us to study the interface
between a topologically trivial and topologically nonwtal insulator, while the constant T-breaking massegularizes the
infrared divergences on the domain wall. (We have not inetlikinetic terms for the gauge field, since their specific fdoas
not affect our results.) Note that= 1T~°.

We takemn(z3) to depend only on a single coordinatgand to have the profilen(xs) = mg tanh(zs/¢) with mg > 0. If
o # 0, we may safely integrate outwithout an IR divergence. We assume that o < myg. (In the opposite limit, there is no
domain wall and the entire system is in a single masghandT breaking phase.)

We are interested in the one-loop effective actiondgrobtained after integrating oyt This action takes the generic form,

S = —% /d4:vd4:v'AH(x)Al,(x’)Tr(7“D(:v,:v')w”D(:v',ac)), (16)

whereD(z, ') is the fermion propagator and the overall minus sign contes the fermion loop. We are particularly interested
both in divergent terms which are implicit in (16) that reguiegularization and in possible CS terms localized to thkd2
domain wall. These CS terms may arise either directly frondesdocalized to the domain wall or through an integration by
parts of a bullg-term.
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Thus, our first task is to calculafe(x, 2’). We choose the following representation for the Dirac noatj

0o_ O 1 i O'i O 5 . 0.1.2 o 01
v = 2(_1 o) V=" _gi) V=YY =11 o) (17)

The eigenspinors of the Dirac equatioreat 0,
70 (1970 + mlas) + v vt = Ao, (18)

formally define the propagator,
P (@) ()
D N = 19
(2, 2) ; yN— (19)
where the eigenfunctions* are normalized with respect to the usual inner product,

/ () (@)Y (@) = 5 — X). (20)

Translation invariance in the temporal and spatial dicetiparallel to the domain wall allows us to express the prafma in
a mixed Fourier space representation,

D(k,xs,24) =i LACHUNC) (x3)f? (z3), (21)
A

wherek collectively refers to momentum parallel to the wall angl are the Fourier coefficients in the expansion/of Ex-
panding in Fourier modes in this mixed basis, the Dirac eqodtecomes,

A0 (7“ka + 7305 + m(xs) + z'mf))wg =\, (22)

wherea = 0, 1, 2. Two types of eigenstates are expected: modes localizedhmeedomain wall and modes allowed to propagate
away from the domain wall. We refer to the former as bound re@ohel the latter set as scattering modes.

Consider first the scattering modes. The eigenvalues fadattering states may be obtained by considering (22) ifirttie
x3 — Foo. In this limit, translation invariance along thg-direction is effectively restored and so we introduce amgstotic
momentunks parametrizing the eigenvalues of (22). There are two pa&bkgenspinors/),’c\(k:“)i’(’) with eigenvalues\(ks)+ =
A = ko £k} + k3 + k3 +m3 + 02 = ko +wy.

The coupled first order equation (22) may be rewritten aséhersd order equation,

3
2 2 2 Y N ennn 27 T3 At
(83 + k3 +mg(1 + moé)beCh ( 7 )) LD =0. (23)

Above, we have substituted the mass profiler;) = mg tanh(x3/£). This equation says that each componenﬁb‘f satisfies

a modified Poschl-Teller equation, with parametgy/¢. The associated eigenspinors and eigenvalues to thisieqaae known
for generalng /¢, however, they can be given simple closed form expressitiesv= 1/m. For this reason, we specialize to
this point in parameter space for the remainder of the paper.

There is a well known connection between the Pdschl-Teligiation and supersymmetric quantum mechanics (see efg., R
[38]). The upshot is that the separation of eigenspinois ltund and scattering states can be made precise. Eigenspin
components of scattering states are paired; while thoskeobound states are zero modes of the associated supersyenmet
charge operator. The number of such zero modes dependshmaativl/m, which we set to unity, thereby implying a single
set of bound state modes. See Appendix D for further detadsiethis connection in the technically simpler case of 1+1d

An orthonormal basis for the scattering state solution28®) (s provided by

kg - Zm(Ig)

A, (1) _ 1 k1 + iko —iksx
z/Jk (,’Eg) - Nil) :l:wk — 0 € 3 31
0
(/{1 — ’LkQ)gkg — ’ém(xg))
1 —k3—m —iksx
¢2i7(2)(aj3) = 2) 30 0 e s 3, (24)
N

(fwr — o) (ks — im(x3))
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where

N = V2em)ior(wr 7o), N =NDVKE +m2. (25)

It remains to find the bound states. A bound state takes trmiqi\" = (GX1 00 bxg)TrseCh(mox3). These states do
not carry “momentum’s; they are localized to the domain wall because of the prefaeth(mozs). A normalized basis is
provided by

k1 — iko

Ao, =+ _ mo 0
20 (x3) = \/4(2#)3ek(ek 7o) 0 sech(moxs), (26)
ter, — o

with eigenvaluesy =+ e = ko £ \/k% + k3 + o2.
Having found the eigenspinors and eigenvalues, we can nostreet the propagator using (19). It is a sum of two terms
arising from the bound and scattering modes,
D(k,x3,x5) = DP°"Y(k, 23, x5) + D¥(k, x3, 25). (27)

We compactly write the contribution to the propagator fréra $cattering states as

[ dks ¥k + M(@3,0%) + i0y

Dscat k A iks(z5—x3) 28
( ,$3,$3) ¢ o kg—kg’—m%—o‘Q € ’ ( )

for =0, ...,3 and wherek? = k% — k% — k2. The unconventional mass matrix,

, ! _ 1 (V%K +i0P)
M ’ / :_m(xg) 1_|_ 3\ _ m(x3) 1— 3 4+ = 1_|_ 3 a ’ / . 29
(xs,04) = = (14 i) = TR —in®) 4 51+ i) Lt s at) (29)
and

s, @)k, = m(ag)m(ah) + iks (m(ah) — m(ws) ) — md. (30)

Notice thatM (x5, 25) approaches the standard forrm, if the massm(x3) is taken to be a constant. The bound state
contributes the following term to the propagator,

oun LM . aka +Z 50’
Dbownd (g gy = 70(1 + 173)sech(mogc3)sech(m0:vg)ﬁ (31)

[N

fora=0,1,2.

C. Corrections to the Effective Action

We now use the above propagator to study corrections to thgegfield effective action. Instead of plugging the full paep
gator into (16), it is useful to first study the structure of gropagator itself more closely.

Before doing so, two technical comments are in order. Rivethave been working in Lorentzian signature in the previous
sections, however, we have found it most convenient to partbe necessary (intermediate step) integrals below kyWirsk
rotating to Euclidean signature by substituting— iko so thatk? — —|k2|. Our resulting expressions, however, are written
with the original Lorentzian metric. Second, we use a reradization procedure in which we integrate over/al] but impose
an UV cutoff A on the remaining three momentum integrils This unconventional choice should not affect the low eperg
properties of the regularized theory.

