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The surface of a 3+1d topological insulator hosts an odd number of gapless Dirac fermions when charge
conjugation and time-reversal symmetries are preserved. Viewed as a purely 2+1d system, this surface theory
would necessarily explicitly break parity and time-reversal when coupled to a fluctuating gauge field. Here
we explain why such a state can exist on the boundary of a 3+1d system without breaking these symmetries,
even if the number of boundary components is odd. This is accomplished from two complementary perspectives:
topological quantization conditions and regularization.We first discuss the conditions under which (continuous)
large gauge transformations may exist when the theory liveson a boundary of a higher-dimensional spacetime.
Next, we show how the higher-dimensional bulk theory is essential in providing a parity-invariant regularization
of the theory living on the lower-dimensional boundary or defect.

PACS numbers:

I. INTRODUCTION

It is well known that a 2+1d theory consisting of an odd numberof gapless Dirac fermions interacting with a fluctuating gauge
field must break parity (P ) and time-reversal (T ) symmetries [1–4]. It is also well-established that there exist topologically
non-trivial band structures for fermions on a lattice in three spatial dimensions (i.e., 3+1d topological insulators)whose surfaces
harbor an odd number of gapless Dirac fermions [5–7]. This raises the question: Must topological insulators breakP andT on
their boundaries when coupled to a fluctuating gauge field? The purpose of this paper is to explain why this does not occur.

Strong topological insulators in 3+1d (3DTI) are distinguished by the presence of gapless surface states that are stable to allP
andT invariant perturbations (with respect to the boundary theory) that conserve electric charge [8]. Provided that the chemical
potential is fine-tuned to the Dirac point, these gapless surface modes can be described at low energies by an odd number of
2-component Dirac fermions, which are charged under the electromagneticU(1)EM gauge field.49 In a purely 2+1d theory of
this type (i.e., QED3), gauge invariance (under both large and small gauge transformations) is preserved if and only if

Nf

2
+ k ∈ Z, (1)

whereNf is the number of flavors of 2-component Dirac fermions andk is the level of the Chern-Simons (CS) term for the
gauge field.50 WhenNf is odd, a non-zero half-integral level CS term must supplement the effective action.

This is known as the parity anomaly. It is the gauge-invariant regularization of the theory that results in the addition of the
half-integral level CS term to the effective action whenNf is odd. This CS term explicitly breaksP andT . Physically, the
anomaly means that parity and time-reversal invariance areexplicitly broken when a theory with an odd number of 2+1d Dirac
fermions is coupled to a fluctuating gauge field.

Anomaly considerations establish a relationship between certain topologically ordered phases of matter and the gapless modes
living on their boundaries [9–12]. The quantum Hall effect provides, perhaps, the most famous example of how anomaly con-
siderations can be used to better understand these gapless boundary modes in a model independent way [10,11]. In this example,
theU(1)EM charge conservation symmetry is gauged by the electromagnetic field, whose (possibly fractionally) quantized low
energy Hall response implies an effective bulk descriptionby a CS theory. Equivalently, the non-dissipative Hall current requires
charge-carrying chiral edge modes. The potentially anomalousU(1)EM gauge symmetry provides the link between these two
descriptions. In the presence of a boundary, neither the bulk CS theory nor the boundary chiral theory is individually gauge
invariant; however, their anomalous variations cancel oneanother so that the underlyingU(1)EM symmetry is maintained in the
system as a whole. Thus in the presence of a boundary, the bulktheory cannot exist without the gapless boundary modes, and
vice versa.

This effect is known as anomaly inflow [13]. A classical anomaly of the bulk effective action is cancelled by alocal quantum
mechanical anomaly of the boundary theory. Intuitively, the cancellation occurs because charge flows out from the bulk and
along the boundary of the system at a rate determined by the applied external field. Because this relationship readily extends to
interacting systems, it is a powerful demonstration of the robustness of the gapless boundary modes [12].

Anomaly inflow does not, however, define the relationship between bulk and boundary theories for 3+1d topological insulators.
This is because local violation of charge or momentum conservation can only occur when the spatial dimension is odd [4,14–16],
as is the case for the 1+1d boundary of a 2+1d quantum Hall system. Instead, possible anomalies relevant to theories in even
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spatial dimension necessarily involve so-called large gauge transformations. This is the case for the parity anomaly constraint
(1), which is potentially relevant to the surface of a 3+1d topological insulator.51

A (topological) band insulator is necessarily a system thatcan be realized on the lattice so it is worth reviewing the conven-
tional wisdom regarding anomalies in lattice systems. Because the lattice itself provides a gauge-invariant regularization, any
system that can be realized on the lattice cannot be anomalous. That this is true follows immediately from fermion doubling
[17]. For example, a purely 2+1d lattice system of fermions with relativistic dispersion necessarily contains an even number of
(low energy) Dirac fermions in the absence ofP andT breaking. The parity anomaly constraint (1) is satisfied by the low energy
effective theory for all deformations preserving theU(1) symmetry – even those that breakP or T [18]. The striking feature of
topological insulators is that the gapless surface modes donot exhibit fermion doubling because they live on the boundary of a
higher-dimensional system.

Thus, we must ask whether (1) is obeyed on each boundary or, ifnot, how this is consistent with an overall gauge-invariant
theory. Because of theZ2 nature of the parity anomaly, a topological insulator with two (separate) boundaries automatically
satisfies (1). However, there is no fundamental reason why a topological insulator must have an even number of boundaries; for
example, a solid sphere or torus of 3+1 d topological insulator would have a single boundary, potentially violating (1).

In this work, we explain why (1) need not be satisfied by the lowenergy theory describing surface Dirac fermions interacting
with a bulk gauge field. Specifically, we shall explain how thehigher-dimensional bulk theory from which the surface modes
descend eliminates the potential anomaly of the surface. Weemphasize that this conclusion is quite different from whatoccurs
in the quantum Hall case [10] and other examples studied by Ref. [12], where the potential anomaly of the surface iscancelled
by a comparable anomaly in the bulk.

In fact, we find thatNf

2 + k is half-integral at each boundary surface of a 3+1d topological insulator only in the limit that the
bulk gapm0 is infinitely large compared to any T-breaking perturbations on the boundary. The corrections appearing at finite
m0 imply that the CS levelk need not be quantizedat half-integral (or indeed at any rational) values, even ina non-interacting
system. This was first noted in Ref. [19].

The conclusion that the surface states do not exhibit the parity anomaly –in the sense that they do not obey (1) – is of clear
importance for the low energy properties of a topological insulator: a non-zero bare CS term breaksP andT , and would
therefore drastically affect the low energy physics. Whilethese surface properties are well established (or at least well believed)
theoretically for the case of topological band insulators which need not be coupled to a fluctuating gauge field in order tobe
defined, our analysis is equally applicable to the case of more exotic fractional topological insulators, such as those described
in [20–23], in which the presence of a fluctuating “internal”gauge field is inevitable. Thus, our result is important in clarifying
whyP andT invariant gapless boundary modes exist in these systems – aswell as in understanding their topological order.

We would like to point out that in the context of topological insulators, a different definition of the parity anomaly is sometimes
used. It is sometimes said that the surface modes exhibit theparity anomaly because the parity-violating current equation,

〈Jµ〉 =
1

4π
ǫµνρ∂

νAρ, (2)

is satisfied on any boundary perturbed by aP andT odd interaction. For a topological insulator boundary, (2)doesnotmean that
there exists a zero magnetic field Hall conductance (in contrast to a purely 2+1d system); rather, a Hall effect occurs only after a
time-reversal breaking perturbation has been applied to the surface, as we shall explain. ((2) follows directly from the effective
action calculated in Section 4.) In the present work, when wesay that the surface modes of a 3+1d topological insulator donot
exhibit the parity anomaly, we mean that they do not satisfy the constraint (1) requiring integralNf/2 + k (on each boundary
component). It is important to note this difference in terminology in order to avoid possible confusion.52

The remainder of the paper is organized as follows. We begin in Section 2 with a brief introduction to the specific model
we wish to study. We then turn to the explanation for why non-integralNf

2 + k is consistent with a gauge-invariant theory.
To do so, we make use of two complementary perspectives: topological quantization conditions in Section 3 and perturbative
regularization in Section 4. We summarize and conclude in Section 5.

The paper contains five (count them!) appendices summarizing issues that are related, but not essential, to the above line of
argument, although they may be of some interest. Appendix A contains a review of domain wall fermions and their relation to
continuum models of topological insulators. In Appendix B,we discuss anomaly inflow intuition for line and domain wall defects
in three spatial dimensions. In Appendix C, we recall how fluxinsertion arguments can be used to define a strong topological
insulator in the presence of disorder or other interactions. In Appendix D, we repeat the perturbative analysis of Section 4 in the
technically simpler, but conceptually equivalent case of 1+1d allowing direct contact with the work of Goldstone and Wilczek
[24]. In Appendix E, we elaborate in detail upon the leading divergence structure arising from the interaction between bulk and
boundary modes in our toy model of a topological insulator, thereby confirming the conclusions of Section 4.
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II. DOMAIN WALL FERMIONS, THE θ-TERM, AND TOPOLOGICAL INSULATORS

There are fourZ2 topological invariants that characterize the bulk band structure of (non-interacting) fermionic insulators
in 3+1d [5–7]. These distinguish between three classes of time-reversal invariant, charge-conserving band insulators: a so-
called trivial insulator (with no protected low-energy surface modes), a “weak” topological insulator (which has gapless surface
states that can be gapped without breaking time-reversal symmetry, but are nonetheless robust to disorder [25]), and a “strong”
topological insulator (STI), whose gapless surface statescannot be eliminated by any time-reversal invariant perturbation.53 In
this paper, we focus on the STI.

At low energies, a STI in 3+1d can be described by a continuum theory of a single, massive 4-component Dirac fermion [8,26].
In this continuum formulation, the STI is distinguished from its trivial counterpart by the sign of the Dirac fermion massm. The
existence of two distinct insulators distinguished by the sign of m is the continuum version of the notion of topological band
structure: these two insulators cannot be adiabatically connected without either closing the bulk gap or choosing a connecting
path in parameter space that breaksP andT (e.g., by interpolating over complex fermion masses).

To exhibit the difference, we consider the action,

S =

∫

d4x
(

ψ̄iγµ(∂µ − ieAµ)ψ +m(x)ψ̄ψ
)

, (3)

whereψ is a 4-component spinor that describes the massive bulk fermion with spatially dependent massm(x) coupled to
theU(1) gauge fieldAµ which may represent the electromagnetic field. The spatially-varying mass allows us to study the
interface between a topologically non-trivial and a topologically trivial insulator, where the parity anomaly constraint (1) could
potentially be applied. (We have not included kinetic termsfor the gauge field, since their specific form does not affect our
results.) In (3),ψ̄ = ψ†γ0, {γµ, γν} = 2ηµν for µ, ν = 0, 1, 2, 3 whereηµν = diag(1,−1,−1,−1). Further, we define the
matrixγ5 = iγ0γ1γ2γ3 which anti-commutes with allγµ.

Let us begin by reviewing the claim that the sign of the fermion mass distinguishes between two distinct bulk phases of
matter. Ifm(x) is constant, the two states are distinguished by the presence or absence of a topologicalθ-term in their low-
energy effective action [26–28]. We can see this by considering the effect of chiral rotationsψ → exp(iαγ5)ψ on the effective
action (3). These rotate the fermion mass according to

mψ̄ψ → mψ̄ei2αγ5ψ = m cos(2α)ψ̄ψ + im sin(2α)ψ̄γ5ψ (4)

rendering it complex unlessα is an integer multiple ofπ/2. Importantly, chiral rotations also contribute an anomalous term to
the action from the path integral measure:

Sθ = (2α)

∫

d4x
e2

32π2
ǫµνρσFµνFρσ. (5)

By the chiral rotation2α = π – which is nothing more than a change of path integration variables – we may change the sign
of the fermion mass at the expense of creating a topologicalθ-term (5) with coefficientθ = π. Thus, the effective continuum
actions for the topologically non-trivial and trivial insulators with constant masses everywhere in space, but with opposite sign,
differ precisely by the topological term (5) withθ = π.

