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In this work, we show that an in-plane magnetic field can drive a fully gapped p± ip topological
superconductor into a gapless phase which supports Majorana flat bands (MFBs). Unlike previous
examples, the MFBs in the gapless regime are protected from disorder by a chiral symmetry. In
addition, novel uni-directional Majorana edge states (MESs) which propagate in the same direction
on opposite edges appear when the chiral symmetry is broken by Rashba terms. Unlike the usual
chiral or helical edge states, uni-directional MESs appear only in systems with a gapless bulk. The
MFBs and the uni-directional MESs induce nearly quantized zero bias conductance in tunneling
experiments.

PACS numbers:

I. INTRODUCTION

A topological superconductor (TS) has a bulk su-
perconducting gap and topologically protected gapless
boundary states [1–5]. TSs are under intense theoretical
and experimental studies due to the possibility of real-
izing Majorana fermions in these systems, which act as
their own antiparticles and obey non-Abelian statistics
[6–8]. Majorana fermions in TSs are topologically pro-
tected, in the sense that the Majorana fermions cannot
be removed by perturbations unless the bulk energy gap
is closed or certain symmetries are broken.

Remarkably, recent development shows that Majorana
fermions exist in systems where the bulk is gapless [9–
20]. For example, Majorana edge states (MESs) with
flat dispersion can be found in 2D nodal dxy + p-wave
superconductors which respect time-reversal symmetry
[10–12]. It is also shown that zero energy Majorana flat
bands (MFBs) can appear on the surface of 3D time-
reversal invariant non-centrosymmetric superconductors
which have topologically stable line nodes in the bulk
[13–15].

In this work, we show that an in-plane magnetic field
can drive a fully gapped p ± ip-wave TS into a gapless
regime which supports symmetry protected MFBs. An
in-plane magnetic field may first close the bulk gap. Fur-
ther increasing the strength of the magnetic field creates
zero energy MFBs in the excitation spectrum when the
bulk is gapless. The evolution of the excitation spec-
trum of a p± ip-wave superconductor as a function of the
in-plane magnetic field strength is shown in Fig.1. and
Fig.2. Unlike the MFBs discussed in previous works [10–
15] which are not protected against disorder, the MFBs
discussed in this work are protected by a chiral symmetry
and the zero energy modes stay at zero energy even in the
presence of disorder.

S-wave pairing and Rashba spin-orbit coupling terms
break the chiral symmetry which protects the MFBs. In
this case, uni-directional MESs, which are distinct from
the usual helical or chiral MESs in that the modes on

FIG. 1: a) A schematic picture of a p ± ip-wave supercon-
ductor subject to an in-plane magnetic field Vy. A tunnel
junction and a normal lead N is attached to the superconduc-
tor. b) The energy spectrum of a p ± ip superconductor in
the topologically non-trivial regime. Periodic boundary con-
ditions in the x-direction and open boundary conditions in
the y-direction are assumed. The parameters are t = 12∆p,
µ = 3∆p − 2t, ∆s = 0, αR = 0 and Vy = 0. c) Same parame-
ters as b), except Vy = 0.7∆p. The bulk energy gap is closed
in this regime.

opposite edges move in the same direction, may appear.
Interestingly, this new type of edge states can only ap-
pear in systems with a gapless bulk which are different
from chiral or helical edge states which appear in systems
with a bulk gap. Finally, we show that the MESs induce
nearly quantized zero bias conductance in tunneling ex-
periments.

II. MAJORANA FLAT BANDS

We start with a BdG Hamiltonian which describes
a two-dimensional non-centrosymmetric superconductor
with both spin-triplet px + ipy-wave, spin-singlet s-wave
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FIG. 2: The evolution of the energy spectrum of a p±ip-wave
superconductor as Vy increases. For a) to c) the parameters
are the same as Fig.1b except the values of Vy. a) Vy = ∆p.
b) Vy = 3∆p. c) Vy = 3.5∆p. d) S-wave pairing and Rashba
terms with ∆s = 0.3∆p and αR = 0.2∆p are added to a).

pairing and Rashba spin-orbit coupling in the presence
of a magnetic field.