DPound s the Fourier transform of the usual 2+1d Dirac propagdtuteed, despite the slightly different matrix structure,
substitutingD"°'d into (16) gives precisely the same contribution to the eifecaction as a truly 2+1d Dirac fermion reviewed
in (12). The hyperbolic prefactors merely localize the cimtion to the domain wall. The localization becomes exad¢he
mo — oo limit where we use the relation

lim @SGCh2(moﬁC3) = 0(x3). (32)

mo—00
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Therefore, we must understand how the UV divergences autanézed. In particular, we wish to determine whether orthete
is a shift to the CS level if we regularize using a Pauli-\#lacheme.

A clue comes from a closer inspection of the full propagatéat only do the bound modes result in propagation that is
localized to the domain wall; surprisingly, the scattenmngdes contribute a term that is localized as well!

The unconventional terms in the mass mafviXx3, z5) proportional tou(z3, %) are responsible for this localization. Let
us momentarily focus upon these terms in the scattering rooxiibution (28) to the propagator proportionajt@es, x5 ). We
denote these terms k[yff&tg). After a contour integration ovdis, they take the form

B . / al i+ i0’75) eikg(mg—mg)
Dscat k 1y — _Dbound k AN Z/L((Eg, ‘TS) 1 -3 (’7 a 33
iz (k79 22) N LR sy - s e A

wherek; above is evaluated &t = isgn(z} — x3)\/—k2 + m2 + o2.
Remarkably, the scattering modes contribute a term thatial@nd opposite to the contribution to the propagatoirayisom
the bound modes. These two terms cancel one another in tiprdplgator. The remaining localized term in the propagato

the second term appearing in (33). Thus, we define the l@xhpropagator,

. / al - 5
T3 T8) () 4 i) SR

4 (k2 — 02)\/—k2 + mi + o2

where, as abové;; = isgn(z} — x3)\/—k2 + m2 + o2. This propagator describes the excitations that are céstrio living
along the domain wall at energies low compared to the bulk §hjs is the main technical result of our paper and it is thenfo
of this localized propagator that is the key allowing us tdenstand the divergence structure of the 2+1d boundaryyheo

Notice that the UV behavior oD'°¢ is softer thanD"°"»d: it decays faster a8 — oco. This behavior implies that the
purely local mode contribution to the effective action (i6jinite as the UV cutoff is taken to infinity. (By purely localode
contribution to the effective action, we mean (16) witff© substituted in place for the general propagdioy We shall begin
by calculating these finite terms. Afterwards, we commemtughe corrections to the action arising from interactioasveen
modes localized to the domain wall and those modes thateeddrpropagate throughout the bulk. A detailed analysibexe
latter two terms is relegated to Appendix E.

To isolate the finite contributions to the action from thediiwed modes, we find it convenient to use the following agjpnate
expression for the local propagator,

DY (k, x5, a) = — etha(ea=as) (34)

; 2
i Cam
DS ok, w3, 2) = —5(1 + 173)%sech(moxg)sech(moxg)

Vkq + icy®
(k2 — 02)\/=k2 + m2 + 0%

This expression becomes a better approximation to the egaait (33) as the limitny — oo is approached. We expect
corrections to this approximation to be suppressed in tigelbulk mass limit. (In Appendix E, we evaluate the conttitou
of the localized mode without making the above approxinmatiod find that (35) gives the correct qualitative structorelie
divergences and the quantitatively correct value for aritefterms.)

Using the approximate local propagator (35), we may now agmis contribution to the gauge field effective action. In
particular, the kernel or one-loop self-energy is

(35)

o _|m0| ca , S80(0) . g €2 92 ab  a b 1 1 /
Mas(a, wa2) = (= Zg ™ + 2 Piae™ & 2@ = a"d) + O3, ) )al)alh), (36)

wherec; is a finite non-zero constant and the delta functions ar® the hyperbolic prefactors using (32). We stress that the
above result is finite due to the faster decay of (35) at largsmentum, so that a 2+1-dimensional UV regulator is not nemhii
However, we have exchanged a gauge non-invariant term propal to the cutoff for precisely the same term, now prajomial

to the bulk gapny.

Therefore, we must understand how to properly decoupledliely takingm, — oco. It is essential that the divergence in
(36) is proportional to the bulk gap rather than an UV cut®fiis difference allows us to regularize the theory by P#illars
fields without shifting the CS level. (In Appendix E, we shawdetail that the linear divergence appearingras — oo is
the only possible divergence that we may associate withepoesof the localized state€)(1) corrections to the coefficient of
this term from the value displayed in (36) may arise fromriatt&ions with the bulk modes, however, the precise valudef t
coefficient does not affect the arguments below.)

We merely need to introduce two Pauli-Villars fields whosegaigators have roughly the same form as the localized farmio
(35). The differences lie in the choice of statist€sand masses for the Pauli-Villars fields. We endow the firstiRallars
field with bosonic statisticg;; = 1, and replaceny <+ M ando <+ ¢’. The second field is taken to have fermionic statistics,
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Co = —1, and we replacerg <+ M — mg ando < o’. We assume the hierarchiesy < M ando < ¢’ < my. Adding the
contributions from the physical boundary fermion and the Rauli-Villars fields, (36) becomes

; . / } /
sgn(o) + C15g1;(;r ) + Casgn(o )iqberd, (37)

1
Wab(g, 23, 25) = G (=lmol + C1| M| + Co| M —mol) +

where we have suppressed writing the contributions to thewdd term and it is to be understood that the above corradio
localized atzz = «% = 0. Clearly our choice of statistics and masses removes theite¢36) proportional ton,, but retains
the half-integral level of the CS term induced by the loeadifermion. As promised, we have regularized the boundamgrth
with Pauli-Villars fields in aP andT invariant manner, i.e., we have regularized without ghifthe CS level and so no CS term
is generated by the regularization procedure wien 0. We were successful in doing so because of the softer UV pliepe
of the localized fermion which resulted in a divergence prtipnal to the bulk gap rather than the UV cutoff. This eralthe
theory to be regularized with an even instead of an odd nuiieauli-Villars fields.

The form taken by the Pauli-Villars fields’ propagators bg#rtheir 3+1d origin. Indeed 3+1d QED requires at leastthre
Pauli-Villars fields for its regularization [39]. We have rely chosen two of the Pauli-Villars fields in the 3+1d bulkhave
soliton masses similar in form to the physical fermion sd thay can regularize the lower-dimensional theory. Theaieing
3+1d Pauli-Villars fields can be given masses that are pestierywhere.

