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We utilize single-electron tunneling spectroscopy to measure the discrete energy levels in a
nanometer-scale cobalt particle at T=60mK, and find effective single-electron spin g-factors ≈ 7.3.
These large g-factors do not result from the typical orbital contribution to g-factors, since the orbital
angular momentum is quenched. Instead, they are due to non-trivial many-body excitations. A kink
in the plot of conductance vs. voltage and magnetic field is a signature of degenerate total spin
on the particle. Spin-Orbit interactions cause the new particle eigenstates to have ‘spin’ that is an
admixture of pure spin states. Fluctuations in the discrete energy level spacing allow for the total
change in ‘spin’ on the particle during a single-electron tunneling event to be ∆S′ = 3/2, leading to
a g-factor around 6.

PACS numbers: 73.23.Hk,73.63.Kv,73.50.-h

INTRODUCTION

The g-factor of an elementary particle is a dimension-
less parameter relating the magnetic moment and the
angular momentum. For an electron, the magnetic mo-
ment due to spin ~S is ~µ = −gµB

~S/h̄, where g is the spin
g-factor, µB is the Bohr Magneton, and h̄ is the reduced
Planck constant. In the Dirac point particle model of an
electron, the spin g-factor is precisely 2, but the coupling
to the environment can change that value. Recently, g-
factors were measured of single electrons occupying quan-
tum electron-in-a-box levels in a nanometer-scale metal-
lic particle . [1–9] In particles made from light metals
such as Al, the g-factors are very close to 2, demonstrat-
ing that the g-factors are (very nearly) spin g-factors,
and that coupling between the spin and the environment
is weak. The orbital motion of the electron does not af-
fect the g-factors in light metallic particles because of
the quenching of the orbital angular momentum. [10, 11]
Introduction of heavier metals into the particle material
leads to a significant reduction of the g-factor, caused by
the coupling between the electron spin and the crystalline
environment, via the Spin-Orbit (SO) interaction. [1, 2]

Here we present measurements of electron g-factors
g ≈ 7.3 in a ferromagnetic (Cobalt) particle. We show
how this strong enhancement arises from the coupling be-
tween traditional electron-in-a-box levels and the many-
body states in the electronic environment, when the
ground state of the particle is nearly spin-degenerate. A
different mechanism leading to very large spin g-factors
has been proposed for normal metal particles, but large
g-factors have not been confirmed until now, probably be-
cause of the weak electron-electron interactions in normal
metals. [12, 13] By switching the material from normal
metal to a ferromagnet, the electron-electron interactions
strengthen, making it more probable to observe large g-
factors. Very large g-factors have been observed recently
in semiconducting quantum wires and dots, where they
represent the orbital contribution. [14–16] The difference

between semiconducting wires or dots and our metallic
particles is that the orbital contribution is quenched in
the metallic particle. [17] The large g-factors described in
this letter are of spin-origin, making the effect described
herein different from that in semiconducting quantum
dots and wires. This finding shows that a fundamen-
tal property of an electron, like the spin g-factor, can be
strongly modified by the environment in an unexpected
way.

EXPERIMENTAL METHODS AND DATA

0.4

0.2

0.0

-0.2

-0.4

C
ur

re
nt

 (
pA

)

-4 -2 0 2 4
Bias Voltage (mV)

A C

B

biasV Nanoparticle

Source Drain
C Cs d

E
n

er
g

y

eVbias

Source

Drain

FIG. 1. Circuit diagram of tunneling through particle. B. En-
ergy level diagram for tunneling process. C. IV curve display-
ing coulomb blockade and discrete single-electron tunneling
steps.

Fig. 1-A sketches our arrangement for the studies of
quantum levels and g-factors in a metallic particle. A sin-
gle metallic particle is attached between two macroscopic
leads, via high resistance tunnel junctions. Fig. 1-B dis-
plays the energy levels of the particle between the tunnel
junctions. A voltage Vbias is applied on the source lead,
changing the Fermi level in that lead by eVbias. When
the Fermi level in the source is equal to the energy differ-
ence between the final and the initial quantum state of
the particle (after and before tunneling), an electron can
tunnel from the Fermi level in the lead into the particle,
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resulting in current flow. In that case the electrons flow
through the particle one-by-one. Current versus voltage
increases in discrete steps at the voltages where the Fermi
level in the source equals the energy difference between
the final and the initial quantum states of the particle,
as our sample shows in Fig. 1-C. In most metallic par-
ticles, the energy difference between the final and the
initial quantum state of the particle is equal to a discrete
electron-in-a-box level in the particle. Thus, voltages at
which the steps are observed in the I-V curve correspond
to the discrete electron-in-a-box levels ǫµ. These levels
are two-fold spin-degenerate, because of Kramers’ theo-
rem, and the degeneracy is lifted by the applied magnetic
field. The g-factor is defined as in Ref. [12], by

g =
±2

µB

dǫµ
dB

. (1)