Now consider the scenario in which there is a single domain wall separating a region of STI (x3 > 0) from a region of the
vacuum or trivial insulator (x3 < 0). As we review in Appendix A, if we take

lim
x3→±∞

m(x3) = ±m0, m0 > 0 (6)

with m(x3) passing through zero exactly once, atx3 = 0, there is a single massless 2+1d Dirac fermion localized near x3 = 0,
wherem(x) changes sign [29].

Based on the result (5), we might expect aθ-term with a spatially varying coefficient taking the value,say,θ = 0 for x3
large and negative, andθ = π for x3 large and positive when we integrate out the massive bulk mode. A bulkθ-term integrates
by parts to a boundary CS term at levelk = θ/2π. This suggests that the low energy boundary action might obey (1) with
the half-integer CS level, obtained from a bulkθ-term, compensating for the odd number of domain wall fermions. If true, this
half-integral Chern-Simons term would break P and T explicitly at the surface of a topological insulator, even in situations where
the purely fermionic model (with no fluctuating gauge fields)is P and T invariant. In particular, a magnetic perturbationthat
opens up a gap in the surface fermion spectrum would imply anintegral Hall effect, along with the consequent change of the
Kerr and Faraday angles for light passing through a single surface [26,30,31].

In the remainder of the paper, we show that this is not the case: we should think of the domain wall as associatedeither
with the presence of an odd number of gapless 2+1d Dirac fermions,or (if these are gapped) with a half-integral surface Hall
conductivity which may be understood as arising from a spatially varyingθ-term. This conclusion is equally true for theories
of fermions coupled to other, possibly non-Abelian, gauge fields, as is relevant for describing strongly interacting fractional
topological insulators. In other words, the surface of the topological insulator fails to obey (1);Nf

2 + k is half-integral (in the
limit m0 → ∞).
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III. LARGE GAUGE TRANSFORMATIONS, THE PARITY ANOMALY, AND T OPOLOGICAL INSULATORS

In order to understand the applicability of constraint (1) to the surface modes of a topological insulator, we first review its
derivation from the perspective of topological quantization conditions in 2+1d. The generalization of this logic to topological
insulators is then immediate.

A. The Fermion Determinant

Recall that there are two types of possible gauge anomalies of an effective action: local or global. (For general discussions,
see Refs. [4,32,33].) The distinction arises from the classof the particular gauge transformation under which the action fails to
be invariant. If a local anomaly is present, the action failsto be invariant under any gauge transformation that is continuously
deformable to the constant map. The current associated witha locally anomalous symmetry fails to be conserved.

In contrast, the parity anomaly is an example of a global anomaly: an anomaly associated with so-called “large” gauge
transformations. By a large gauge transformation, we mean agauge transformation that is not continuously deformable to the
constant map. For example, two maps with distinct winding number from the circle to itself cannot be continuously deformed
into one another.

Invariance of the effective action of QED3 under large gaugetransformations requires thatNf

2 + k be integral. To see this,
consider first the fermionic contribution to the gauge field effective action,

eiSF (A) =

∫

[dψ][dψ̄] exp
(

∫

ψ̄(iD
(A)
3 −m0)ψ

)

=
(

det(D
(A)
3 −m0)

)Nf/2

, (7)

whereD(A)
3 = γ̃a(∂a − ieAa) is the 2+1d Dirac operator for a given gauge field configuration A. The fermion determinant

is the product over the eigenvalues of the Dirac operator in (7). Setting the frequency to zero, it is convenient to think of this
determinant as the product over the energies of the fermionic states. These energies are negative for states that lie below the
chemical potential, and positive for states above it. (In this paper, the chemical potential is fine-tuned to zero so thatcharge-
conjugation symmetry in maintained.) The square root instructs us to only include, say, the filled negative energy states in the
product (7).

Therefore, an anomalous transformation of the fermion determinant (or anomaly, for short) occurs when an odd number of
fermions are “pumped” from immediately below the Fermi surface to states immediately above it under a large gauge transfor-
mation. (Gauge transformations deformable to the identitycan have no such effect.) In such a situation, the fermion determinant
changes sign. This renders the partition function, which isa sum over all such sectors, ill defined if there is no compensating
bare CS term.

As a concrete example for how this works, consider a Dirac fermion on a spatial torusS1 × S1. We will also assume that all
gauge fields tend to constant values and so are pure gauge ast→ ±∞, effectively imposing periodic boundary conditions in time
on all physical observables. Suppose the fermions are givenanti-periodic boundary conditions along the two cycles of lengthL1

andL2. Then the allowed fermion momenta (in the absence of any external gauge field) arek1 = 2π
L1

(n1+
1
2 ), k2 = 2π

L2
(n2+

1
2 )

with associated band energiesE = ±
√

k21 + k22 . Consider the Dirac cone sitting at the time-reversal invariant momentum point
(k1, k2) = (0, 0). The allowed momentum states are distributed symmetrically about the Dirac point(0, 0) with the lowest
energy states at(k1, k2) = (± π

L1
,± π

L2
).

Large gauge transformations in this system correspond to inserting magnetic flux quanta(l1 = 1
Φ0

∮

dx1A1, l2 =
1
Φ0

∮

dx2A2) through the two non-contractible curves of the torus where the magnetic flux quantum isΦ0 = 2π/e. The
initial choice ofl1 andl2 has no effect on the physical spectrum or the allowed momenta: they are all gauge equivalent. When
l1 or l2 is adiabatically changed from one value to another, however, we must pass through intermediate flux configurations that
cannot simply be gauged away. At a generic intermediate point in the variation, there is an effect on the boundary conditions for
the fermions, which now feel a Berry phase due to the magneticflux as they encircle the torus. If the flux through the two holes
of the torus is(Φ1,Φ2), the allowed momentak1 = 2π

L1
(n1 +

1
2 + Φ1

2π ), k2 = 2π
L2

(n2 +
1
2 + Φ2

2π ).
To see the anomaly in action, let us track the fermion spectrum under a large gauge transformation in which we simultaneously

increase the flux through the two non-contractible curves from 0 to 2π. It is necessary to insert non-trivial flux through both
cycles; otherwise, there is no zero crossing. As we increasethe flux from(0, 0) to (π, π), the lowest energy fermion states at
(k1, k2) = (± π

L1
,± π

L2
) are shifted so that they sit at(k1, k2) = ( 2πL1

, 2πL2
), (0, 2πL2

), ( 2πL2
, 0), and(0, 0), as shown in Fig. 1a. If

we now continue slowly inserting flux, the energies of the states at (2πL1
, 2πL2

), (0, 2πL2
), ( 2πL2

, 0) will remain negative, since they are
separated by a non-zero gap from the positive energy states in the band above. However, the energy of the state at(0, 0), which
is exactly0, will change sign, so that this state arrives at its final momentum( π

L1
, π
L2

) with positiveenergy, having moved up to
the conduction band (Fig. 1 b). Because of the single zero crossing, the fermion determinant changes sign.
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How do we know that a filled state from the lower band must move to the upper band during this process? Let|Ω〉 be the
many-body ground state living on the spatial torus and call the operator that inserts(π, π) flux through the two cycles of the torus
Φπ,π. Consider the two many-body statesΦπ,π|Ω〉 andTΦπ,π|Ω〉. Kramers degeneracy requires that〈TΦπ,πΩ|Φπ,πΩ〉 = 0.
The reason is that the state transported to the tip of the Dirac cone after an insertion of(π, π) flux is orthogonal to its time-
reversed partner. (For example,T transforms the spin-up state at momentum(0, 0) to its spin-down partner at(0, 0).) We then
applyΦπ,π to each many-body state to obtainΦπ,πΦπ,π|Ω〉 andΦπ,πTΦπ,π|Ω〉 ∼ |Ω〉. The resulting many-body states remain
orthogonal. Since the many-body ground state with an integral multiple of2π flux inserted through each cycle is non-degenerate,
the resulting states can be orthogonal only if at least one ofthe states below the Fermi level is now empty. In other words,there
has been a zero crossing.

More generally, the fact that there are always an odd number of zero crossings during the above flux insertion process follows
from a 3+1d Atiyah-Singer index theorem [34]. Letτ parametrize the “time” over which the flux insertion processoccurs. Using
the auxiliaryτ direction, we may construct the 3+1d Dirac operatorD

(A)
4 = γµ(∂µ − ieAµ) for µ = 0, ..., 3 with A3 = 0 and

γi = σ3 ⊗ γ̃i for i = 0, 1, 2 andγ3 = σ1 ⊗ 12×2. The determinant ofD(A)
3 is obtained from the square root of the determinant

of D(A)
4 . The number of zero crossings under an adiabatic flux insertion process is equal to the number of zero modes of the

four-dimensional Dirac operatorD(A)
4 [35]. The index theorem ensures that the number of zero crossings equals∆l1 ·∆l2. It is

important that the change in flux number∆li through each cycle is non-zero; otherwise, there would be nozero crossing.

B. The Chern-Simons Term

When there are an even number of Dirac cones (Nf is even), the simultaneous sign changes of the two fermion determinants
cancel and there is no anomaly. IfNf is odd, however, we require a bare half-integral level CS term to cancel the potential
anomaly from the fermion determinant.

To see this, considerU(1) CS theory at levelk on the spatial torusS1 × S1,

SCS =
k

4π

∫

(S1)3
ǫµνρAµ∂νAρ. (8)

k
x

ε
k

Ψ
(π,0)(b)

k
x

ε
k

Ψ
(0,π)(c)

k
x

ε
k

Ψ
(π,π)(d)

k
x

ε
k

Ψ
(0,0)(a)

FIG. 1: Flux insertion and Kramers degeneracy for non-interacting fermions on the surface of the torus.π units of flux is sequentially inserted
through both cycles.



6

k
x

ε
k

Ψ
(0,0)(a)

k
x

ε
k

Ψ
(π,π)(b)

k
x

ε
k

Ψ
(2 π,π)(c)

k
x

ε
k

Ψ
(2 π,2π)(d)

FIG. 2: Flux insertion and Kramers degeneracy for non-interacting fermions on the surface of the torus. A total of2π flux is inserted through
both cycles.

The gauge couplinge has been set to unity in this section. We impose periodic boundary conditionsx1 ≡ x1+L1, x2 ≡ x2+L2

on the gauge field and the condition thatAµ is pure gauge ast → ±∞ implies that our spacetime is effectivelyS1 × S1 × S1.
(The time direction can be thought of as the unit circle if we requireAµ(x, y, t → −∞) = Aµ(x, y, t → ∞) up to gauge
transformations.) Consider a field configuration withl1 flux quanta passing through the non-contractible curve along x1:

∫

dx1A1 = 2πl1. (9)

Let us now adiabatically insertl2 flux quanta through the non-contractible curve inx2. To do this we must generate an infinites-
imal electric fieldE2(t) =

2πl2
Ly

, 0 ≤ t ≤ 1 (for sufficiently largeL2). The change in the Chern-Simons term over the course of
this flux insertion is

δSCS =
k

2π

∫ 1

0

dt

∫

dx1dx2A1E2(t) = 2πl1l2k. (10)

k plays the same role asNf

2 . This shows that ifk is a half-integer,SCS changes byπ if we insert a single flux quantum through
both the non-contractible curves alongx1 andx2.

Thus, both the Chern-Simons contribution to the partition function atk = 1/2 and the fermion determinant forNf odd change
sign under large gauge transformations withl1 = l2 = 1. To avoid the parity anomaly, the overall sign of the gauge field partition
function must be invariant under these large gauge transformations. This is the origin of the condition (1).

The relationship between the parity anomaly of a single surface and the time-reversal protected surface states of the STI
can be established without explicit knowledge of the surface band structure, as we discuss in Appendix C. This ensures that it
remains valid if we tune the system away from vanishing chemical potential, or in the presence of disorder or strong interactions.
Essentially, the statement that each surface, when viewed as an isolated system, violates the parity anomaly constraint (1) is
equivalent to the statement that a bulk system is a STI.