Thefinite gauge non-invariant photon mass term (which we removedi)) (ay be surprising. However, its appearance is
similar to what occurs in the Pauli-Villars regularizatiohQED4 where a gauge non-invariant mass term is also foudj [3
In that case, the mass squared is a sum of two terms: one fimy@dito the square of the cutoff and a finite term propowion
to the square of the bulk fermion mass. In both cases, theaappee of gauge non-invariant terms proportional to a p@fier
the fermion mass is a result of the fact that imposing a moumerutoff A (in our prescription for the 3-momentd, or for
all 4—momentdcﬁ in the standard QED4 case) breaks gauge invariance elplithe correct choice of Pauli-Villars regulator
fields is determined by the criterion that they must fullytoes the gauge symmetry broken by this choice of cutoff.

Now that we have explained how the excitations describedéydcal propagator are regularized, we should ask: Can the
massive bulk modes contribute non-trivial terms to the gdigld effective action? By massive bulk modes, we mean tineste
in Dscat that are not localized to the domain wall by any hyperbolefactors. Specifically, the full fermion propagator is give
by D = D'¢ + Dfre¢ with D'°¢ given by (34), and

ieik_fg (:Eé 7:1?3)

Dfrcc _

a 3 m(zs) . m(z3) - 3 : 5>
WA <7 ka — 7 ks 5 (14 y°) 5 (1 —iy°) +iovy° ). (38)
where as abové;; = i sign(z — z3)\/—k2 + mi + o2. The corrections that we have thus far ignored arise froheesingle
insertions ofD'°¢ and D*¢ or two insertions ofD"*¢ into (16). These correct both the boundary and bulk Lagearsyi For
example, the bulk Maxwell term is radiatively modified by thassive bulk modes described By¢, while the cross-term of
D'°c with Dfrec modifies both the + 1d Maxwell termandthe effective Chern-Simons term arising at the domain wall.

As with the local contribution discussed above, there ameaspects to this question. First, we must determine if tbanebe
a direct correction to either a butkterm or, equivalently, a boundary CS term. Second, we netsirchine what effect (if any)
these contributions have on the choice of regulator fieldswre must include in the theory.

It is straightforward to show that the only correction to Beindary CS term arises from the “crossterm” betwB&ti and
D¢, No bulk§-term is generated. Adding this crossterm correction toresult (37), we find the total CS level,

N ltaun_l (L), (39)

S 2ol w nmo

wheren = +1 is defined by the orientation of the domain wall(z5) = nmg tanh(moas). (Our calculation above specialized
to the case) = 1. Similar manipulations show that (39) obtains fioe —1.) Precisely the same non-quantized correction to the
CS level also occurs in the analogous 1+1d situation — s&8jD(In 1+1d, the CS level directly determines the indudealge

on the soliton, however, in 3+1d the soliton only carries argh when a background magnetic field is applied perperatituil
the surface.) Extrapolating the 1+1d intuition (axion &ledynamics is suggestive as well [27]), we expect that &vegal (not
necessarily constans),

k= %, (40)
27

whereA¢ is the change in phasgeof the complexified bulk fermion mass during any interpalatiThis result is in agreement

with Ref. [19]. The fact that (40) need not be rational is motonflict with gauge invariance; for a single domain walértéhis

no quantization condition on the CS level (as shown in Sa@)o For a system with two domain walls, the phase of the fenmi

mass must wind by an integer multiple f as it crossed®oth boundaries, provided that the fermion mass asymptotesto th

same value everywhere outside the system.
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Are there divergences appearing as the cutoff> oo that must be regularized? We study these possible diveeganc
Appendix E and show that they are of two types. The first kinsesirom the usual massive 3+1d propagator and are familiar
from QEDA4. Such divergences are always present and can bkariegd (with at least three Pauli-Villars fields [39]) hatut
changing the effective CS level. The second type of divezgémspecial to the introduction of a domain wall mass praiild
is localized along the wall. Such divergences are at wogrithmic in A; however, a precise cancellation occurs between
the bulk and localized modes, described above, such thaffioite terms remain ad — oo. We stress that this cancellation
is important: a divergent result would have required adéingdd number of regulator fields with domain-wall mass profiles,
thereby rendering the CS levklan integer (up to the corrections of ordetm, noted above), forcing the constraint (1) to be
obeyed in the limit/mq — 0.

V. CONCLUSION

In this work, we have examined the relationship between #réypanomaly and the gapless Dirac fermion arising at the
surface of a 3+1d topological insulator. Naively, a couplaf the localized surface mode to a fluctuating gauge fieldlavou

result in the parity anomaly on each boundary surface,the.requirement tha%f + k be integral on each boundary surface
whereN is the number of fermions localized at the boundary, largtthe sum of any bare or induced CS level. We have shown

that this does not occur and th%% + k is half-integral in the limit that any T-breaking fermion ssterms are vanishingly small
far from the domain wall relative to the bulk gap. Hence, ad ndmber of gapless Dirac fermions on any such surface can be
coupled to fluctuating (bulk) gauge fields and still mainta@mity and time-reversal symmetries.

We have come to this conclusion using two complementarypgetives: topological quantization conditions and reguéa

tion. It is invariance of a 2+1d effective theory under laggeige transformations that results in the constraint%ﬁkﬂ:L k be
integral. When the system of interest lives on the boundbaylagher-dimensional space, such large gauge transfammsaei-
ther do not exist (as they cannot be extended continuouslytie bulk) or they are innocuous — their effect is cancdlietiveen

all components of the boundary. Thus the topological qaatitin conditions that gauge invariance imposes on 2+lafite

do not apply in 3+1d. Similarly, Pauli-Villars regularizat of QED3 preserves the invariance of the theory undeelgayge
transformation at the cost of breaking parity and time-regkinvariance. We have shown explicitly how for a single@ps

of Dirac fermion on the 2+1d boundary of a 3+1d bulk, the pneseof the bulk softens the UV properties of the boundary
fermions, such that the theory admits a parity and timessalénvariant Pauli-Villars regularization.

It is instructive to contrast our result with the quantumltéffiect. Here, invariance under local gauge transfornmstigcharge
conservation) requires that both a bulk CS term and boundtargl excitations be present in a low energy descriptiothef
system. In contrast, only a global anomaly can be presenhésurface modes of a 3+1d topological insulator. Howeher,
fact that the gauge field is free to explore the bulk esséyntidiminates the large gauge transformations responsisl¢éhe
possible global anomaly; there is no mutual cancellatioarafmalous transformations as occurs in the quantum Haiteff
Thus unlike the chiral edge modes of a quantum Hall systeeng#ipless boundary modes of a 3+1d topological insulator are
not required to preserve gauge invariance.