The tunneling junction devices are fabricated using the
same recipe quoted in Ref. 8. See Appendix A for more
details. The devices are studied at T=60mK in a di-
lution refrigerator. The voltage bias is swept and the
output current is measured using an Ithaco model 1211
current preamplifier. The detailed data sweeps involve
a slow magnetic field ramp, along with a slightly faster
sweep of the voltage bias. The differential conductance is
calculated numerically. Fig. 2 displays our experimental
data of the differential conductance vs. applied magnetic
field and bias voltage for a Co sample. There are three
main features of the data that are different from previous
work on magnetic field dependence of tunneling spectra
in a Co particle. First, the energy levels vs. magnetic
field exhibit an abrupt change in slope around B = 4T.
This kink was absent in prior work, which displayed en-
ergy levels that were monotonic with field in the range
B > 1T. [8, 9, 18] Second, the g-factors of some levels
in the figure are larger than 2. For example, the levels
marked A and B in the figure correspond to g-factors of
≈ 7.3 at B > 4T. In comparison, prior work displayed
only g-factors < 2 or ≈ 2 [8, 9, 18]. Finally, the fluc-
tuations in the weights (i.e., the relative heights of the
differential conductance peaks) of various levels is en-
hanced. Level A has a weight that is a factor of ≈ 4
smaller than level C, which displays a g-factor of ≈ 0.6.
In Appendix C, additional data is provided, demonstrat-
ing the usual magnetic hysteresis loops of discrete levels
in the low magnetic field range (< 1.5T). Because the
energy level spacing of the Co particle is comparable to
that of our previous work, we estimate the particle size
to be ≈ 2nm . [8]

DATA MODEL: THE UNIVERSAL
HAMILTONIAN

In this letter, we will present the analysis of electron
tunneling through the particle, based on the Universal

FIG. 2. Experimental data of differential conductance vs.
magnetic field and bias voltage. The dotted lines follow the
conductance peak behavior for two different spin transitions.
The slope of the red dotted lines (A and B) yield a g-factor
of ≈ 7.3, while the green dotted lines (C) correspond to a
g-factor ≈ 0.6.

Hamiltonian (UH) model, and show how giant spin g-
factors naturally arise in a ferromagnetic particle near
spin degeneracies. [19] In the UH model, when the SO-
interaction is zero, the electron-electron interaction com-
mutes with the kinetic energy and the confinement po-
tential, and the electronic energy in a metallic particle
can be written as

E(N,S0) =
∑

µ,σ=↑,↓

ǫµnµ,σ −
U

2
S(S + 1)− 2µBBSz, (2)

where ǫµ is the energy of electron-in-a-box level µ, nµ,σ

is the occupation number for the level µ and spin direc-
tion σ, U is the exchange interaction, B is the magnetic
field applied along z-axis, and S and Sz are the spin mag-
nitude and its z-component, respectively, in units of h̄. If
the exchange interaction is small compared with the level
spacing δµ at the Fermi level, then the ground state for
this Hamiltonian will be the normal-metal Fermi sphere,
with spin 0 or 1/2, depending on parity of the number
of electrons on the particle (N). Giant spin g-factors can
arise in the normal-metal state; however, their probabil-
ity is very low. In the ferromagnetic state, the proba-
bility of giant g-factors increases dramatically; thus, we
first analyze the ferromagnetic case.
Ferromagnetism occurs if the exchange interaction U

is comparable to or larger than the level spacing δµ =
ǫµ+1− ǫµ at the Fermi level, and some minority electrons
are promoted to higher level majority states. The max-
imum energies of the occupied levels will be labeled ǫm
and ǫM (with corresponding level spacings δm and δM ),
for the minority and majority electrons, respectively. In
the ground state, the exchange splitting between ǫm and
ǫM is compensated by the gain in the exchange interac-
tion energy: ǫM − ǫm = U(S0+1/2)+ d(B). [20, 21] The
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parameter d(B) has magnetic field dependence d(B) =
d0 − 2µBB, where d0 is a mesoscopic parameter. Since
the level spacings vary by the Wigner-Dyson statistics,
the value of ǫM − ǫm will have mesoscopic fluctuations
comparable to δM + δm. Fig. 3-A depicts the N-electron
ferromagnetic ground state with spin S0. S0 will be the
ground state spin of the particle if (U/2− δM) < d(B) <
(δm −U/2). At the applied magnetic field Bd, defined as
d(Bd) = U/2− δM , the ground state is degenerate; that
is, EN (S0) = EN (S0 + 1). In a magnetic field slightly
above Bd, the N-electron particle ground state spin will
be S0 + 1. The S0 + 1 state is obtained from the dia-
gram in Fig. 3-A, by annihilating the minority electron
at energy ǫm and creating a majority electron at energy
ǫM+1.