The analysis above readily extends to more general (continuous) gauge groups. Indeed, the parity anomaly was originally
discussed in the context ofSU(2) gauge theory where the analysis is mathematically somewhatsimpler [2–4]. Let us briefly
review this analysis as well since the language and notationwill be useful later.

For a non-abelian gauge theory, saySU(2), we may think of spacetime as being topologically the 3-sphere by imposing
appropriate boundary conditions. (The anomaly cares only about topology and not about whether the metric is Lorentzianor



7

Euclidean.) In general, we can think of gauge transformations as maps from spacetime into the gauge group. Such maps are
characterized by their degree or “winding number.” The possible winding numbers are determined by the groupΠ3(SU(2)) =
Z and so non-trivial large gauge transformations are elements of non-zero degree. (The winding numbers of a U(1) gauge
transformation were denoted byl1 andl2.)

For SU(2), the parity anomaly arises because of the following two facts. First, if theSU(2) gauge field is coupled toNf

flavors of 2-component Dirac fermions, then under large gauge transformations of degreen, the fermion determinant transforms
by (−1)nNf ; or equivalently, the gauge field effective action shifts byπnNf . Second, if there is a bare Chern-Simons term in
the action for our gauge field, this term also shifts by2πnk under a transformation of degreen [36]. The combination of these
observations again gives us (1).

C. Large Gauge Transformations and Domain Wall Fermions

The discussion above highlights the importance of the topology of spacetime in deriving (1). The essential difference between
a topological insulator and these purely 2+1d systems is that while the low energy fermions are localized to a boundary ordefect
in the fermion mass (assuming a large bulk gap), the gauge field is free to propagate throughout the bulk. (See Appendix A for
a review of this fermion localization.) Thus, we must consider the role played by the bulk geometry.

Let us gain intuition by first studying the case where the gauge group isSU(2), where the geometries involved are simpler.
There are two general cases to consider. First, take the topology of spacetime to be the 4-ball. This space has asingle3-sphere
boundary. If we were to forget about the interior of the ball,we could again classify gauge transformations byΠ3(SU(2)) = Z.
It is the gauge transformations of non-zero degree that leadto a quantization condition on the CS levelk. What becomes of
them when we fill in the 3-sphere to make the 4-ball? Only transformations of degree zero extend continuously into the 4-ball
bulk. This means that non-trivial (from the perspective of the boundary theory) large gauge transformations are not allowed in
the theory as they do not continuously extend; therefore, (1) need not be imposed.

The second situation occurs when the system has topology, say, S3× I, whereI is the unit interval. In this case, the boundary
hastwocomponents, each living on one end of the interval. A smooth extension is now allowed, however, a gauge transformation
of degree different from zero acts in precisely the same way on each boundary. Because the anomalous transformation associated
with eachS3 boundary component transforms the path integral at most by aphase, the phases associated with each boundary,
being equal and opposite (due to their opposite relative orientations), precisely cancel one another. Because the cancellation is
automatic, there is no non-trivial constraint to impose.

For a general four-dimensional geometry with some number ofboundary components, the existence of large gauge transfor-
mations follows from a basic result of homotopy called the extension lemma.54 A map admits a continuous extension if and only
if its total degree (i.e., the sum of its degrees restricted to each boundary component) vanishes. This condition ensures that large
gauge transformations (if they are allowed with non-trivial degree) have no effect on the partition function of any suchtheory as
any accumulated phases (e.g., (10) from a CS term) must mutually cancel, i.e., there is no anomaly.

The application of this logic to a theory withU(1) gauge group is now straightforward. In the previous section, we considered
a 2+1d theory living onS1

(t) × S1
(x) × S1

(y). There are two simple ways to form a four-dimensional geometry. First, we may
fill in the interior of one of the circles of the 3-torus so thatthe entire system only contains a single boundary. Without any
loss of generality, we may work inAt = 0 gauge and consider the field configuration,Ax = 2πl1/Lx andAy = 2πl2t/Ly for
0 ≤ t ≤ 1. This configuration is pure gauge (i.e., it can be written asAa = e−if(x,y)∂ae

if(x,y)) at timest = 0 andt = 1.
It has non-zero winding aroundS1

(x) and interpolates in time from anl2 = 0 to anl2 = 1 winding aroundS1
(y). If we choose

to fill in S1
(x), thenAx is no longer pure gauge ifl1 6= 0 as it cannot be removed by a gauge transformation continuously

extendable into the bulk. This means that only gauge configurations of zero winding inx are gauge-equivalent to configurations
with l1 = l2 = 0; configurations of non-zero winding aroundx represent physically distinct configurations in which a source
has been added to the interior of the disk. Similarly, fillingin either theS1

(t) or S1
(y) is only compatible with∆l2 = 0. A quick

way of drawing the above conclusion is that, in the absence ofany sources, the Wilson loop aroundS1
(x) or the flux through

S1
(t) × S1

(y) must vanish if any of theS1
(a) circles is the boundary of some disc.

Alternatively, we may consider the four-dimensional geometry (S1)3 × I. This is the geometry we implicitly used in the
previous section when we discussed flux insertion arguments. Large gauge transformations are allowed, but they impose no
constraint on the physical theory as their effects on each boundary mutually cancel.

In summary, QED3 must satisfy (1) by having integralNf

2 + k, if it is to be invariant under large gauge transformations.The
gauge field coupled to the low energy degrees of freedom of a topological insulator, however, is not localized to the boundary;
rather, it explores the entire bulk. Therefore, we must determine whether or not non-trivial large gauge transformations of the
boundary theory extend smoothly into the bulk. If they do not, then the constraint imposed by their existence is lifted. In
situations for which they do extend, the number of boundaries is even (or at least the sum of the “degrees” of the maps restricted
to each boundary vanishes) and the transformation acts identically on each boundary, so that (1) is trivially satisfied.That is to
say, there is no non-trivial constraint.
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IV. REGULARIZING THE BOUNDARY THEORY

Regularization provides a complementary way to understandthe parity anomaly constraint (1). In this section, we provide
a fairly detailed treatment of the regularization of the leading terms in the one-loop effective action for theU(1) gauge field
coupled to the fermionic degrees of freedom of a topologicalinsulator. Our goal is to discuss how the choice of regulatorcan in
general affect the form of this action. In particular, we show that the effective action has half-integralNf

2 + k in the limit that
the bulk gapm0 → ∞.

In general, such a calculation has both IR and UV divergences. To make the calculation well defined in the IR, we endow
the localized fermions with a mass that is small compared to the bulk gap. The mass acts as an IR regulator and allows us to
completely integrate out all matter fields. However, the mass breaksP andT , and generally induces a CS term on the domain
wall at level 1/2 (in the limit that the domain wall mass is vanishingly small compared with the bulk gap). It is important to
consider whether or not this level is modified by the regularization procedure. We show explicitly how the UV divergencesof
the boundary or defect theory can be removed without a shift of the CS level, and so there is no parity anomaly. In particular, in
the limit of a vanishingP andT violating mass for the boundary modes, no CS term is generated by the regularization procedure
– there is no zero magnetic field Hall conductance. This is to be contrasted with the situation of a purely 2+1d theory.

Because the section is rather technical, let us provide a brief overview. We begin by recalling the situation in 2+1d where the
removal of UV divergences in a gauge-invariant manner results in the constraint (1). After this review, we turn to the calculation
of the domain wall effective action. This proceeds in two steps. We first calculate the propagator for the modes localizedto
the surface. It turns out that while the propagator behaves in the IR as one would expect for a localized Dirac fermion, theUV
behavior is softer, decaying faster at large momentum. Consequently, its contribution to the effective action remainsfinite as the
UV cutoff is taken to infinity. (A more careful justification of this claim can be found in Appendix E). The bulk is crucial for
this effect since the localized modes eventually may mix with the bulk continuum if they are excited to energies comparable to
the bulk gap. Given this behavior, it is then possible to showthat a gauge-invariantP andT preserving regularization can be
chosen. While the discussion concerning the regularization of the theory is technical, it has a clear physical interpretation: when
P andT are locally broken on the surface, our result makes it clear why a level1/2 CS term is obtained for theU(1) gauge field
as opposed to an integral level (in the limit of vanishingσ/m0 whereσ is the measure of the magnitude of the localP andT
breaking at the surface andm0 is the bulk gap).

A. 2+1d Regularization Review

Let us now briefly review how the parity anomaly can be understood in the context of the regularization of QED3 [3]. We will
have occasion to make reference to this calculation later. Begin with the action,

S =

∫

d3x χ̄
(

iγ̃a(∂a − ieAa) + σ
)

χ, (11)

whereχ is a single 2-component Dirac spinor of massσ, γ̃a = (σ3,−iσ2, iσ1) are 2+1d Dirac matrices. Generally, we expect
the regularized effective action forAa at energies less thanσ to be a sum of a Maxwell and CS term.

The effective action is found by calculating the fermion determinant obtained by integrating out the fermions. It is sufficient
to consider the leading quadratic terms ine (and consequently inA as well) in the expansion of the determinant. Working in
momentum space,

SF (A) = e2
∫

d3q

(2π)3
Aa(−q)Πab(q)Ab(q)

=
e2

2

∫

d3q

(2π)3
Aa(−q)Ab(q)

∫

d3p

(2π)3
Tr(γ̃a

i

(pcγ̃c + σ)
γ̃b

i

(p+ q)dγ̃d + σ
). (12)

The kernelΠab(q) or gauge boson self-energy is UV divergent by power counting.
Thus, we arrive at the delicate (and technical) question of how we should regularizeΠab. The general prescription is to choose

a regularization that preserves as many of the symmetries present in (11) as possible. The discussion in Section 3 demonstrates
that the CS level must be integral in a purely 2+1d gapped theory in order that (11) be invariant under large gauge transformations.
We are interested in maintaining this invariance in our theory so we must choose Pauli-Villars regularization as we now review.

In Pauli-Villars regularization, we first impose an UV cutoff Λ on the momentum integral determiningΠab to find

Πab(q) = c1Λη
ab +

sgn(σ)

8π
ǫabciqc +

c2
σ
(q2ηab − qaqb) +O(1/Λ), (13)

wherec1, c2 are non-zero, finite constants. The UV cutoff can be taken to be inversely proportional to an underlying lattice
spacing. The first term is the UV divergence which manifests itself in a gauge non-invariant mass forAa. Such a term generally
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appears when a strict cutoff is applied to loop integrals in agauge theory. (Dimensional regularization simply setsc1 = 0.) The
second and third terms are a level1/2 CS term and the Maxwell term, respectively.

Next, we introduce a single Pauli-Villars field coupled toAa. The propagator for this field has the same form as that for
χ except for the replacementσ ↔ M with σ ≪ M . Additionally, the Pauli-Villars field is taken to have bosonic statistics.
Thus, its contribution toΠab is identical in structure to (14) except for an overall sign change of all terms. Adding these two
contributions together gives,

Πab(q) =
sgn(σ)− sgn(M)

8π
ǫabciqc + c2

M − σ

σM
(q2ηab − qaqb) +O(1/Λ). (14)

We can now take the cutoffΛ → ∞. Notice, however, that decoupling the Pauli-Villars field leaves behind a non-zero contri-
bution to the CS level. This “spur” is the manifestation of the parity anomaly. Parity (and time-reversal) are anomalousin the
following sense. Ifσ → 0, the starting action is classicallyP andT invariant. Maintaining gauge invariance in the quantum or
regularized theory results in the breaking ofP andT due to the contribution from the Pauli-Villars regulator fields.

We note that the usual choice of dimensional regularizationdoes not result in a gauge-invariant effective action; no light
fermions are present to compensate for the level1/2 CS term present in the resulting action.

Within this regularization scheme, it is not possible to remove by some clever choice of Pauli-Villars fields the gauge non-
invariant UV divergence without a non-zero shift of the CS term. This conclusion is in complete agreement with the topological
argument of the previous section and we will, therefore, adopt Pauli-Villars as our regularization prescription. Thatis, the
requirement of invariance of the low energy action under large gauge transformations is satisfied within the Pauli-Villars regu-
larization scheme, but not within dimensional regularization.