The fact that there are no topological quantization coodgifor these boundary theories has important physicabcpresces.
A purely 2+1d system exhibiting a fractional Hall conduitihof o, = %% with integerp can be gauge invariant only if the
system exhibits a ground state degeneracy equalitben placed on a spatial torus. Otherwise, the theory failsetinvariant
under large gauge transformations generated by flux iessrthrough the two non-trivial cycles of the torus. If we ffillthe
center of the torus, however, the non-trivial large gaugedformations that cause this problem no longer exist érsémse that
they do not continuously extend into the bulk), and the nesjunent of a degenerate ground state disappears. Hence yasne:
expect for a non-interacting system, the ground state gpalégical band insulator is unique in spite of the fact that 2 on
its surface (in the limit of vanishing/m, with finite o). (For a fractional topological insulator in 3+1d, theraiground state
degeneracy, but this arises from its bulk topological of@&}, and not from the surface.) If instead we thicken theispgauge
invariance requires a ground state degeneracy that is hatiat one might naively expect based on the Hall condugtigihce
the large gauge transformations must behave identicallyodim surfaces. For the topological band insulator thisragaplies
a unique ground state. See Ref. [40] for a complementarysison of this issue.

In fact, the perturbative calculation reveals that wherhlimtlk and boundary fermionic mode contributions are caersid,
the coefficient of the Chern-Simons term (physically, thél Elanductivity at the surface) isotquantized to be a rational fraction

whenmio is non-vanishing far from the surface. Rather, it is of tharfo
no 1 1/ ©
k=——— —tan (—) (41)
20| 7 nmo

wheren = +1 determines the orientation of the domain wall via the solittass profilem(z) = nmg tanh(moxs). Here,mg
is the bulk band gap, andlis the time-reversal and parity breaking mass of the boynf@amions. For spatially varying:(x)
ando(z), we expect the CS level to equial(27) multiplied by the total change in phase of the complexifigdien mass. (In
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Appendix D, we show that the CS level for an analogous 1+1tksyss also given by (41).) We may think of the half-integral
contribution as coming from the fermionic modes localizethie boundary, and the non-quantized contribution arigmg the
interaction between the bulk fermions and the modes logdlia the boundary.

In a real system where the ratig/m, is not asymptotically vanishing, the above deviation froaff{ntegrality may be
observable. A magnetic-susceptibility measurement winufatinciple measure the difference in the Hall condutitag. Com-
bined with a Kerr or Faraday rotation measurement (whichsuess the sum), one could then extract the Hall condu&sviti
of each boundary surface [30]. However, we caution thattaise of the formula (41) requires a non-vanishing timesres
breaking perturbation to be present at asymptoticallydlaigtances from any topological insulator boundary.

We stress that in order for our conclusions to be valid, theggdield must be free to explore the bulk of the system. It is
possible to imagine a situation in which strong correlatiamong the modes localized to the boundary of the systemtdead
fractionalization. If fractionalization only occurs atettboundary, it can be described by an “emergent” gauge fieldahly
has support on the lower-dimensional boundary and so amjtires constraints imposed by gauge invariance truly ara of
lower-dimensional origin. An alternative scenario fordtizing a truly 2+1d gauge field uses a bulk Higgs field changedier
some gauge group whose symmetry-breaking profile only allaubgroup (possibly, an empty one) of light “photons” im th
bulk, but a domain wall defect where the full gauge symmetmestore®® We hope to discuss these scenarios further in future
work.
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Appendix A: Domain Wall Fermions

In this appendix, we review the domain wall fermions [29,d1Ht arise in the model,

S = /d4x (z/?iw“(@u —ied, )Y + m(:v)@w), (A1)
where the massi(z) is real and satisfies,
mlggoo m(xz3) = £mg, mo >0 (A2)

with m(x3) passing through zero exactly oncegzgt= 0. We can think of these gapless domain wall fermions as zemeso
bound to a defect in the order parameter where symmetry isress In this example, the order parameter is the real field
m(z3) and the symmetry that is (classically) restored at the defetocation wheren(z3) vanishes is the chiral symmetry,
¥ — exp(iays)w. (This is only a true symmetry of the quantum theory at zenaggacoupling due to the chiral anomaly
[14-16].)

To see how these zero modes arise, it is useful to write thec@iquation as,

(iD” +iD, + m(x3))z/1 — B0, (A3)
where

D = 7%(04 —ieA,), a=0,1,2
D, = ~*(95 —ieAs). (A4)

A zero mode satisfies the equation,
(iDL + mi@s))w = By, (AS)

with E = 0. We are interested in finding a solution about the free theonye may set = 0 in the equations of motion.



16

Itis convenient at this point to choose a particular repregeon for the Dirac matrices. The results, however, adejrendent
of any particular choice. We take

o_ [ 0 1axo i (0 of
v = <12><2 O y V= _a.i O ) (AG)
whereo? for i = 1,2, 3, are the usual Pauli-sigma matrices. Note that the abovieesa rotation from that used in Section 4.
SinceTr(y3) = 0 and(v3)? = —14x4, 7> possesses two pairs of eigenvalues equatitavith eigenspinors defined by the
equation
Vpy = Fity. (A7)

A solution to (A7) contains half the number of degrees ofdieaa of a 3+1d Dirac fermion. The eigenspinors take the form,

Vi(e) = ds < iiiﬁsx) : (A8)

wherex(z) is an arbitrary two-component spinor that depends only eritiree coordinates parallel to the domain wall and

x3

6x(ws) = C20¥ = Crexp / L mies)). (A9)

T3

(1 is a normalization constant amio) can be chosen to coincide with the location of the domain.whilthe following

analysis, it is convenient to normalize. by choosingC;? = 2 J( §S>)2dx3. While bothi) 4 solve the zero mode equation,
only one is normalizable; only one has a finite, non-zZ&ro The asymptotics (A2) chosen above fofx3) singles out)_ as
the normalizable zero mode. Had the opposite asymptotis tieoseny, would be the normalizable zero mode.

Now consider the action that describes these fermionidilsmhmodes at energies much less than the bulk bandgaplt
is found by substituting’. into the 3+1d action (Al). Given the profile (A2) fot(x3), we plugy_ into the action to find

S = / (D i (B — ie A + m(rs)d - )

= C? /dz (¢(£)))2 /d3x((XT —2'(03)()T)707“ (Ba — ieAa) (x icr3x)T)

_ / @2 (X i7°(00 — ieAa)x ). (A10)
The above action describes a massless 2-component Diraofecoupled to &/ (1) gauge field, namely QED3. Again, we
have suppressed the tree-level kinetic termAgrrestricted to the domain wall. It is sufficient to say that tfee-level gauge
boson propagator restricted to the 2+1d surface is softérenR, decaying a$/|p| as opposed ta/p? at small momentum,
because of an integration over the direction normal to theado wall. The resulting 2+1d Dirac matrices are

44 = (03, —2'02,2'01), a=1,23. (A11)

Note that the coefficient of the minimal coupling term in tliti@n between the fermion number current in thedirection and

Az vanishes identically sincé..y>. = 0. This ensures that no zero modes leak off the defect via aliogup As.