Hp(k) =

(
ξ(k) + V · σ ∆̂(k)

∆̂†(k) −ξT (−k)−V · σ∗

)
. (1)

Here ξ(k) = [−t(cos kx + cos ky) − µ]σ0 −
αR[− sin kyσx+sin kxσy] is the sum of the kinetic energy
and the Rashba spin-orbit coupling, V describes the Zee-
man coupling of the electrons with an external magnetic
field, ∆̂(k) = (∆s + d(k) · σ)(iσy) is the superconduct-
ing gap function. We first assume that the spin-singlet
pairing amplitude ∆s and the Rashba spin-orbit coupling
αR are zero. The spin-triplet pairing vector is chosen as
d(k) = ∆p(− sin ky, sin kx, 0) such that the Hamiltonian
describes a two dimensional, helical, p ± ip-wave super-
conductor where ∆p is a constant. When V = 0, the
Hamiltonian respects both time-reversal symmetry T =
UTK with U−1

T H∗p (k)UT = Hp(−k) and particle-hole

symmetry P = UPK with U−1
P H∗p (k)UP = −Hp(−k).

Here, K is the complex conjugate operator, UT = σ0⊗iσy
and UP = σx ⊗ σ0 such that T 2 = −1 and P 2 = 1.

According to symmetry classification, the above
Hamiltonian in the absence of an external magnetic field
belongs to DIII class which can be topologically non-
trivial. In the topologically non-trivial regime where
|µ| < |4t| and |∆p| > |∆s|, the superconductor possesses
gapless counter-propagating helical MESs. The energy
spectrum in the topologically non-trivial regime is shown
in Fig.1b. In the rest of this section, we show that the
p± ip superconductor responds to an in-plane magnetic
field in an anomalous way as described in the Introduc-
tion.

To be specific, we suppose a magnetic field is ap-
plied in the y-direction such that V = (0, Vy, 0). In the
presence of a magnetic field, the time-reversal symmetry
T = UTK is broken. However, the Hamiltonian satisfies

a time-reversal like symmetry T1d = UT1dK such that
T−1

1d H(kx, ky)T1d = H(kx,−ky), where UT1d = σz ⊗ σz.
Moreover, the Hamiltonian satisfies a particle-hole like
symmetry P1d = UP1dK such that P−1

1d H(kx, ky)P1d =
−H(kx,−ky) with UP1d = σy ⊗ σy. Since the symmetry
operators operate on ky only and kx is unchanged, one
may regard kx as a tuning parameter and the Hamilto-
nian can be written as Hkx(ky). As Hkx(ky) respects the
symmetries T1d and P1d with T 2

1d = P 2
1d = 1, Hkx(ky) is

a BDI class Hamiltonian which can be classified by an
integer.

To classify the Hamiltonian Hkx(ky) with kx as a tun-
ing parameter, we note that as a result of the T1d and
P1d symmetries, Hkx(ky) satisfies the chiral symmetry
S1d = T1dP1d with

S−1
1d H(kx, ky)S1d = −H(kx, ky). (2)

In this case, Hkx(ky) can be off-diagonalized in the basis
which diagonalizes S1d such that

H̃kx(ky) =

(
0 Akx(ky)

A†kx(ky) 0

)
. (3)

Defining the quantity

z(k) = eiθ(k) = Det[Akx(k)]/|Det[Akx(k)]|, (4)

the winding number of θ(k), can be used as the topo-
logical invariant which characterizes the Hamiltonian
Hkx(ky). The winding number NBDI can be written
as12,21

NBDI =
−i
π

∫ ky=π

ky=0

dz(ky)

z(ky)
. (5)

Using Akx(ky) obtained from Hkx(ky), we have |NBDI | =
1 when

M(kx, ky = 0)M(kx, ky = π) < 0, where
M(kx, ky) = [µ+ t(cos kx + cos ky)]2 + ∆2

p sin2 kx − V 2
y ,

(6)
assuming that Vy and ∆p are non-zero. In the range of kx
where NBDI = 1, the Hamiltonian Hkx(ky) is topologi-
cally nontrivial. For a p±ip superconductor with periodic
boundary conditions in the x-direction and open bound-
ary conditions in the y-direction, there are zero energy
Majorana modes localized on the edges of the system
when Eq.6 is satisfied. Therefore, MFBs appear in the
corresponding parameter regime.