The lesson is that there is a physical difference between dimensional and Pauli-Villars regularization in 2+1d. If invariance
of the theory under large gauge transformations is to be maintained, then Pauli-Villars regularization must be used andparity
is broken. From the discussion of the previous section, we anticipate that there is no physically observable differencebetween
Pauli-Villars and dimensional regularization when the theory lives on the boundary of a contractible higher-dimensional space
because there do not exist large gauge transformations thatextend continuously into the bulk in any such theory. In the next
section, we show explicitly how this equivalence comes about.

B. Propagator

We now turn to the calculation of the regularized effective action for the localized modes described at low energies by (11).
Lest we run into a contradiction with the conclusion of Section 3, the action (11) must only be a low energy approximation to
the physics. We will find that the 3+1d bulk, which is implicitin any low energy domain wall action, will play an essential role.

In order to derive the action, we first determine the full propagator for the domain wall modes by generalizing the nice work of
Chandrasekharan [37]. Perhaps surprisingly, the form of the propagator is partially determined by the massive bulk modes. Our
derivation is contrasted with an anomaly inflow argument in Appendix B. We have also repeated in Appendix D the calculations
in this section for the analogous system in the simpler 1+1d context.

As we reviewed in§2, we describe the 3+1d topological insulator by the action,

S =

∫

d4x ψ̄
(

iγµ(∂µ − ieAµ) +m(x) + iγ5σ
)

ψ, (15)

whereψ is a 4-component spinor that describes the massive bulk fermion with spatially dependent massm(x) coupled to the
U(1) gauge fieldAµ which may represent the electromagnetic field. The spatially-varying mass allows us to study the interface
between a topologically trivial and topologically non-trivial insulator, while the constant T-breaking massσ regularizes the
infrared divergences on the domain wall. (We have not included kinetic terms for the gauge field, since their specific formdoes
not affect our results.) Note that̄ψ = ψ†γ0.

We takem(x3) to depend only on a single coordinatex3 and to have the profile,m(x3) = m0 tanh(x3/ℓ) with m0 > 0. If
σ 6= 0, we may safely integrate outψ without an IR divergence. We assume that0 < σ ≪ m0. (In the opposite limit, there is no
domain wall and the entire system is in a single massiveP andT breaking phase.)

We are interested in the one-loop effective action forAµ obtained after integrating outψ. This action takes the generic form,

S = −e
2

2

∫

d4xd4x′Aµ(x)Aν (x
′)Tr

(

γµD(x, x′)γνD(x′, x)
)

, (16)

whereD(x, x′) is the fermion propagator and the overall minus sign comes from the fermion loop. We are particularly interested
both in divergent terms which are implicit in (16) that require regularization and in possible CS terms localized to the 2+1d
domain wall. These CS terms may arise either directly from modes localized to the domain wall or through an integration by
parts of a bulkθ-term.
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Thus, our first task is to calculateD(x, x′). We choose the following representation for the Dirac matrices,

γ0 = −i
(

0 1
−1 0

)

, γi = −i
(

σi 0
0 −σi

)

, γ5 = iγ0γ1γ2γ3 =

(

0 1
1 0

)

. (17)

The eigenspinors of the Dirac equation ate = 0,

γ0
(

iγµ∂µ +m(x3) + iγ5σ
)

ψλ = λψλ. (18)

formally define the propagator,

D(x, x′) = i
∑

λ

ψλ(x)ψ̄λ(x′)

λ
, (19)

where the eigenfunctionsψλ are normalized with respect to the usual inner product,
∫

d4x(ψλ)†(x)ψλ′

(x) = δ(λ− λ′). (20)

Translation invariance in the temporal and spatial directions parallel to the domain wall allows us to express the propagator in
a mixed Fourier space representation,

D(k, x3, x
′
3) = i

∑

λ

ψλ
k (x3)ψ̄

λ
k (x

′
3)

λ
, (21)

wherek collectively refers to momentum parallel to the wall andψλ
k are the Fourier coefficients in the expansion ofψλ. Ex-

panding in Fourier modes in this mixed basis, the Dirac equation becomes,

γ0
(

γaka + iγ3∂3 +m(x3) + iσγ5
)

ψλ
k = λψλ

k , (22)

wherea = 0, 1, 2. Two types of eigenstates are expected: modes localized near the domain wall and modes allowed to propagate
away from the domain wall. We refer to the former as bound modes and the latter set as scattering modes.

Consider first the scattering modes. The eigenvalues for thescattering states may be obtained by considering (22) in thelimit
x3 → ±∞. In this limit, translation invariance along thex3-direction is effectively restored and so we introduce an asymptotic
momentumk3 parametrizing the eigenvalues of (22). There are two pairs of eigenspinorsψλ(k3)±,(i)

k with eigenvalues,λ(k3)± ≡
λ± = k0 ±

√

k21 + k22 + k23 +m2
0 + σ2 = k0 ± ωk.

The coupled first order equation (22) may be rewritten as the second order equation,

(

∂23 + k23 +m2
0(1 +

iγ3

m0ℓ
)sech2(

x3
ℓ
)
)

ψ
λ±

k = 0. (23)

Above, we have substituted the mass profilem(x3) = m0 tanh(x3/ℓ). This equation says that each component ofψ
λ±

k satisfies
a modified Pöschl-Teller equation, with parameterm0/ℓ. The associated eigenspinors and eigenvalues to this equation are known
for generalm0/ℓ, however, they can be given simple closed form expressions whenℓ = 1/m0. For this reason, we specialize to
this point in parameter space for the remainder of the paper.

There is a well known connection between the Pöschl-Tellerequation and supersymmetric quantum mechanics (see e.g., Ref.
[38]). The upshot is that the separation of eigenspinors into bound and scattering states can be made precise. Eigenspinor
components of scattering states are paired; while those of the bound states are zero modes of the associated supersymmetric
charge operator. The number of such zero modes depends upon the ratioℓ/m0 which we set to unity, thereby implying a single
set of bound state modes. See Appendix D for further details about this connection in the technically simpler case of 1+1d.

An orthonormal basis for the scattering state solutions to (23) is provided by

ψ
λ±,(1)
k (x3) =

1

N (1)
±







k3 − im(x3)
k1 + ik2
±ωk − σ

0






e−ik3x3 ,

ψ
λ±,(2)
k (x3) =

1

N (2)
±







(k1 − ik2)(k3 − im(x3))
−k23 −m2

0

0
(±ωk − σ)(k3 − im(x3))






e−ik3x3 , (24)
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where

N (1)
± =

√

2(2π)4ωk(ωk ∓ σ), N (2)
± = N (1)

±

√

k23 +m2
0. (25)

It remains to find the bound states. A bound state takes the form ψλ0

k =
(

aχ1 0 0 bχ2

)Tr
sech(m0x3). These states do

not carry “momentum”k3; they are localized to the domain wall because of the prefactor sech(m0x3). A normalized basis is
provided by

ψλ0,±
k (x3) =

√

m0

4(2π)3ǫk(ǫk ∓ σ)







k1 − ik2
0
0

±ǫk − σ






sech(m0x3), (26)

with eigenvaluesk0 ± ǫk = k0 ±
√

k21 + k22 + σ2.
Having found the eigenspinors and eigenvalues, we can now construct the propagator using (19). It is a sum of two terms

arising from the bound and scattering modes,

D(k, x3, x
′
3) = Dbound(k, x3, x

′
3) +Dscat(k, x3, x

′
3). (27)

We compactly write the contribution to the propagator from the scattering states as

Dscat(k, x3, x
′
3) = i

∫

dk3
2π

γµkµ +M(x3, x
′
3) + iσγ5

k2a − k33 −m2
0 − σ2

eik3(x
′
3−x3), (28)

for µ = 0, ..., 3 and wherek2a = k20 − k21 − k22 . The unconventional mass matrix,

M(x3, x
′
3) = −m(x3)

2
(1 + iγ3)− m(x′3)

2
(1 − iγ3) +

1

2
(1 + iγ3)

(γaka + iσγ5)

(k23 +m2
0)

µ(x3, x
′
3). (29)

and

µ(x3, x
′
3)k3 = m(x3)m(x′3) + ik3

(

m(x′3)−m(x3)
)

−m2
0. (30)

Notice thatM(x3, x
′
3) approaches the standard form−m0 if the massm(x3) is taken to be a constant. The bound state

contributes the following term to the propagator,

Dbound(x, x′) =
i

2

m0

2
(1 + iγ3)sech(m0x3)sech(m0x

′
3)
γaka + iγ5σ

k2a − σ2
(31)

for a = 0, 1, 2.

C. Corrections to the Effective Action

We now use the above propagator to study corrections to the gauge field effective action. Instead of plugging the full propa-
gator into (16), it is useful to first study the structure of the propagator itself more closely.

Before doing so, two technical comments are in order. First,we have been working in Lorentzian signature in the previous
sections, however, we have found it most convenient to perform the necessary (intermediate step) integrals below by first Wick
rotating to Euclidean signature by substitutingk0 → ik0 so thatk2a → −|k2a|. Our resulting expressions, however, are written
with the original Lorentzian metric. Second, we use a renormalization procedure in which we integrate over allk3, but impose
an UV cutoffΛ on the remaining three momentum integralska. This unconventional choice should not affect the low energy
properties of the regularized theory.
Dbound is the Fourier transform of the usual 2+1d Dirac propagator.Indeed, despite the slightly different matrix structure,

substitutingDbound into (16) gives precisely the same contribution to the effective action as a truly 2+1d Dirac fermion reviewed
in (12). The hyperbolic prefactors merely localize the contribution to the domain wall. The localization becomes exactin the
m0 → ∞ limit where we use the relation

lim
m0→∞

m0

2
sech2(m0x3) = δ(x3). (32)
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Therefore, we must understand how the UV divergences are regularized. In particular, we wish to determine whether or notthere
is a shift to the CS level if we regularize using a Pauli-Villars scheme.

A clue comes from a closer inspection of the full propagator.Not only do the bound modes result in propagation that is
localized to the domain wall; surprisingly, the scatteringmodes contribute a term that is localized as well!

The unconventional terms in the mass matrixM(x3, x
′
3) proportional toµ(x3, x′3) are responsible for this localization. Let

us momentarily focus upon these terms in the scattering modecontribution (28) to the propagator proportional toµ(x3, x′3). We
denote these terms byDscat

µ(x3)
. After a contour integration overk3, they take the form

Dscat
µ(x3)

(k, x3, x
′
3) = −Dbound(k, x3, x

′
3)−

iµ(x3, x
′
3)

4
(1 + iγ3)

(γaka + iσγ5)

(k2a − σ2)

eik3(x
′
3−x3)

√

−k2a +m2
0 + σ2

, (33)

wherek3 above is evaluated atk3 = isgn(x′3 − x3)
√

−k2a +m2
0 + σ2.

Remarkably, the scattering modes contribute a term that is equal and opposite to the contribution to the propagator arising from
the bound modes. These two terms cancel one another in the full propagator. The remaining localized term in the propagator is
the second term appearing in (33). Thus, we define the localized propagator,

Dloc(k, x3, x
′
3) = − iµ(x3, x

′
3)

4
(1 + iγ3)

γaka + iσγ5

(k2a − σ2)
√

−k2a +m2
0 + σ2

eik3(x
′
3−x3), (34)

where, as above,k3 = isgn(x′3 − x3)
√

−k2a +m2
0 + σ2. This propagator describes the excitations that are restricted to living

along the domain wall at energies low compared to the bulk gap. This is the main technical result of our paper and it is the form
of this localized propagator that is the key allowing us to understand the divergence structure of the 2+1d boundary theory.

Notice that the UV behavior ofDloc is softer thanDbound: it decays faster ask → ∞. This behavior implies that the
purely local mode contribution to the effective action (16)is finite as the UV cutoff is taken to infinity. (By purely localmode
contribution to the effective action, we mean (16) withDloc substituted in place for the general propagatorD.) We shall begin
by calculating these finite terms. Afterwards, we comment upon the corrections to the action arising from interactions between
modes localized to the domain wall and those modes that are free to propagate throughout the bulk. A detailed analysis of these
latter two terms is relegated to Appendix E.