Appendix B: Anomaly Inflow

In this appendix, we first review anomaly inflow for the casastring defect in 3+1d. We then contrast this analysis tb tha
of a domain wall defect in 3+1d which is relevant to this paper
The original model studied by Witten [42] and Callan and Hgrfd3] is

5= /d4x ﬁ(w“(au —ieAy) + m(;y)ei¢75)z/1. (B1)

wherey is coupled to a string defect defined by the complex field) exp(i¢). m(x) vanishes at the core of the string running
along thez-axis andy winds by 27 in going around the string. This mass profile ensures thatdrist chiral fermionic zero
modes living on the string which exhibit a gauge anomalyulgiotheir coupling to4,,.
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However, integrating out the massive bulk modes providegss¥Zumino term [43] whose gauge variation compensates for
the lack of gauge invariance of the chiral zero modes aloh& dan be understood through the following calculatiom<iger
a region of spacetime away from the string core whefe) is non-zero and let us integrate alit The correction to the action
by the massive bulk fermions can be inferred by integratiregane-loop correction to the current expectation value,

e
<Ju> = ﬁepupaau(pra- (BZ)
Because) winds by2r when encircling the string, it formally obeys the equation,
(020y — 0y0z) = 2m6(x)d(y). (B3)

Thus, (B2) implies the bulk fermion addition to the curreahservation equation,

e

4

The current is conserved away from the string and the rightitsade of (B4) is non-zero along the string so as to cancel the
contribution from the chiral zero modes. This is summarizga correction to the effective action,

() Fi26()8(y). (B4)

62

= 1672

Swz / d*2€11p0 0P Ay F oy, (B5)
whose variation under a gauge transformation cancels tiitlahomalous variation of the chiral zero mode action. Theeala
lation between boundary and bulk anomalies is called anpmfibw as the direction of current flow is towards the bournydar

We stress that the contribution of the massive bulk stateddgdto the low energy effective action for the string defect. We
shall not find this prescription to be strictly valid for a daimwall defect.

In order to describe a domain wall, we merely change theasofitofile. m(x) now vanishes along the domain wall and
jumps from 0 tor in moving through the wall. Naively, precisely the same ghidtion of integrating out the fermions in a region
wherem(z) is non-vanishing gives the contribution to the effectivéat(B5).

However, this reasoning is in fact incorrect. The essemliif¢érence is thatp is constant everywhere except in a small
neighborhood of the domain wall where(x) vanishes. This is to be contrasted with the string case wfiaveund by2n
around the string. Becaugeis constant in the region of space where the calculationimibta(B5) is valid, this correction
vanishes everywhere that the calculation is well-defined.

We can make the calculation well-defined in the vicinity af ttomain wall if we smooth out the field Instead of jumping
discontinuously at the location of the domain wall, we alibt® smoothly interpolate between zero andn effect, this smooth
interpolation imparts a non-ze#® and7" breaking mass that we denoteddyn the main text. As we have understood through
more direct means, this merely breadR&nd7 on the defect and results in a level 1/2 CS term on the domdin wa

The discontinuous limit is not strictly available withinetlabove scheme. This limit is equivalent to taking» 0. Indeed,
integrating out the fermions is not well defined in this limiten the mass of the localized fermions vanishes and so the)
limit need not commute with this integration. Instead, if are interested in vanishing bound state mass, we firstdake 0
and then integrate out the fermions to obtain the 1P| effectction. This action doe®tcontain a CS term.

Appendix C: The Parity Anomaly and Strong Topological Insulators

In this appendix, we briefly recall the relationship betwésnpresence of time-reversal protected gapless surfaies stind
the parity anomaly in strong topological insulators.

This relationship is most apparent from the definition of d fbposed by Refs. [22,44]. They consider the fate of a STI
on the thickened spatial tordg x S* x I, which has two disconnected toroidal surface boundariesao non-contractible
curves through which we may insert magnetic flux. There awe flax choices for which the system is time-reversal invatria
(1, ®2) = (0,0), (m,0), (0,7), and(m, 7). If the many-body ground state is Kramers degenerate ¢r#tpgonal to its time-
reversed conjugate, which is necessarily a state of the saergy) in an odd number of the 4 flux sectors, the surfacdrspec
has 2+1 dimensional gapless surface states (in the themaady limit) [22]. These gapless states cannot be elimthatthout
breaking the Kramers degeneracy, and therefore breakiregeversal symmetry; hence the system is a STI. This defirig
equivalent to the band-structure based definition of R&fs7]in the non-interacting case, but has the advantagé thaés not
require an explicit knowledge of the band structure, and thequally applicable to interacting systems.

This criterion ensures that, if time-reversal symmetrynssprved, there must be a large gauge transformation inhvetic
each surface an odd number of fermions cross from below tiraifsarface to above it. Let us begin in a flux sector where the
ground state is non-degenerate. Next, we adiabaticalbriifisix to arrive in a flux sector where the many-body grouradest
is Kramers degenerate. Applyifdg(which maps the many-body ground state to its orthogonatri€ra partner), and inserting
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the same flux again must return the system to its original riently ground state (since this is equivalent to insertindluro

at all). If we simply apply the flux insertion twice, withouedorming a time-reversal transformation in between, vwezdfore
obtain a fermionic configuration that is orthogonal to thigio@al. As the original many-body ground state was non-degate,
after this large gauge transformation the system must be ixaited state. If the only zero-energy state encounteueidgl
the flux insertion is in the Kramers doublet, then only onenfienic mode crosses the Fermi surface. (More generallyaext
band crossings not protected by Kramers theorem can ocpairisat momentgp, —p), and an odd number of fermions can be
transferred.) Hence, there exists a large gauge transfimmia which an odd number of fermions cross the Fermi sexfac

Appendix D: 1+1d Effective Action Calculation

In this section, we repeat the calculation of Section 4 indl+This is technically simpler than the higher-dimensional
calculation and so is easier to follow. Our results are atest with those in Section 3 and also allows us to make dixgiact
with the work of Goldstone and Wilczek [24].

We begin with the 1+1d action,

S = /dQ:c 1/_)(1'7“(8# —ieA,) +m(x) + i'y5a)1/), (D1)

wherey = 9140, ¢ is a constant, antim,, _, .., = £m, for my > 0 with a single zero crossing at= 0. Any such soliton
configuration in the mass is stable in 1+1d as opposed to hiiheensions. lio # 0, we may safely integrate owt without
any IR divergences. This produces an effective actiondfpiat energies less than The leading term is linear id,, and we
expect it to take the form,

Seft = —€/d2I A#Tr('y“D(:c,:c)), (D2)

where D(z, 2’) is the propagator fo) evaluated at: = 2’ (note thatD(x, ') is a2 x 2 matrix and so the trace does not
automatically vanish). Without resorting to an argumeid24] presented in Appendix B, it is necessary to consthetreal
space propagator because there is no translation invarianiee direction perpendicular to the domain wall.