minority majority

εm

εM

δM

δm

A B

2µBB
 0

N

N+1

S0 S0+1 S0+2 S0+3

S0-1/2 S0+1/2 S0+3/2

2µBBd

S0+5/2

δM+1+δm-1-U δM+2+δm-2-U

δm-U/2 δm-1-U/2 δm-2-U/2

2µBBd'

FIG. 3. A. Electron-in-a-box levels for minority and majority
electrons. The black dots signify occupied levels. B. Stability
Diagram for N- and (N+1)-electron particle. The spin value
in each region denotes the ground state spin for the given
magnetic field range. There is a degeneracy in ground state
spin at B = Bd and B = B′

d for the N- and (N+1)-electron
cases respectively.

As the magnetic field increases further, the transitions
to higher spin states take place at the corresponding de-
generacy fields. The stability regions for the ground state
spins S0 + i, i = 0, 1, 2, ... are shown in Fig. 3-B.
In a Co particle, the average spacings and the exchange

interaction are δM = 4.58eV/S0, δm = 1.18eV/S0, and
U = 1.77eV/S0, respectively. [21, 22] Note that the level
spacings scale as 1/S0, which accounts for the vanishingly
small level spacings as the electron number approaches
typical bulk values. The magnetic field region (∆B) for
the stability of a particular spin is, on average, 2µB∆B =
δM + δm −U = 4eV/S0. For a typical Co particle in our
experiment, S0 ≈ 1000, and the corresponding magnetic
field range is quite large, ∆B ≈ 35T. Since our typical
experimental field range of is ≈ 10T, we do not expect
to observe spin degeneracy in a typical sample.
In an electron tunneling process, the number of elec-

trons on the particle changes by one. In that case, if the
particle spin before tunneling is S0, then the final spin of
the particle after the tunneling transition will be S0±1/2.
In Co, most tunneling transitions will be spin-lowering, as
discussed previously. [8, 9, 18] Indeed, experimental stud-

ies of electron-in-a-box levels in Co particles done to date
show that the levels from a given sample have roughly
linear magnetic field dependence above about 1T, with
similar g-factors < 2.

Fig. 3-B also displays the regions of stability for the
ground state spins of S0−1/2+i, for the (N+1)−electron
system. B′

d is the degenerate magnetic field value for
the (N + 1)-electron particle. Note that in most of the
magnetic field range, the tunneling transition between
the ground states reduces the spin by 1/2. However, in
the narrow magnetic field range slightly below the de-
generacy field Bd, the tunneling transition between the
ground states will be spin-increasing, S0 → S0 + 1/2.
Such spin increasing tunnel transitions occur between
B = B′

d and B = Bd, where gµB(Bd −B′
d) = δm − U/2.

On average, 〈Bd − B′
d〉/∆B = 0.07. However, there

is a prediction from the UH model that did not gain
much attention until now, as far as we are aware. Be-
cause the level spacings fluctuate, there is a possibility
that (δm − U/2) could be negative. In a Co particle,
δm = 1.33U/2. Assuming the Wigner-Dyson distribu-
tion for δm, Pr[(δm − U/2) < 0]=36% (See Appendix
B). If (δm − U/2) < 0, then in the magnetic field in-
terval [Bd, B

′
d], the ground state spins of the N− and

(N +1)−electron systems will be S0+1 and S0−1/2. In
that case, the tunneling transitions between the ground
states involve a spin-difference of 3/2, so the tunnel tran-
sition would display a g-factor of 6. Near any spin degen-
eracy, tunneling transitions between excited states can
show large g-factors as well.