To isolate the finite contributions to the action from the localized modes, we find it convenient to use the following approximate
expression for the local propagator,

Dloc
approx(k, x3, x

′
3) = − i

2
(1 + iγ3)

m2
0

2
sech(m0x3)sech(m0x

′
3)

γaka + iσγ5

(k2a − σ2)
√

−k2a +m2
0 + σ2

. (35)

This expression becomes a better approximation to the exactresult (33) as the limitm0 → ∞ is approached. We expect
corrections to this approximation to be suppressed in the large bulk mass limit. (In Appendix E, we evaluate the contribution
of the localized mode without making the above approximation and find that (35) gives the correct qualitative structure for the
divergences and the quantitatively correct value for any finite terms.)

Using the approximate local propagator (35), we may now compute its contribution to the gauge field effective action. In
particular, the kernel or one-loop self-energy is

Πab(q, x3x
′
3) =

(

− |m0|
6

ηcd +
sgn(σ)

8π
iqbǫ

cbd +
c2
|σ| (q

2ηab − qaqb) +O(
1

σ2
,
1

m0
)
)

δ(x3)δ(x
′
3), (36)

wherec2 is a finite non-zero constant and the delta functions arise from the hyperbolic prefactors using (32). We stress that the
above result is finite due to the faster decay of (35) at large momentum, so that a 2+1-dimensional UV regulator is not required.
However, we have exchanged a gauge non-invariant term proportional to the cutoff for precisely the same term, now proportional
to the bulk gapm0.

Therefore, we must understand how to properly decouple the bulk by takingm0 → ∞. It is essential that the divergence in
(36) is proportional to the bulk gap rather than an UV cutoff.This difference allows us to regularize the theory by Pauli-Villars
fields without shifting the CS level. (In Appendix E, we show in detail that the linear divergence appearing asm0 → ∞ is
the only possible divergence that we may associate with presence of the localized states.O(1) corrections to the coefficient of
this term from the value displayed in (36) may arise from interactions with the bulk modes, however, the precise value of the
coefficient does not affect the arguments below.)

We merely need to introduce two Pauli-Villars fields whose propagators have roughly the same form as the localized fermion
(35). The differences lie in the choice of statisticsCi and masses for the Pauli-Villars fields. We endow the first Pauli-Villars
field with bosonic statistics,C1 = 1, and replacem0 ↔ M andσ ↔ σ′. The second field is taken to have fermionic statistics,
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C2 = −1, and we replacem0 ↔ M −m0 andσ ↔ σ′. We assume the hierarchiesm0 ≪ M andσ ≪ σ′ < m0. Adding the
contributions from the physical boundary fermion and the two Pauli-Villars fields, (36) becomes

Πab(q, x3, x
′
3) =

1

6
(−|m0|+ C1|M |+ C2|M −m0|) +

sgn(σ) + C1sgn(σ
′) + C2sgn(σ

′)

8π
iqbǫ

cbd, (37)

where we have suppressed writing the contributions to the Maxwell term and it is to be understood that the above correction is
localized atx3 = x′3 = 0. Clearly our choice of statistics and masses removes the term in (36) proportional tom0, but retains
the half-integral level of the CS term induced by the localized fermion. As promised, we have regularized the boundary theory
with Pauli-Villars fields in aP andT invariant manner, i.e., we have regularized without shifting the CS level and so no CS term
is generated by the regularization procedure whenσ → 0. We were successful in doing so because of the softer UV properties
of the localized fermion which resulted in a divergence proportional to the bulk gap rather than the UV cutoff. This enabled the
theory to be regularized with an even instead of an odd numberof Pauli-Villars fields.

The form taken by the Pauli-Villars fields’ propagators betrays their 3+1d origin. Indeed 3+1d QED requires at least three
Pauli-Villars fields for its regularization [39]. We have merely chosen two of the Pauli-Villars fields in the 3+1d bulk tohave
soliton masses similar in form to the physical fermion so that they can regularize the lower-dimensional theory. The remaining
3+1d Pauli-Villars fields can be given masses that are positive everywhere.

Thefinite gauge non-invariant photon mass term (which we removed in (37)) may be surprising. However, its appearance is
similar to what occurs in the Pauli-Villars regularizationof QED4 where a gauge non-invariant mass term is also found [39].
In that case, the mass squared is a sum of two terms: one proportional to the square of the cutoff and a finite term proportional
to the square of the bulk fermion mass. In both cases, the appearance of gauge non-invariant terms proportional to a powerof
the fermion mass is a result of the fact that imposing a momentum cutoffΛ (in our prescription for the 3-momentak2a, or for
all 4-momentak2µ in the standard QED4 case) breaks gauge invariance explicitly. The correct choice of Pauli-Villars regulator
fields is determined by the criterion that they must fully restore the gauge symmetry broken by this choice of cutoff.

Now that we have explained how the excitations described by the local propagator are regularized, we should ask: Can the
massive bulk modes contribute non-trivial terms to the gauge field effective action? By massive bulk modes, we mean the terms
in Dscat that are not localized to the domain wall by any hyperbolic prefactors. Specifically, the full fermion propagator is given
byD = Dloc +Dfree, withDloc given by (34), and

Dfree =
ieik3(x

′
3−x3)

2
√

−k2a +m2
0 + σ2

(

γaka − γ3k3 −
m(x3)

2
(1 + iγ3)− m(x′3)

2
(1− iγ3) + iσγ5

)

. (38)

where as above,k3 = i sign(x′3 − x3)
√

−k2a +m2
0 + σ2. The corrections that we have thus far ignored arise from either single

insertions ofDloc andDfree or two insertions ofDfree into (16). These correct both the boundary and bulk Lagrangians. For
example, the bulk Maxwell term is radiatively modified by themassive bulk modes described byDfree, while the cross-term of
Dloc with Dfree modifies both the2 + 1d Maxwell termandthe effective Chern-Simons term arising at the domain wall.

As with the local contribution discussed above, there are two aspects to this question. First, we must determine if therecan be
a direct correction to either a bulkθ-term or, equivalently, a boundary CS term. Second, we must determine what effect (if any)
these contributions have on the choice of regulator fields that we must include in the theory.

It is straightforward to show that the only correction to theboundary CS term arises from the “crossterm” betweenDloc and
Dfree. No bulkθ-term is generated. Adding this crossterm correction to ourresult (37), we find the total CS level,

k =
ησ

2|σ| −
1

π
tan−1

( σ

ηm0

)

, (39)

whereη = ±1 is defined by the orientation of the domain wall,m(x3) = ηm0 tanh(m0x3). (Our calculation above specialized
to the caseη = 1. Similar manipulations show that (39) obtains forη = −1.) Precisely the same non-quantized correction to the
CS level also occurs in the analogous 1+1d situation – see (D.23). (In 1+1d, the CS level directly determines the induced charge
on the soliton, however, in 3+1d the soliton only carries a charge when a background magnetic field is applied perpendicular to
the surface.) Extrapolating the 1+1d intuition (axion electrodynamics is suggestive as well [27]), we expect that for general (not
necessarily constant)σ,

k =
∆φ

2π
, (40)

where∆φ is the change in phaseφ of the complexified bulk fermion mass during any interpolation. This result is in agreement
with Ref. [19]. The fact that (40) need not be rational is not in conflict with gauge invariance; for a single domain wall, there is
no quantization condition on the CS level (as shown in Section 3). For a system with two domain walls, the phase of the fermion
mass must wind by an integer multiple of2π as it crossesbothboundaries, provided that the fermion mass asymptotes to the
same value everywhere outside the system.
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Are there divergences appearing as the cutoffΛ → ∞ that must be regularized? We study these possible divergences in
Appendix E and show that they are of two types. The first kind arise from the usual massive 3+1d propagator and are familiar
from QED4. Such divergences are always present and can be regularized (with at least three Pauli-Villars fields [39]) without
changing the effective CS level. The second type of divergence is special to the introduction of a domain wall mass profileand
is localized along the wall. Such divergences are at worst logarithmic inΛ; however, a precise cancellation occurs between
the bulk and localized modes, described above, such that only finite terms remain asΛ → ∞. We stress that this cancellation
is important: a divergent result would have required addinganoddnumber of regulator fields with domain-wall mass profiles,
thereby rendering the CS levelk an integer (up to the corrections of orderσ/m0 noted above), forcing the constraint (1) to be
obeyed in the limitσ/m0 → 0.

V. CONCLUSION

In this work, we have examined the relationship between the parity anomaly and the gapless Dirac fermion arising at the
surface of a 3+1d topological insulator. Naively, a coupling of the localized surface mode to a fluctuating gauge field would
result in the parity anomaly on each boundary surface, i.e.,the requirement thatNf

2 + k be integral on each boundary surface
whereNf is the number of fermions localized at the boundary, andk is the sum of any bare or induced CS level. We have shown
that this does not occur and thatNf

2 +k is half-integral in the limit that any T-breaking fermion mass terms are vanishingly small
far from the domain wall relative to the bulk gap. Hence, an odd number of gapless Dirac fermions on any such surface can be
coupled to fluctuating (bulk) gauge fields and still maintainparity and time-reversal symmetries.

We have come to this conclusion using two complementary perspectives: topological quantization conditions and regulariza-
tion. It is invariance of a 2+1d effective theory under largegauge transformations that results in the constraint thatNf

2 + k be
integral. When the system of interest lives on the boundary of a higher-dimensional space, such large gauge transformations ei-
ther do not exist (as they cannot be extended continuously into the bulk) or they are innocuous – their effect is cancelledbetween
all components of the boundary. Thus the topological quantization conditions that gauge invariance imposes on 2+1d theories
do not apply in 3+1d. Similarly, Pauli-Villars regularization of QED3 preserves the invariance of the theory under large gauge
transformation at the cost of breaking parity and time-reversal invariance. We have shown explicitly how for a single species
of Dirac fermion on the 2+1d boundary of a 3+1d bulk, the presence of the bulk softens the UV properties of the boundary
fermions, such that the theory admits a parity and time-reversal invariant Pauli-Villars regularization.

It is instructive to contrast our result with the quantum Hall effect. Here, invariance under local gauge transformations (charge
conservation) requires that both a bulk CS term and boundarychiral excitations be present in a low energy description ofthe
system. In contrast, only a global anomaly can be present forthe surface modes of a 3+1d topological insulator. However,the
fact that the gauge field is free to explore the bulk essentially eliminates the large gauge transformations responsiblefor the
possible global anomaly; there is no mutual cancellation ofanomalous transformations as occurs in the quantum Hall effect.
Thus unlike the chiral edge modes of a quantum Hall system, the gapless boundary modes of a 3+1d topological insulator are
not required to preserve gauge invariance.

The fact that there are no topological quantization conditions for these boundary theories has important physical consequences.
A purely 2+1d system exhibiting a fractional Hall conductivity of σxy = 1

p
e2

h with integerp can be gauge invariant only if the
system exhibits a ground state degeneracy equal top when placed on a spatial torus. Otherwise, the theory fails to be invariant
under large gauge transformations generated by flux insertions through the two non-trivial cycles of the torus. If we fillin the
center of the torus, however, the non-trivial large gauge transformations that cause this problem no longer exist (in the sense that
they do not continuously extend into the bulk), and the requirement of a degenerate ground state disappears. Hence, as wewould
expect for a non-interacting system, the ground state of a topological band insulator is unique in spite of the fact thatp = 2 on
its surface (in the limit of vanishingσ/m0 with finite σ). (For a fractional topological insulator in 3+1d, there isa ground state
degeneracy, but this arises from its bulk topological order[21], and not from the surface.) If instead we thicken the torus, gauge
invariance requires a ground state degeneracy that is half of what one might naively expect based on the Hall conductivity, since
the large gauge transformations must behave identically onboth surfaces. For the topological band insulator this again implies
a unique ground state. See Ref. [40] for a complementary discussion of this issue.