Thus, we must calculat® (z, ). First, we choose the following representation for the Diratrices,

V=0t i =ict, =90 =0 (D3)

The propagator of the Dirac fermion is determined by themigkies and the eigenfunctions of the equation,

7 (190 + mi@) + "0 )0 = M, (D4)
which can be written as
0y — o O +m(x)\ (Y1 _ (V7
(—am vme) i +o J\wd) T M) (D5)
The propagator is formally given by the expression,
P (@) ()
AN
D(z,2") =1 Z 3 , (D6)

where the)* are normalized eigenfunctions.
Time-translation invariance allows us to Fourier expandt, ) = [ v;'(w,t) exp(—iwt). Thus, we must solve the follow-

ing eigenvalue problem,
w—0 Oz +m(x) wi\(wa T)\ _ A wf(w,x) (D7)
-0 + m(x) wto Py (w,x)) — "\ (w,x) )"
Spatial translation invariance is restoredrass +oo. We can use this fact to solve for the eigenvalues (of angstiuat are
not localized to the domain wall) by asymptotically Foudecomposinglim, , +o ¥} (w, z) = [, ¥} (w, k) exp(—ikz). (D7)

becomes
w—0 —ik+m ’IZJA(W,k) _ Zﬁ’\(ka)
(z’k +tmy wHo O) (wé(w, k)) B ’\( ;’\(w, k)) ®9)
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Thus, there are two sets of eigenfunctions,(w, ), with eigenvalues\y = w + \/k2 + m2 + 02 = w =+ wy. In addition to
these scattering states, there are modes bound to the dealbas we shall describe.
To find the eigenfunctions of the scattering states, we nakge she equation,

w—o0 Oz +m(x) wf(w, )\ wf(w, x)
(ot 3087 (ko) = (10 (59)
It is possible to do this by finding the eigenfunctions for tie@stant mass Dirac equation and then replacing the cdmstess

by the spatially varying one. However, the following obssion is instructive. The coupled first-order equation (B@y be
written as two decoupled second order equations,

(5)5 — Oym(z) — m(x)* +m3 + k2)z/11i =0
(ag + ym(z) — m(z)? + m2 + k2)zp§ = 0. (D10)

To proceed further, we must choose a particular form of therjolating mass. We take(z) = mg tanh(z/¢). Substituting
this into (D10) we find

2

(a;i YR+ (1- 1/m0£)$&m)¢f =0

2
2+ K2+ (1+1/mol)—0__YypE = 0. D11

( ( /mo )coshQ(:zc/Z))d]2 (b11)
These are generalized Poschl-Teller equations.

There is a well known relation between the Poschl-Tellaratigns and supersymmetric quantum mechanics as we now
describe [38]. For simplicity, let us work &t= 1/m,. Define the (supersymmetric charge) operator,

Q = 05 — mg tanh(mozs), Qf = -85 —my tanh(moxs). (D12)

We may suggestively rewrite (D11) so that the equationfeadi®y each eigenspinor component takes one of two forms:

QTQW )1 = (W — )Wy ), QQH (¥t )2 = (Wi — oD (W), (D13)

where the subscript, 2, refers to the spinor component. Recall that the eigenvaltre above equatiofw; — 0?) = k? + m2.

Scattering states are defined to be those eigenfunctiomghich (w? — 02) # 0. There is a pairing between scattering state
spinor components; given a solutign to the first equation in (D13) with non-zero eigenvalue, asoh to the second equation
with identical eigenvalue is given i§+;. A bound state is annihilated by eith@ror Q and there is no corresponding pairing
of spinor components. Consequently, bound states can aalynbe scattering states in pairs. The number of bound states
given by the index o€); this number is the difference in dimensions of the kerneh(dl space) of the operato€ andQ*. For
our problem, only states annihilated &y are normalizable and so we need only consider this operdteniinding the bound
state wave function. The number of bound states or zero nmisgesserved under small changegoFor0 < mof < 1, there
exists a single zero mode bound state.

Following this brief digression, let us now directly soh1(1) at the point. /¢ = m for which the two equations simplify to

(8§+k2)1/)f — 0
(aﬁ Ty 27’”%)1@[ = 0. (D14)

cosh? (mox)
The equation fowlAi is easily solved byonst. exp(—ikx). It may be substituted back into the first order differergigliations
(D9) in order to determin&ﬁi. Doing so, we find the un-normalized eigenspinors for thétedag states,

(tv ) _ twr — o Ciwt—ikx
(t, )) a (ik—i—mo‘fanh(mox))e bk, (D15)

Note thatk only has the strict interpretation of momentum asymptdtidar away from the domain wall whem(z) becomes
a constant; otherwise, it may be viewed as a reparameterizztthe eigenvalues. It is interesting thahever explicitly enters
the second order differential equations (D11).

+
W% () = (1/’2;

X
X
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It remains to find the bound state. The two components of thacZipinor are no longer paired. Instegd,is the only non-
zero component of the spinor and we need only solve the fidgratifferential equation (D9) withn(z) = mg tanh(mox).
(There is no corresponding normalizable solution where= 0 and; is non-zero.) The un-normalized solution is

Wt 2) = ( 0 ) (D16)

sech(mox)
with eigenvalue\, = w + 0. Itis a bit of a misnomer to refer to*o as a zero mode as its energy is bounded from below. by
is better to call it a bound state. Of course, this bound s$dtee to mix with the bulk continuum when its energy is conaixe
to the bulk gap.

Equipped with the eigenspinors (D15) and (D16), we must nokmn@alize them with respect to the inner product (20) where
now the number of integration dimensions is equal to two. sThhe orthonormal eigenspinors are (same notation as un-

normalized ones above)
0 _ Mo 0 —iwt
ww(ta I) - 47T (sech(mox)>e )

1 dwp — o iwt—i
+ - k iwt—ikx
lﬁw,k(tv z) = 872wy (wy F 0) <zk +mg tanh(mox)> ¢ ’ (D17)

Let us now construct the propagator using (D6). Thisisa2 matrix. The sum over the eigenvalues becomes integrals over
w, k. The zero mode only contributes a non-z2teentry (given our choice of-matrices),

dw 7w + W%ew(t'—t)

D18
2 w? — o2 ( )

DI af) = 201+ iy sech(mo)sech(mos)

Note that this is simply the propagator of a massive 0+1dgart
The contribution to the propagator from the scatteringestét more complicated, but straightforwardly found as tesfo