However, the tunnel Hamiltonian has zero-valued ma-
trix elements between states of the particle with a
spin difference other than ±1/2. That is, there is
a spin selection rule ∆S = ±1/2. But, if the SO-
interaction in the particle is included, then the matrix
elements < S0 − 1/2, S0 − 1/2|HSO|S0 + 1/2, S0 + 1/2 >
and < S0, S0|HSO|S0 + 1, S0 + 1 > will be nonzero.
For example, the calculation of the matrix element <
3/2, 3/2|HSO|1/2, 1/2 > is available in Ref. 12. [23]

The result is that the spin-eigenstates of the particle
with N+1 electrons are ‘spin’ admixtures (hereafter la-
beled with a prime index) of pure states |S0 + 1/2, S0 +
1/2 > and |S0 − 1/2, S0 − 1/2 >. Similarly, for the N
electron system, states |S0, S0 > and |S0 + 1, S0 + 1 >
mix. The closer the system is to spin-degeneracy, the
stronger the admixing will become. The admixing pro-
duces two effects. First, the matrix elements of the tunnel
Hamiltonian between |S0, S0 >′→ |S0 ± 1/2, S0 ± 1/2 >′

and |S0 + 1, S0 + 1 >′→ |S0 ± 1/2, S0 ± 1/2 >′, be-
come nonzero. Now all tunneling transitions involving
these four levels become active. If admixing is weak,
then the weight of the transition |S0 + 1, S0 + 1 >′→
|S0−1/2, S0−1/2 >′ will be weak compared to the weight
for transition |S0, S0 >′→ |S0 − 1/2, S0 − 1/2 >′. Simi-
lar variation in weights have been predicted before. [12]
Second, the admixing will change the g-factors of the lev-
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els. For example, we expect the g-factor for the transition
|S0+1, S0+1 >′→ |S0−1/2, S0−1/2 >′ to be widely dis-
tributed around 6 and likely to remain much larger than
2, similar to the analysis in Ref. 12 and 13. However,
there needs to be a more rigorous, full Random-Matrix-
Theory description that includes orbital contributions to
the g-factor in order to fully account for the value mea-
sured of 7.3.
Fig. 4-A,B sketches the energy versus magnetic field

near the spin-degeneracy for the N - and (N+1)- electron
systems. In the magnetic field range between Bd and B′

d

indicated in the figure, the tunneling transition between
the ground states involves a ‘spin’ change of ∆S′ = 3/2,
and the g-factor should be about 6. Even if Bd > B′

d,
the tunnel transition with ∆S′ = 3/2 will be close in
energy. Thus, we expect to observe large g-factors for
the transitions between the excited states, as long as the
applied magnetic field is tuned near spin-degeneracy.
In a normal metal particle, the above analysis leads to

a similar result. At the degeneracy field Bd,S−T between
singlet and triplet for the N-electron state (assuming N
is even), the magnetic field is off degeneracy between
doublet-quadruplet for the (N+1)-electron state by the
amount given by gµB(Bd,S−T − Bd,D−Q) = δ − U/2. In
order to observe a tunnel transition between ground state
with spin-difference 3/2, (δ − U/2) needs to be less than
zero. In contrast to the Co particle, U in a normal metal
is small. For example, in a Au particle, U/2 ≈ 0.06δ,
leading to the probability of 0.3% that the tunneling tran-
sition between ground states has ∆S′ = 3/2. [12] This is
perhaps the reason no g-factors larger than two have been
measured in a metallic particle, until now.
Moving back to Co particles, in order to measure large

g-factors, we need to measure the particle near spin-
degeneracy at the ground state. The experimental sig-
nature of the degeneracy would be a kink in the energy
level versus magnetic field, according to Fig. 4-C,D. This
is consistent with our data, where several levels display
a kink near B = 4T. Our model also agrees with the
predictions of Ref. 24, which discusses the signature kink
in data near degeneracies, and is reminiscent of Ref. 25
and 26. Although the shape of the kink is not the ex-
act same as that suggested by our simple model, the two
have qualitatively good agreement. Additionally, we do
not observe a second kink in the higher field range. How-
ever, due to the increasing intensity of the conductance
peaks in the higher field range (which we attribute to
stronger admixing between states), as well as a slight
curvature of the lowest level near 12T, it is likely that a
second kink lies beyond our magnetic field range.

CONCLUSION

In summary, we predicted the possibility of large spin-
g-factors of a ferromagnetic particle tuned close to spin-
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FIG. 4. Possible spin transitions upon the tunneling event
of a single electron onto the particle. The length of the ar-
rows represent the energy change of the particle upon such a
transition. A. Case where B′

d < Bd, (δm > U/2). B. Case
where B′

d > Bd, (δm < U/2). C,D. Kink in energy curve as a
function of B for the two cases considered in A,B.