In fact, the perturbative calculation reveals that when both bulk and boundary fermionic mode contributions are considered,
the coefficient of the Chern-Simons term (physically, the Hall conductivity at the surface) isnotquantized to be a rational fraction
when σ

m0
is non-vanishing far from the surface. Rather, it is of the form

k =
ησ

2|σ| −
1

π
tan−1

( σ

ηm0

)

, (41)

whereη = ±1 determines the orientation of the domain wall via the soliton mass profile,m(x) = ηm0 tanh(m0x3). Here,m0

is the bulk band gap, andσ is the time-reversal and parity breaking mass of the boundary fermions. For spatially varyingm(x)
andσ(x), we expect the CS level to equal1/(2π) multiplied by the total change in phase of the complexified fermion mass. (In
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Appendix D, we show that the CS level for an analogous 1+1d system is also given by (41).) We may think of the half-integral
contribution as coming from the fermionic modes localized to the boundary, and the non-quantized contribution arisingfrom the
interaction between the bulk fermions and the modes localized to the boundary.

In a real system where the ratioσ/m0 is not asymptotically vanishing, the above deviation from half-integrality may be
observable. A magnetic-susceptibility measurement wouldin-principle measure the difference in the Hall conductivities. Com-
bined with a Kerr or Faraday rotation measurement (which measures the sum), one could then extract the Hall conductivities
of each boundary surface [30]. However, we caution that strict use of the formula (41) requires a non-vanishing time-reversal
breaking perturbation to be present at asymptotically large distances from any topological insulator boundary.

We stress that in order for our conclusions to be valid, the gauge field must be free to explore the bulk of the system. It is
possible to imagine a situation in which strong correlations among the modes localized to the boundary of the system leadto
fractionalization. If fractionalization only occurs at the boundary, it can be described by an “emergent” gauge field that only
has support on the lower-dimensional boundary and so any resulting constraints imposed by gauge invariance truly are ofa
lower-dimensional origin. An alternative scenario for localizing a truly 2+1d gauge field uses a bulk Higgs field chargedunder
some gauge group whose symmetry-breaking profile only allows a subgroup (possibly, an empty one) of light “photons” in the
bulk, but a domain wall defect where the full gauge symmetry is restored.55 We hope to discuss these scenarios further in future
work.

Acknowledgments

It is a pleasure to thank Allan Adams, Eduardo Fradkin, Michael Freedman, Shamit Kachru, John McGreevy, Joel Moore,
and Chetan Nayak for useful discussions and comments on a draft of this paper. M.M. acknowledges the generous support
and hospitality of the Center for Theoretical Physics at MITduring the beginning stages of this work and the Aspen Centerfor
Physics and the NSF Grant#1066293 during its conclusion. F. J. B. is thankful to the hospitality of KITP (NSF PHY11-25915)
during part of this collaboration.

Appendix A: Domain Wall Fermions

In this appendix, we review the domain wall fermions [29,41]that arise in the model,

S =

∫

d4x
(

ψ̄iγµ(∂µ − ieAµ)ψ +m(x)ψ̄ψ
)

, (A1)

where the massm(x) is real and satisfies,

lim
x3→±∞

m(x3) = ±m0, m0 > 0 (A2)

with m(x3) passing through zero exactly once, atx3 = 0. We can think of these gapless domain wall fermions as zero modes
bound to a defect in the order parameter where symmetry is restored. In this example, the order parameter is the real field
m(x3) and the symmetry that is (classically) restored at the defect or location wherem(x3) vanishes is the chiral symmetry,
ψ → exp(iαγ5)ψ. (This is only a true symmetry of the quantum theory at zero gauge coupling due to the chiral anomaly
[14–16].)

To see how these zero modes arise, it is useful to write the Dirac equation as,
(

iD|| + iD⊥ +m(x3)
)

ψ = Eγ0ψ, (A3)

where

D|| = γa(∂a − ieAa), a = 0, 1, 2

D⊥ = γ3(∂3 − ieA3). (A4)

A zero mode satisfies the equation,
(

iD⊥ +m(x3)
)

ψ = Eγ0ψ, (A5)

with E = 0. We are interested in finding a solution about the free theoryso we may sete = 0 in the equations of motion.
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It is convenient at this point to choose a particular representation for the Dirac matrices. The results, however, are independent
of any particular choice. We take

γ0 =

(

0 12×2

12×2 0

)

, γi =

(

0 σi

−σi 0

)

, (A6)

whereσi for i = 1, 2, 3, are the usual Pauli-sigma matrices. Note that the above choice is a rotation from that used in Section 4.
SinceTr(γ3) = 0 and(γ3)2 = −14×4, γ3 possesses two pairs of eigenvalues equal to±i with eigenspinors defined by the

equation

γ3ψ± = ±iψ±. (A7)

A solution to (A7) contains half the number of degrees of freedom of a 3+1d Dirac fermion. The eigenspinors take the form,

ψ±(x) = φ±

(

χ
±iσ3χ

)

, (A8)

whereχ(x) is an arbitrary two-component spinor that depends only on the three coordinates parallel to the domain wall and

φ±(x3) = C±φ
(0)
± = C± exp

(

±
∫ x3

x
(0)
3

m(x3)
)

. (A9)

C± is a normalization constant andx(0)3 can be chosen to coincide with the location of the domain wall. In the following

analysis, it is convenient to normalizeψ± by choosingC−2
± = 2

∫

(φ
(0)
± )2dx3. While bothψ± solve the zero mode equation,

only one is normalizable; only one has a finite, non-zeroC±. The asymptotics (A2) chosen above form(x3) singles outψ− as
the normalizable zero mode. Had the opposite asymptotics been chosen,ψ+ would be the normalizable zero mode.

Now consider the action that describes these fermionic localized modes at energies much less than the bulk band gap,m0. It
is found by substitutingψ± into the 3+1d action (A1). Given the profile (A2) form(x3), we plugψ− into the action to find

S(ψ−) =

∫

d4x
(

ψ̄−iγ
µ(∂µ − ieAµ)ψ− +m(x3)ψ̄−ψ−

)

= C2
−

∫

dz (φ
(0)
− )2

∫

d3x
(

(

χ† −i(σ3χ)†
)

γ0γa
(

∂a − ieAa

)

(

χ iσ3χ
)T
)

=

∫

d3x
(

χ̄ iγ̃a(∂a − ieAa)χ
)

. (A10)

The above action describes a massless 2-component Dirac fermion coupled to aU(1) gauge field, namely QED3. Again, we
have suppressed the tree-level kinetic term forAµ restricted to the domain wall. It is sufficient to say that thetree-level gauge
boson propagator restricted to the 2+1d surface is softer inthe IR, decaying as1/|p| as opposed to1/p2 at small momentum,
because of an integration over the direction normal to the domain wall. The resulting 2+1d Dirac matrices are

γ̃a =
(

σ3,−iσ2, iσ1
)

, a = 1, 2, 3. (A11)

Note that the coefficient of the minimal coupling term in the action between the fermion number current in thex3-direction and
A3 vanishes identically sincēψ±γ

3ψ± = 0. This ensures that no zero modes leak off the defect via a coupling toA3.

Appendix B: Anomaly Inflow

In this appendix, we first review anomaly inflow for the case ofa string defect in 3+1d. We then contrast this analysis to that
of a domain wall defect in 3+1d which is relevant to this paper.

The original model studied by Witten [42] and Callan and Harvey [13] is

S =

∫

d4x ψ̄
(

iγµ(∂µ − ieAµ) +m(x)eiφγ
5
)

ψ. (B1)

whereψ is coupled to a string defect defined by the complex fieldm(x) exp(iφ). m(x) vanishes at the core of the string running
along thez-axis andφ winds by2π in going around the string. This mass profile ensures that tere exist chiral fermionic zero
modes living on the string which exhibit a gauge anomaly through their coupling toAµ.
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However, integrating out the massive bulk modes provides a Wess-Zumino term [43] whose gauge variation compensates for
the lack of gauge invariance of the chiral zero modes alone. This can be understood through the following calculation. Consider
a region of spacetime away from the string core wherem(x) is non-zero and let us integrate outψ. The correction to the action
by the massive bulk fermions can be inferred by integrating the one-loop correction to the current expectation value,

〈Jν〉 =
e

8π2
ǫµνρσ∂µφFρσ . (B2)

Becauseφ winds by2π when encircling the string, it formally obeys the equation,

(∂x∂y − ∂y∂x)φ = 2πδ(x)δ(y). (B3)

Thus, (B2) implies the bulk fermion addition to the current conservation equation,

∂µ〈Jµ〉 =
e

4π
Ftzδ(x)δ(y). (B4)

The current is conserved away from the string and the right hand side of (B4) is non-zero along the string so as to cancel the
contribution from the chiral zero modes. This is summarizedby a correction to the effective action,

SWZ =
e2

16π2

∫

d4xǫµνρσ∂µφAνFρσ , (B5)

whose variation under a gauge transformation cancels with the anomalous variation of the chiral zero mode action. The cancel-
lation between boundary and bulk anomalies is called anomaly inflow as the direction of current flow is towards the boundary.

We stress that the contribution of the massive bulk states isaddedto the low energy effective action for the string defect. We
shall not find this prescription to be strictly valid for a domain wall defect.

In order to describe a domain wall, we merely change the soliton profile.m(x) now vanishes along the domain wall andφ
jumps from 0 toπ in moving through the wall. Naively, precisely the same calculation of integrating out the fermions in a region
wherem(x) is non-vanishing gives the contribution to the effective action (B5).

However, this reasoning is in fact incorrect. The essentialdifference is thatφ is constant everywhere except in a small
neighborhood of the domain wall wherem(x) vanishes. This is to be contrasted with the string case whereφ wound by2π
around the string. Becauseφ is constant in the region of space where the calculation obtaining (B5) is valid, this correction
vanishes everywhere that the calculation is well-defined.

We can make the calculation well-defined in the vicinity of the domain wall if we smooth out the fieldφ. Instead of jumping
discontinuously at the location of the domain wall, we allowit to smoothly interpolate between zero andπ. In effect, this smooth
interpolation imparts a non-zeroP andT breaking mass that we denoted byσ in the main text. As we have understood through
more direct means, this merely breaksP andT on the defect and results in a level 1/2 CS term on the domain wall.

The discontinuous limit is not strictly available within the above scheme. This limit is equivalent to takingσ → 0. Indeed,
integrating out the fermions is not well defined in this limitwhen the mass of the localized fermions vanishes and so theσ → 0
limit need not commute with this integration. Instead, if weare interested in vanishing bound state mass, we first takeσ → 0
and then integrate out the fermions to obtain the 1PI effective action. This action doesnotcontain a CS term.

Appendix C: The Parity Anomaly and Strong Topological Insulators

In this appendix, we briefly recall the relationship betweenthe presence of time-reversal protected gapless surface states and
the parity anomaly in strong topological insulators.

This relationship is most apparent from the definition of a STI proposed by Refs. [22,44]. They consider the fate of a STI
on the thickened spatial torusS1 × S1 × I, which has two disconnected toroidal surface boundaries, and two non-contractible
curves through which we may insert magnetic flux. There are four flux choices for which the system is time-reversal invariant
(Φ1,Φ2) = (0, 0), (π, 0), (0, π), and(π, π). If the many-body ground state is Kramers degenerate (i.e.,orthogonal to its time-
reversed conjugate, which is necessarily a state of the sameenergy) in an odd number of the 4 flux sectors, the surface spectrum
has 2+1 dimensional gapless surface states (in the thermodynamic limit) [22]. These gapless states cannot be eliminated without
breaking the Kramers degeneracy, and therefore breaking time-reversal symmetry; hence the system is a STI. This definition is
equivalent to the band-structure based definition of Refs. [5–7] in the non-interacting case, but has the advantage thatit does not
require an explicit knowledge of the band structure, and thus is equally applicable to interacting systems.