. dwdk YWk, + M(2,2') +iv°0 )ikl —
pscat /Y — 14 ) iw(t' —t)+ik(z' —x) D19
@) = [ G e , (D19)
1 1 1 O+ ioy®
M) = —5(1 =iy m(a) = 51+ (@) + 5 (04 i) g (e (D20)
and
p(x,a') = m(z)m(a’) — ik(m(z) —m(z')) - m3. (D21)
The similarity between the two-dimensional and four-disienal cases is evident.
Return to the expression for the leading contribution toatfective action for4,,,
Seff = —e/dgzzr AHTr('y“D(x,x)). (D22)

In 1+1d, we only need the propagator evaluated at the samimmgtand ending point. Therefore, let us simplydet= ¢t and
2’ = x in our expressions for the bound and scattering state petpesy Using our expression for the propagator at cointiden
points, we find

S = (&n(f’) L) /dt e Ao, (D23)
2 Mo

™

wheren = +1 allows for a general domain wall orientation(x) = nmg tanh(moz). We also used the relation,

2
lim  osech (moz)

mo—r 00 2

= §(x). (D24)

(D23) is simply the 0+1d CS term for thé, field. In the limit of interestg/my — 0, the level is half-integral. Notice that the
total level depends upon the asymptotic ratjon, precisely in the way predicted by Goldstone and Wilczek [2#hile our
calculation was performed for a particular soliton profiles expect the level to be/27 times the change in phase of the bulk
fermion mass.
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Appendix E: Bulk and Boundary Corrections

Here we will give the details of the calculation of thdoop correction to the gauge field effective action. Thisrection
takes the form,

0S8 = /d4xd4a:/A#(a:)H“”(a:,I/)A,,(:c’)
o2
= 5/d4xd4x'AM(:v)A,,(gc’)Tr(7“D(x,x’)w”D(x',x)). (E1)

In Section 4, we studied in detail the contribution/ofc to (E1). Because of the softer UV behavior of this propagater
found this term to be finite in the UV cutoff. Thus the leugl CS term arising from the fermion propagator is, unlike in a
2 + 1d system, unmodified by any regularization procedure.

It is important to verify that any divergences in the— oo limit arising from other contributions to (E1) do not force u
to add regulator fields that will change the level of the Chsimons coefficient moduld. To verify this, we write the 3+1d
propagator as the sum of two terms,

D(k,x3,2%) = D"(k, 23, 2%) + D™°(k, 23, 2%), (E2)
where
Y ,.I'/ iks sign(xf—x aka ioy® /
Dloc(k’xz)”l'g) _ /’L( 3 3):u k3 sig ( 3 '3) (1 + 173) Yy + 107 €7k3|I37I3 ’ (E3)
4 (—k2+ 02)\/—k2 + md + o2
and

,yaka — 73143 — % I:m(,ng) —+ m(w’3) —+ 173(m($3) — m(xé))] =+ i0’75 €7k3|m,37I3
2y/—k2 +m3 + o?

for ks = \/—k2 +mi + 02,k = ikssign(zy — z3). Here we have integrated over &l in (28), such that the contribution
from the poles ak; = +im( exactly cancels the propagator of the bound states, asiegglin Section 4. This giveld,,, =

TG+ I+ L), with

Diree(k, a3, 2%) = (E4)

Hf"f — Tr (,YMDfrcc,nyfrcc) HL}/ = Tr (,YHDIOC,YVDIOC) (E5)

ng

Hft,ll/ — Tr (,YMDfree%/Dloc + ,YHDloc,yquree) ) (E6)

In the main text we discussed orﬂ;}ﬂ},; here we will evaluate the remaining contributions.

To understand the structure of the possible divergencés hielpful to Fourier transform in3. Recall that the assumed
translation invariance in the directions tangent to the gionwall allow us to immediately work in a mixed Fourier basisere
ko fora = 0,1, 2 is the momentum tangent to the domain wall. Focusing on ihg:$patial direction, we introduce the momenta
s, 1t

—

/dacg dasIL,,, (x5, 25, §u) Ap(@s, §o) Au (25, —Ga) = /dacg dx’, /ds dt ei“‘*eitzéAH(s,lga)Ay(t,ka)HW(x3,x’3,/2a) (E7)

Intuitively, this form is convenient because fixing, =5 at the location of the domain wall requires us to include nsoolie
arbitrarily high energy, obscuring the structure of theediences. Thus, it is preferable to first integrate aver:; and then
examine the structure of the divergences for small g, .

As a sanity check, it is instructive to see what this presicnipgives for the case of a translationally-invariant massthis
case, the only; dependence dfl,,, is

o e (katks)|zg—xs]
0, (23,25, §a) = /d%aT ((k-K —m*)nu — kuki, — Kl k)
33

wherek = (ko, k1, k2, k3), k' = (ko — qo, k1 — q1, k2 — g2, k3) and

by = \~RB R RS+ mE kot K= \—(ho— @) + (b — )P + (o — P2+ mi 402 (ES)
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In this case, performing the integral over the center-o§sra-ordinate; + x4 enforces the condition = —¢. The remaining
integral overr; — x5 gives:

- - ks + ks 1
/d(:cg — 23) I (23, 73, Pa) = /dgka 2 (ks +3ké)23+ 52 ksks ((k K - mZ)mw = kyuk;, — kitku) : (E9)

As one might expect, this is exactly the result we would ablsi first Fourier transforming the propagator in all fourcsgtame
momenta, and then integrating over, with g3 = s.

When the mass breaks translation invariance;irs andt are not conserved, and integrating owgrz’; will not forces = —t¢.
However, it remains true thai,,, (x3, 2%, ¢,) is an admixture of modes at many different energies, andwkanust integrate
overzs andzj in order to obtain the correct structure of divergences.

Definingz = x4 — 3, Z = 3 + «%, the various contributions to the propagator are:

o (ka+ k)|

Hfilf/(%a T3, xé) = /dgka Kkl [(kp(kp + qP) - m% - 02)77#1/ - ku(ku +aqv) — kV(ku + QH)
3

oT?

wlo =Ty iy +i T |
+ Mo 1(17 +1 (ks + M2

)§VGQa6u3) - 6u36u3

(ks + k%) sign(z (E10)

—(ks+k3)|2| )
7 Tcross [5,ua5l/b {(kc(kc + qc) — 0 )na,b - kb(ka + qa)
sk,

—ka(ky + ) +i0€apcqc} — 63003 (K (ke + qc) — 0°) + o (E11)

e

HE}/(QaaI&xlg):/d?’ka

11 / 5, € (kathslz] c 2
Hlll/(qav'r& I3) = /d kaWﬂoc [5,ua5l/b {(k (kc + QC) — 0 )na,b - kb(ka + Qa)
3