degeneracy. The existence of these giant effective g-
factors is due to the many-body interactions (i.e., strong
exchange energy) in a ferromagnetic particle. When
tuned within a certain range, the magnetic field induces
a degenerate total spin value on the particle. Due to fluc-
tuations in the electron-in-a-box level spacings, there is
a significant probability that this magnetic field range,
along with spin-orbit interactions, can allow transitions
that change the ‘spin’ of the particle by 3/2 upon the tun-
neling event of a single electron. However, this will only
occur if the magnetic field is tuned sufficiently close to
one of these degenerate field values. We prepared many
samples of cobalt particles, and found the experimen-
tal signature of a degenerate magnetic field value (the
kink in the conductance data plot). Within this data
set, we found very large g-factors (g≈ 7.3), in relatively
close agreement with our prediction. These giant spin-g-
factors display the intricate interplay between the many-
body energy states and the traditional electron-in-a-box
quantum states.
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APPENDICES

Appendix A: Sample Fabrication

The structures of our samples are defined using
electron-beam lithography on a poly(methyl methacry-
late)(PMMA) substrate, as is illustrated in Fig. 5.

50-180 nm

PMMA bridge
Direction 1:
Al, Al2 O3

Direction 2:
Co, Al2 O3, Al

Al

Al2 O3

Al2 O3

Co particles

Al
Al

FIG. 5. Sample fabrication process. The cobalt particles are
shown in red between the two tunneling barriers (blue) and
the conducting Al electrodes (yellow)

After exposure to the electron-beam, the sample is
placed in developer solution and a bridge of PMMA is es-
tablished for use in shadow evaporation. Next, the sam-
ple is placed in a vacuum chamber and the tunnel junc-
tions are created through shadow evaporation around the
PMMA bridge. Aluminum is evaporated to form the elec-
trode, followed by a a layer of Al2O3 to form the first tun-
neling barrier. Next, the sample is rotated and a layer of
Cobalt on the order of 0.6 nm is added, which nucleates
due to surface tension and forms the nanoparticles to be
studied. A second layer of Al2O3 is then added to form
the other tunnel junction, and then a final layer of Al is
evaporated to form the other electrode. The electrodes
are ≈ 14 nm thick, and the Al2O3 tunnel junctions are ≈
1.7 nm thick. After the evaporation process, the excess
metals are lifted off in acetone, leaving a series of pat-
terned devices on our substrate. The nanoparticles are
pictured in Fig. 6 in a Transmission Electron Microscope
(TEM) micrograph.

Appendix B: Wigner-Dyson Statistics

The energy level statistics of electrons occupying
chaotic wavefunctions on the quantum dot can be mod-
eled using Random Matrix Theory (RMT) and Wigner-
Dyson statistics. For our model, we use the Gaussian

FIG. 6. TEM image of Co nanoparticles (dark) on amorphous
Al2O3 background (light)

Orthogonal Ensemble (GOE) because we are in the low
magnetic field regime and therefore can treat the sys-
tem as effectively time-reversal invariant. Modeling the
system with the Gaussian Unitary Ensemble (GUE),
which is the ensemble that should be used for systems
without time-reversal symmetry, was also performed,
but the results for GOE and GUE have a difference of
only a few percent. The GOE has normalized energy

level
(

x ≡ δm
〈δm〉 , where 〈δm〉 ≡ δm

)

fluctuations that fol-

low the distribution function F (x):

F (x) =
π

2
xe−

π

4
x2

(3)

So to find the probability, Pr, that (δ−U/2) is negative,
we note:

Pr

(

(δm −
U

2
) < 0

)

=

Pr

(

(
δm
〈δm〉

−
U/2

〈δm〉
) < 0

)

=

Pr

(

(x−
U/2

1.33U/2
) < 0

)

=

Pr ((x− 0.75) < 0) =

Pr (x < 0.75) =

∫ 0.75

0

dx
π

2
xe−

π

4
x2

≈ 36%

A similar calculation using the GUE instead yields a
probability of ≈ 30%. Either way, there is non-negligible
probability that the quantity (δ −U/2) will be negative.
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Appendix C: Low Magnetic Field Data (< 1.5T)

FIG. 7. Low Magnetic Field Data < 1.5 T

The data shown in Fig. 7 displays the low magnetic
field regime of the differential conductance vs. voltage.
Over time, the field was swept from −1.5 → +1.5T, and
then from +1.5 → −1.5T. This is shown in the graph
by reading it from top to bottom. The discontinuities
in the conductance data for the same bias voltage val-
ues indicate that a magnetic switch has occurred. Note
the hysteresis in the switching field values— when the
field is swept from negative values to positive ones, the
switch occurs in the positive magnetic field range. Con-
versely, when the field is swept from positive to negative
values(the lower half of the graph) the switch occurs for
negative field values. These characteristics indicate that
we are indeed measuring the tunneling through a single
ferromagnetic particle, and agree qualitatively with pre-
vious work on Co particles[8].
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