This criterion ensures that, if time-reversal symmetry is preserved, there must be a large gauge transformation in which at
each surface an odd number of fermions cross from below the Fermi surface to above it. Let us begin in a flux sector where the
ground state is non-degenerate. Next, we adiabatically insert flux to arrive in a flux sector where the many-body ground state
is Kramers degenerate. ApplyingT (which maps the many-body ground state to its orthogonal Kramers partner), and inserting
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the same flux again must return the system to its original many-body ground state (since this is equivalent to inserting noflux
at all). If we simply apply the flux insertion twice, without performing a time-reversal transformation in between, we therefore
obtain a fermionic configuration that is orthogonal to the original. As the original many-body ground state was non-degenerate,
after this large gauge transformation the system must be in an excited state. If the only zero-energy state encountered during
the flux insertion is in the Kramers doublet, then only one fermionic mode crosses the Fermi surface. (More generally, extra
band crossings not protected by Kramers theorem can occur inpairs at momenta(p,−p), and an odd number of fermions can be
transferred.) Hence, there exists a large gauge transformation in which an odd number of fermions cross the Fermi surface.

Appendix D: 1+1d Effective Action Calculation

In this section, we repeat the calculation of Section 4 in 1+1d. This is technically simpler than the higher-dimensional
calculation and so is easier to follow. Our results are consistent with those in Section 3 and also allows us to make directcontact
with the work of Goldstone and Wilczek [24].

We begin with the 1+1d action,

S =

∫

d2x ψ̄
(

iγµ(∂µ − ieAµ) +m(x) + iγ5σ
)

ψ, (D1)

whereψ̄ = ψ†γ0, σ is a constant, andlimx→±∞ = ±m0 for m0 > 0 with a single zero crossing atx = 0. Any such soliton
configuration in the mass is stable in 1+1d as opposed to higher dimensions. Ifσ 6= 0, we may safely integrate outψ without
any IR divergences. This produces an effective action forAµ at energies less thanσ. The leading term is linear inAµ and we
expect it to take the form,

Seff = −e
∫

d2x AµTr
(

γµD(x, x)
)

, (D2)

whereD(x, x′) is the propagator forψ evaluated atx = x′ (note thatD(x, x′) is a 2 × 2 matrix and so the trace does not
automatically vanish). Without resorting to an argument [13,24] presented in Appendix B, it is necessary to construct the real
space propagator because there is no translation invariance in the direction perpendicular to the domain wall.

Thus, we must calculateD(x, x′). First, we choose the following representation for the Dirac matrices,

γ0 = σ1, γ1 = iσ3, γ5 = γ0γ1 = σ2. (D3)

The propagator of the Dirac fermion is determined by the eigenvalues and the eigenfunctions of the equation,

γ0
(

iγµ∂µ +m(x) + iγ5σ
)

ψλ = λψλ, (D4)

which can be written as
(

i∂t − σ ∂x +m(x)
−∂x +m(x) i∂t + σ

)(

ψλ
1

ψλ
2

)

= λ

(

ψλ
1

ψλ
2

)

. (D5)

The propagator is formally given by the expression,

D(x, x′) = i
∑

λ

ψλ(x)ψ̄λ(x′)

λ
, (D6)

where theψλ are normalized eigenfunctions.
Time-translation invariance allows us to Fourier expandψλ

i (t, x) =
∫

ω
ψλ
i (w, t) exp(−iwt). Thus, we must solve the follow-

ing eigenvalue problem,
(

ω − σ ∂x +m(x)
−∂x +m(x) ω + σ

)(

ψλ
1 (ω, x)
ψλ
2 (ω, x)

)

= λ

(

ψλ
1 (ω, x)
ψλ
2 (ω, x)

)

. (D7)

Spatial translation invariance is restored asx → ±∞. We can use this fact to solve for the eigenvalues (of any states that are
not localized to the domain wall) by asymptotically Fourierdecomposing,limx→±∞ ψλ

i (ω, x) =
∫

k
ψλ
i (ω, k) exp(−ikx). (D7)

becomes
(

ω − σ −ik ±m0

ik ±m0 ω + σ

)(

ψλ
1 (ω, k)
ψλ
2 (ω, k)

)

= λ

(

ψλ
1 (ω, k)
ψλ
2 (ω, k)

)

. (D8)
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Thus, there are two sets of eigenfunctions,ψ±(ω, x), with eigenvalues,λ± = ω ±
√

k2 +m2
0 + σ2 = ω ± ωk. In addition to

these scattering states, there are modes bound to the domainwall as we shall describe.
To find the eigenfunctions of the scattering states, we must solve the equation,

(

ω − σ ∂x +m(x)
−∂x +m(x) ω + σ

)(

ψ±
1 (ω, x)
ψ±
2 (ω, x)

)

= λ±

(

ψ±
1 (ω, x)
ψ±
2 (ω, x)

)

. (D9)

It is possible to do this by finding the eigenfunctions for theconstant mass Dirac equation and then replacing the constant mass
by the spatially varying one. However, the following observation is instructive. The coupled first-order equation (D9)may be
written as two decoupled second order equations,

(

∂2x − ∂xm(x) −m(x)2 +m2
0 + k2

)

ψ±
1 = 0

(

∂2x + ∂xm(x) −m(x)2 +m2
0 + k2

)

ψ±
2 = 0. (D10)

To proceed further, we must choose a particular form of the interpolating mass. We takem(x) = m0 tanh(x/ℓ). Substituting
this into (D10) we find

(

∂2x + k2 + (1 − 1/m0ℓ)
m2

0

cosh(x/ℓ)

)

ψ±
1 = 0

(

∂2x + k2 + (1 + 1/m0ℓ)
m2

0

cosh2(x/ℓ)

)

ψ±
2 = 0. (D11)

These are generalized Pöschl-Teller equations.
There is a well known relation between the Pöschl-Teller equations and supersymmetric quantum mechanics as we now

describe [38]. For simplicity, let us work atℓ = 1/m0. Define the (supersymmetric charge) operator,

Q = ∂3 −m0 tanh(m0x3), Q† = −∂3 −m0 tanh(m0x3). (D12)

We may suggestively rewrite (D11) so that the equation satisfied by each eigenspinor component takes one of two forms:

Q†Q(ψ
λ±

k )1 = (ω2
k − σ2)(ψ

λ±

k )1, QQ†(ψ
λ±

k )2 = (ω2
k − σ2)(ψ

λ±

k )2, (D13)

where the subscript,1, 2, refers to the spinor component. Recall that the eigenvaluein the above equation(ω2
k−σ2) = k2+m2

0.
Scattering states are defined to be those eigenfunctions forwhich (ω2

k − σ2) 6= 0. There is a pairing between scattering state
spinor components; given a solutionψ1 to the first equation in (D13) with non-zero eigenvalue, a solution to the second equation
with identical eigenvalue is given byQψ1. A bound state is annihilated by eitherQ orQ† and there is no corresponding pairing
of spinor components. Consequently, bound states can only become scattering states in pairs. The number of bound statesis
given by the index ofQ; this number is the difference in dimensions of the kernel (or null space) of the operatorsQ andQ†. For
our problem, only states annihilated byQ† are normalizable and so we need only consider this operator when finding the bound
state wave function. The number of bound states or zero modesis preserved under small changes ofℓ. For0 < m0ℓ ≤ 1, there
exists a single zero mode bound state.

Following this brief digression, let us now directly solve (D11) at the point1/ℓ = m0 for which the two equations simplify to
(

∂2x + k2
)

ψ±
1 = 0

(

∂2x + k2 +
2m2

0

cosh2(m0x)

)

ψ±
2 = 0. (D14)

The equation forψλ±

1 is easily solved byconst. exp(−ikx). It may be substituted back into the first order differentialequations
(D9) in order to determineψλ±

2 . Doing so, we find the un-normalized eigenspinors for the scattering states,

ψ
λ±

ω,k(t, x) =

(

ψ±
1 (t, x)
ψ±
2 (t, x)

)

=

(

±ωk − σ
ik +m0 tanh(m0x)

)

e−iwt−ikx. (D15)

Note thatk only has the strict interpretation of momentum asymptotically far away from the domain wall whenm(x) becomes
a constant; otherwise, it may be viewed as a reparameterization of the eigenvalues. It is interesting thatσ never explicitly enters
the second order differential equations (D11).
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It remains to find the bound state. The two components of the Dirac spinor are no longer paired. Instead,ψ2 is the only non-
zero component of the spinor and we need only solve the first order differential equation (D9) withm(x) = m0 tanh(m0x).
(There is no corresponding normalizable solution whereψ2 = 0 andψ1 is non-zero.) The un-normalized solution is

ψλ0
ω (t, x) =

(

0
sech(m0x)

)

e−iωt, (D16)

with eigenvalueλ0 = ω+σ. It is a bit of a misnomer to refer toψλ0 as a zero mode as its energy is bounded from below byσ. It
is better to call it a bound state. Of course, this bound stateis free to mix with the bulk continuum when its energy is comparable
to the bulk gap.

Equipped with the eigenspinors (D15) and (D16), we must now normalize them with respect to the inner product (20) where
now the number of integration dimensions is equal to two. Thus, the orthonormal eigenspinors are (same notation as un-
normalized ones above)

ψ0
ω(t, x) =

√

m0

4π

(

0
sech(m0x)

)

e−iωt,

ψ±
ω,k(t, x) =

√

1

8π2ωk(ωk ∓ σ)

(

±ωk − σ
ik +m0 tanh(m0x)

)

e−iwt−ikx. (D17)

Let us now construct the propagator using (D6). This is a2× 2 matrix. The sum over the eigenvalues becomes integrals over
ω, k. The zero mode only contributes a non-zero21-entry (given our choice ofγ-matrices),

Dbound(x, x′) =
m0

4
(1 + iγ1)sech(m0x)sech(m0x

′)

∫

dω

2π

γ0ω + iγ5σ

ω2 − σ2
eiω(t′−t). (D18)

Note that this is simply the propagator of a massive 0+1d particle.
The contribution to the propagator from the scattering states is more complicated, but straightforwardly found as before,

Dscat(x, x′) =

∫

dωdk

(2π)2
γµkµ +M(x, x′) + iγ5σ

ω2 − k2 −m2
0 − σ2

eiω(t′−t)+ik(x′−x), (D19)

M(x, x′) = −1

2
(1− iγ1)m(x′)− 1

2
(1 + iγ1)m(x) +

1

2
(1 + iγ1)

ωγ0 + iσγ5

k2 +m2
0

µ(x, x′) (D20)

and

µ(x, x′) = m(x)m(x′)− ik(m(x) −m(x′))−m2
0. (D21)

The similarity between the two-dimensional and four-dimensional cases is evident.
Return to the expression for the leading contribution to theeffective action forAµ,

Seff = −e
∫

d2x AµTr
(

γµD(x, x)
)

. (D22)

In 1+1d, we only need the propagator evaluated at the same starting and ending point. Therefore, let us simply lett′ = t and
x′ = x in our expressions for the bound and scattering state propagators. Using our expression for the propagator at coincident
points, we find

Seff =
(ηsgn(σ)

2
− 1

π
tan−1(

σ

ηm0
)
)

∫

dt eA0, (D23)

whereη = ±1 allows for a general domain wall orientation,m(x) = ηm0 tanh(m0x). We also used the relation,

lim
m0→∞

m0sech
2(m0x)

2
= δ(x). (D24)

(D23) is simply the 0+1d CS term for theA0 field. In the limit of interest,σ/m0 → 0, the level is half-integral. Notice that the
total level depends upon the asymptotic ratioσ/m0 precisely in the way predicted by Goldstone and Wilczek [24]. While our
calculation was performed for a particular soliton profile,we expect the level to be1/2π times the change in phase of the bulk
fermion mass.
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Appendix E: Bulk and Boundary Corrections

Here we will give the details of the calculation of the1-loop correction to the gauge field effective action. This correction
takes the form,

δS =

∫

d4xd4x′Aµ(x)Π
µν (x, x′)Aν(x

′)

=
e2

2

∫

d4xd4x′Aµ(x)Aν(x
′)Tr

(

γµD(x, x′)γνD(x′, x)
)

. (E1)

In Section 4, we studied in detail the contribution ofDloc to (E1). Because of the softer UV behavior of this propagator, we
found this term to be finite in the UV cutoff. Thus the level1/2 CS term arising from the fermion propagator is, unlike in a
2 + 1d system, unmodified by any regularization procedure.