—ka(ky + qv) +io€qp,cqc}] - (E12)

where we have defineld, = \/—(ko + q0)2 + (k1 + q1)2 + (k2 + q2)2 + mZ + 02. Herea is a matrix of linear order i,
that is non-zero only in the fourth row and column, and

5 14 coshmgZ coshmpz
% (coshmoZ + coshmgz)2
mo(ks + k%) sinh mg|z|

2
Ty = _% (tanh® moxs + tanh® moz}) +mg = 2m

mo(ks + k})sign(2)

T = 5 (tanh mozy — tanh mozs) = coshioZ + coshimos
Ty = m3(1 — tanhmoxs tanh moay) = po— ;TZ?J Ti};:h s
Teross = ﬁ(ﬂ +12) + O(4a)
Too = gryam D+ T +0(a) (E13)

For k2 large,IT};} andIl},} scale like|k|~', while II};}, scales likglk|~* — hence naively, after integrating over the remaining
three loop momenta, all three might be divergent. Howeare eust be taken with this naive power-counting, as is apar
from the form ole‘?,}*:D4 prior to integrating over, Z: power-counting suggests that the leading-order divergehould be
cubic, while it is in fact quadratic in. Likewise, we will find that the leading-order divergencerfrthe terms that arise due to
the spatial variation of(z3) is logarithmic.

To exhibit these divergences explicitly, we next Fouriansform inzs, as in Eq. (E7) , and perform the integrals owvemnd

Z. For example, we wish to integrate
l/dZ dze—2halzl gi(s+0) /22 ils—0) /25 (E14)
2

To do this for generad and¢, we observe that the zeros in the denominatdfdccur atZ = +z + i(2n + 1)7. Summing over

n, we obtain

1

2 sinh w
mo

1 . . .
B /dZ e~ 2kslzlgils+)/2Z gils—t) /22 — e~ 2ksl=lgi(5=D/22 [Reg(To; x = y + im) + Res(To; x = y — im)] .

(E15)
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We then integrate these expressions with respect &fter performing both integrations, the mass dimensiothefresult has
been reduced b¥ (rather than by, as it is when integrating ovef leads tod(s — ¢)). This indicates that the corresponding
contribution toll,,,, has the mass dimension of the correction far-a 1D theory.

We obtain:

ky(s +t) (k3 + £(s? +t2))

E16
o AR

mo/dz dz e szl i(sH)/22 (is=1) /22 ) — Osign(my)

The exponentiab™+t)/™0 ensures that we may expend the result for srﬁéll not only do these parametrize the photon
momentum in thers direction, which we take to be small relativenaq), but equally the result is exponentially suppressed in

j;:t, \_/vh|le after Wick rotatingks > /m0 + o2, _ _ _
his expansion can be safely performed for all of the intisgiEo zeroeth order iR, ¢, we obtain:

1 2 1
_/dZdZe—ng\z\TO — |m0|7 /dZdZe—ng\ \T |m0|

2 kg 2 s
1 k

= [ dzdZe #slATy, = 2|mo |, I (——

2/ zdZe 2 k2 —|— 0[Ok, (|m0|)

1 ki

5/dzczze*%aizifrf = -2 [m0+2k3|m0|—2k§|m0|aksr(ﬁ)}

1 _ —2k3|mo| + Tkimd — 8k3|mo|® 4+ k3m{ + 4ks|mo|® — 4m]
| dadze2ksl2T2 — 9(9p2 3 3o 31 0
3 [ dsize TS = 202+ K3 (ks — 2lmo)* (ks — [mo))?

ki
+ 2mafOk, (-2 4 o)
1 _ |mo|(4k3 — 2k3|mo| + k2m2 +md) ks
~ [ dzdZe sl T, = 2 3 3 30 00 4k2|mo|0, 14— E17
5 [ dzze T, et Fmoldk,D(~1+ ) (E17)

wherel is the digamma function.

Taylor expanding these expressions for lakgeone can see thﬂ};},(o, s = 0,t = 0) is non-divergent, as claimed in Section
4. Further, the divergent terms associated with the domalhimII’;f (0, s = 0,¢ = 0) andII’;} (0, s = 0,¢ = 0) cancel.

We can also evaluate the extra finite contributions to thgygauon-invariant terms due to the contributions we negikeitte
Section 4. Inserting the expressions in (E17) into the esgiom for the Fourier-transformed propagator, and Wicktiog to
sendk? — —k2, we obtain:

2mo(m3k? + 302K2)
3k3 (k2 4 02)2

2|my|
3

HHV(O, 0, 0) = Huu(oa 0, O)QED4 - /d3kc 5ua6ub Nab = — 6ua§Vb Nab (E18)

wherell,,, (0, 0,0)9EP4 is the gauge non-invariant contribution from the fermioogdaon QEDA4.

Thus the gauge non-invariant terms that arise due to the idomadl do indeed have the form given in Eq. (36), and regular-
ization can be carried out with an even number of Pauli-8lf&elds with spatially varying masses.

We can also use this method to calculate the coefficient o€tiern-Simons term in Eq. (E10). As described in Section 4,
HLL contributes a half-integral Chern-Simons term, whose sigietermined by the sign of the domain-wall massiowever,

there is also @on-quantizedontribution froml'[f;},. Thus the total effective Chern-Simons term is

1 o
S = — [ msign(o) — 2sin™! ——— | (i€apep® (E19)
or a Chern-Simons coefficient of
1 1
k = —sign(o) — —tan™! 7 (E20)
2 ™ |mol
where we have usedn ! ‘;+ = = tan~ ‘m - This is reminiscent of the corrections to the induced charfgsolitons in

the simpler 1+1d model (D23 in 3+1d if we break time-reve(ia example by applying a magnetic field to the system) the
domain wall carries an induced charge, whose value is gxqatintized only in the limit-/mo — 0.
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To be specific, thé/(1)gm gauge field is not confined to the 2+1d surface; it is free tdaeepthe 3+1d bulk. Integrating over this extra
direction results in a tree-level propagator for the gaugkl fihat is softer in the infrared (IR) in that it divergesdarly as opposed to
guadratically at small momentum.

This statement is slightly imprecise. Invariance of thetlgainder large gauge transformations requires a choicexdliary 4-manifold to
ensure the CS term is well defined in general [45,46]. While iiiore precise definition is suggestive of our eventual lkemian, we will
not make use of it further.

See Refs. [47,48] for an earlier discussion on a closelyaélsystem.

We thank E. Fradkin for discussions on this point.

It is well established that this is the case for non-inténacsystems; however, the arguments of Ref. [44], applie8Dras explained in
Ref. [22], strongly suggest that this remains true in thes@nee of interactions.

This lemma is familiar from the construction of Wess-Zuminitten (WZW) terms. Such a WZW term is constructed by exiegéh field
over an auxiliary higher-dimensional space.

We thank S. Kachru for discussions on this latter possjbilit