It is important to verify that any divergences in theΛ → ∞ limit arising from other contributions to (E1) do not force us
to add regulator fields that will change the level of the Chern-Simons coefficient modulo1. To verify this, we write the 3+1d
propagator as the sum of two terms,

D(k, x3, x
′
3) = Dloc(k, x3, x

′
3) +Dfree(k, x3, x

′
3), (E2)

where

Dloc(k, x3, x
′
3) =

µ(x3, x
′
3)µik3 sign(x′

3−x3)

4
(1 + iγ3)

γaka + iσγ5

(−k2a + σ2)
√

−k2a +m2
0 + σ2

e−k3|x
′
3−x3|, (E3)

and

Dfree(k, x3, x
′
3) =

γaka − γ3κ− 1
2

[

m(x3) +m(x′3) + iγ3(m(x3)−m(x′3))
]

+ iσγ5

2
√

−k2a +m2
0 + σ2

e−k3|x
′
3−x3| (E4)

for k3 =
√

−k2a +m2
0 + σ2, κ = ik3sign(x

′
3 − x3). Here we have integrated over allk3 in (28), such that the contribution

from the poles atk3 = ±im0 exactly cancels the propagator of the bound states, as explained in Section 4. This givesΠµν =
Πf,f

µν +Πf,l
µν +Πl,l

µν , with

Πf,f
µν = Tr

(

γµD
freeγνD

free
)

Πl,l
µν = Tr

(

γµD
locγνD

loc
)

(E5)

Πf,l
µν = Tr

(

γµD
freeγνD

loc + γµD
locγνD

free
)

. (E6)

In the main text we discussed onlyΠl,l
µν ; here we will evaluate the remaining contributions.

To understand the structure of the possible divergences, itis helpful to Fourier transform inx3. Recall that the assumed
translation invariance in the directions tangent to the domain wall allow us to immediately work in a mixed Fourier basiswhere
ka for a = 0, 1, 2 is the momentum tangent to the domain wall. Focusing on the third spatial direction, we introduce the momenta
s, t:
∫

dx3 dx
′
3Πµν(x3, x

′
3, ~qa)Aµ(x3, ~qa)Aν(x

′
3,−~qa) =

∫

dx3 dx
′
3

∫

ds dt eisx3eitx
′
3Aµ(s,~ka)Aν(t,~ka)Πµν(x3, x

′
3,
~ka) (E7)

Intuitively, this form is convenient because fixingx3, x′3 at the location of the domain wall requires us to include modes of
arbitrarily high energy, obscuring the structure of the divergences. Thus, it is preferable to first integrate overx3, x

′
3 and then

examine the structure of the divergences for smalls, t, ~qa.
As a sanity check, it is instructive to see what this prescription gives for the case of a translationally-invariant mass. In this

case, the onlyx3 dependence ofΠµν is

Πµ,ν(x3, x
′
3, ~qa) =

∫

d3~ka
e−(k3+k′

3)|x
′
3−x3|

k3k′3

(

(k · k′ −m2)ηµν − kµk
′
ν − k′µkν

)

,

wherek = (k0, k1, k2, k3), k
′ = (k0 − q0, k1 − q1, k2 − q2, k3) and

k3 =
√

−k20 + k21 + k22 +m2
0 + σ2, k′3 =

√

−(k0 − q0)2 + (k1 − q1)2 + (k2 − q2)2 +m2
0 + σ2. (E8)
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In this case, performing the integral over the center-of-mass co-ordinatex3 + x′3 enforces the conditions = −t. The remaining
integral overx′3 − x3 gives:

∫

d(x′3 − x3)Πµν (x3, x
′
3, ~pa) =

∫

d3~ka 2
k3 + k′3

(k3 + k′3)
2 + s2

1

k3k′3

(

(k · k′ −m2)ηµν − kµk
′
ν − k′µkν

)

. (E9)

As one might expect, this is exactly the result we would obtain by first Fourier transforming the propagator in all four spacetime
momenta, and then integrating overk3, with q3 = s.

When the mass breaks translation invariance inx3, s andt are not conserved, and integrating overx3, x
′
3 will not forces = −t.

However, it remains true thatΠµν(x3, x
′
3, ~qa) is an admixture of modes at many different energies, and thatwe must integrate

overx3 andx′3 in order to obtain the correct structure of divergences.
Definingz = x′3 − x3, Z = x3 + x′3, the various contributions to the propagator are:

Πf,f
µν(qa, x3, x

′
3) =

∫

d3ka
e−(k3+k′

3)|z|

k3k′3

[

(kρ(kρ + qρ)−m2
0 − σ2)ηµν − kµ(kν + qν)− kν(kµ + qµ)

+ ηµνT0 − T1

(

iγz + i
1

(k3 + k′3) sign(z)
δνaqaδν3

)

− δµ3δν3
2T 2

1

(k3 + k′3)
2

]

, (E10)

Πf,l
µν(qa, x3, x

′
3) =

∫

d3ka
e−(k3+k′

3)|z|

k3k′3
Tcross

[

δµaδνb
{

(kc(kc + qc)− σ2)ηa,b − kb(ka + qa)

−ka(kb + qb) + iσǫa,b,cqc} − δµ3δν3
(

kc(kc + qc)− σ2
)

+ α
]

(E11)

Πl,l
µν(qa, x3, x

′
3) =

∫

d3ka
e−(k3+k′

3)|z|

k3k′3
Tloc

[

δµaδνb
{

(kc(kc + qc)− σ2)ηa,b − kb(ka + qa)

−ka(kb + qb) + iσǫa,b,cqc}] . (E12)

where we have definedk′3 =
√

−(k0 + q0)2 + (k1 + q1)2 + (k2 + q2)2 +m2
0 + σ2. Hereα is a matrix of linear order inqa

that is non-zero only in the fourth row and column, and

T0 = −m
2
0

2

(

tanh2m0x3 + tanh2m0x
′
3

)

+m2
0 = 2m2

0

1 + coshm0Z coshm0z

(coshm0Z + coshm0z)2

T1 =
m0(k3 + k′3)sign(z)

2
(tanhm0x

′
3 − tanhm0x3) =

m0(k3 + k′3) sinhm0|z|
coshm0Z + coshm0z

T2 = m2
0(1− tanhm0x3 tanhm0x

′
3) =

2m2
0 cosh z

coshm0Z + coshm0z

Tcross =
1

−k2a + σ2
(T1 + T2) +O(qa)

Tloc =
1

2(−k2a + σ2)2
(T1 + T2)

2 +O(qa) (E13)

Fork2 large,Πf,f
µν andΠf,l

µν scale like|k|−1, whileΠl,l
µν scales like|k|−2 – hence naively, after integrating over the remaining

three loop momenta, all three might be divergent. However, care must be taken with this naive power-counting, as is apparent
from the form ofΠQED4

µν prior to integrating overz, Z: power-counting suggests that the leading-order divergence should be
cubic, while it is in fact quadratic inΛ. Likewise, we will find that the leading-order divergence from the terms that arise due to
the spatial variation ofm(x3) is logarithmic.

To exhibit these divergences explicitly, we next Fourier transform inx3, as in Eq. (E7) , and perform the integrals overz and
Z. For example, we wish to integrate

1

2

∫

dZ dze−2k3|z|ei(s+t)/2Zei(s−t)/2zT0. (E14)

To do this for generals andt, we observe that the zeros in the denominator ofT0 occur atZ = ±z+ i(2n+1)π. Summing over
n, we obtain

1

2

∫

dZ e−2k3|z|ei(s+t)/2Zei(s−t)/2zT0 =
1

2 sinh π(s+t)
2m0

e−2k3|z|ei(s−t)/2z [Res(T0; x = y + iπ) + Res(T0; x = y− iπ)] .

(E15)
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We then integrate these expressions with respect toz. After performing both integrations, the mass dimension ofthe result has
been reduced by2 (rather than by1, as it is when integrating overZ leads toδ(s − t)). This indicates that the corresponding
contribution toΠµν has the mass dimension of the correction for a2 + 1D theory.

We obtain:

m2
0

∫

dz dZe−2k3|z|ei(s+t)/2Zei(s−t)/2zT0 = 2πsign(m0)
k3(s+ t)(k23 +

1
8 (s

2 + t2))

(eπ(s+t)/m0 − 1)(k23 +
1
4s

2)(k23 +
1
4 t

2)
, (E16)

The exponentialeπ(s+t)/m0 ensures that we may expend the result for smalls,t
k3

: not only do these parametrize the photon
momentum in thex3 direction, which we take to be small relative tom0, but equally the result is exponentially suppressed in
s+t
m0

, while after Wick rotating,k3 ≥
√

m2
0 + σ2.

This expansion can be safely performed for all of the integrals. To zeroeth order ins, t, we obtain:

1

2

∫

dzdZe−2k3|z|T0 =
2|m0|
k3

,
1

2

∫

dzdZe−2k3|z|T1 =
|m0|
k3

1

2

∫

dzdZe−2k3|z|T2 =

(

−m
2
0

k23
+ 2|m0|∂k3Γ(

k3
|m0|

)

)

1

2

∫

dzdZe−2k3|z|T 2
1 = −2

[

m2
0 + 2k3|m0| − 2k23 |m0|∂k3Γ(

k3
|m0|

)

]

1

2

∫

dzdZe−2k3|z|T 2
2 = 2(2k23 +m2

0)

[−2k53|m0|+ 7k43m
2
0 − 8k33 |m0|3 + k23m

4
0 + 4k3|m0|5 − 4m6

0

k23(k3 − 2|m0|)2(k3 − |m0|)2

+ 2|m0|∂k3Γ(−2 +
k3
|m0|

))

]

1

2

∫

dzdZe−2k3|z|T1T2 = 2

[ |m0|(4k43 − 2k33|m0|+ k23m
2
0 +m4

0)

k3(k3 − |m0|)2
− 4k23|m0|∂k3Γ(−1 +

k3
|m0|

))

]

(E17)

whereΓ is the digamma function.
Taylor expanding these expressions for largeka, one can see thatΠl,l

µν(0, s = 0, t = 0) is non-divergent, as claimed in Section
4. Further, the divergent terms associated with the domain wall in Πf,f

µν(0, s = 0, t = 0) andΠf,l
µν(0, s = 0, t = 0) cancel.

We can also evaluate the extra finite contributions to the gauge non-invariant terms due to the contributions we neglected in
Section 4. Inserting the expressions in (E17) into the expression for the Fourier-transformed propagator, and Wick rotating to
sendk2a → −k2a, we obtain:

Πµν(0, 0, 0) = Πµν(0, 0, 0)
QED4 −

∫

d3kc
2m0(m

2
0k

2
c + 3σ2κ2)

3κ3(k2c + σ2)2
δµaδνb ηab = −2|m0|

3
δµaδνb ηab (E18)

whereΠµν(0, 0, 0)
QED4 is the gauge non-invariant contribution from the fermion loop in QED4.

Thus the gauge non-invariant terms that arise due to the domain wall do indeed have the form given in Eq. (36), and regular-
ization can be carried out with an even number of Pauli-Villars fields with spatially varying masses.

We can also use this method to calculate the coefficient of theChern-Simons term in Eq. (E10). As described in Section 4,
Πl,l

µν contributes a half-integral Chern-Simons term, whose signis determined by the sign of the domain-wall massσ. However,
there is also anon-quantizedcontribution fromΠf,l

µν . Thus the total effective Chern-Simons term is

ΠCS
ab =

1

8π2

(

πsign(σ)− 2 sin−1 σ
√

m2
0 + σ2

)

(iǫabcp
c) (E19)

or a Chern-Simons coefficient of

k =
1

2
sign(σ)− 1

π
tan−1 σ

|m0|
(E20)

where we have usedsin−1 σ√
m2

0+σ2
= tan−1 σ

|m0|
. This is reminiscent of the corrections to the induced charge of solitons in

the simpler 1+1d model (D23: in 3+1d if we break time-reversal (for example by applying a magnetic field to the system) the
domain wall carries an induced charge, whose value is exactly quantized only in the limitσ/m0 → 0.
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