The evolution of the energy spectrum of a p ± ip su-
perconductor as a result of an increasing in-plane mag-
netic field is shown in Fig.1 and Fig.2. First, an in-plane
magnetic field reduces the bulk gap as shown in Fig.1c.
Second, after the bulk gap is closed, MFBs appear for
a finite range of kx where |NBDI | = 1 (Fig.2a). Third,
by further increasing the magnetic field, the bulk gap at
kx = 0 is closed (Fig.2b). Fourth, by increasing the mag-
netic field even further, the energy crossing at kx = 0
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FIG. 3: a) The bulk energy spectrum of a p ± ip supercon-
ductor. The parameters are the same as the ones in Fig.2a
but periodic boundary conditions in both the x and y di-
rections are imposed. b) The energy spectrum of a pure
p ± ip-wave superconductor with dimensions Lx = 100a and
Ly = 300a,where a is the lattice spacing. Only the thirty
lowest energy eigenvalues are shown. Periodic boundary con-
ditions in the x-direction and open boundary conditions in
the y-direction are assumed. On-site Gaussian disorder with
variance w2 = (1.5∆p)2 is present. It is evident that as Vy
increases, states collapse to zero energy and stay there, in-
creasing the number of zero energy modes. This indicates the
widening of the MFBs as Vy increases. Importantly, the zero
energy Majorana modes are not lifted by disorder.

disappears and only a MFB remains (Fig.2c). It is im-
portant to note that the MFBs appear when the bulk is
gapless. The bulk energy spectrum of a p ± ip-wave su-
perconductor corresponding to Fig.2a is shown in Fig.3a.
It is evident that there are nodal points in the bulk spec-
trum when MFBs appear. The nodal points in Fig.2a
are the projection of the bulk nodal points on the kx-
axis in Fig.3a, similar to the cases in intrinsic gapless
TSs [12,15,19]. Both the nodal points in the bulk spec-
trum as well as the MFBs are protected by the topo-
logical invariant NBDI . In other words, the MFBs and
the nodal points in the bulk appear whenever NBDI is
non-trivial for some range of kx. The results in this sec-
tion applies to helical superconductors/superfluids with
d-vector d(k) = (sin kx, sin ky, 0) as well. One example
of such a helical superfluid is Helium 3 B-phase.

III. UNI-DIRECTIONAL MAJORANA EDGE
STATES

It is shown above that MFBs appear when NBDI = 1
for a finite range of kx and the MFBs are protected by
the symmetries P1d and T1d. However, s-wave pairing
and Rashba terms break the chiral symmetry S1d in Eq.2
and lift the zero energy modes to finite energy as shown
in Fig.2d. In the case of adding s-wave and Rashba
terms to Fig.2c, the MFB acquires a finite slope and uni-
directional MESs appear at the sample edge as shown in
Fig.4a. A schematic picture of the uni-directional MESs
is shown in the insert.

FIG. 4: a) The parameters are the same as those in Fig.2d ex-
cept the values of Vy. The MFB acquires a finite slope when
∆s and αR are finite at Vy = 4∆p. Uni-directional MESs ap-
pear in this regime. A schematic picture of the uni-directional
MESs is shown in the insert. b) The energy spectrum of the
case with ∆p = 0, t = 12∆s, µ = 3∆s − 2t and αR = 2∆s.

We point out that the right moving edge modes are
compensated by extra left moving modes in the bulk, so
the current on the edge is cancelled by a backflow current
in the bulk. Since a bulk backflow current is required
to compensate for the edge current, the uni-directional
edge states can only appear in systems with a gapless
bulk. This is different from chiral and helical edge states
which appear in systems with a bulk gap. In the presence
of the s-wave pairing and Rashba spin-orbit coupling,
the Hamiltonian in Eq.1 describes non-centrosymmetric
superconductors such as CePt3Si,CeIrSi3 and CeRhSi3
and these materials are candidates for realizing the uni-
directional edge states.

Another interesting finding is that the uni-directional
MESs can appear in the absence of p ± ip-wave pairing.
The energy spectrum of an s-wave superconductor with
Rashba terms and finite Vy is shown in Fig.4b. It can be
shown that the uni-directional edge states appear when

Ms(0, 0)Ms(0, π) < 0, where
Ms(kx, ky) = [µ+ t(cos kx + cos ky)]2 + ∆2

s − V 2
y .

(7)

The systems with pure s-wave pairing and Rashba terms
can be realized by inducing s-wave superconductivity in
semi-conductors as demonstrated in recent experiments
[22–24].

IV. ANDREEV REFLECTION AND EFFECTS
OF DISORDER

It has been shown in previous works that Majorana
fermions induce resonant Andreev reflection at the junc-
tion between a normal lead and a fully gapped TS [25,26].
However, resonant Andreev reflection may not happen
when the bulk is gapless due to the non-vanishing direct
tunneling amplitudes from the normal lead to the gap-
less superconductor. In this section, we calculate the zero
bias conductance (ZBC) of a junction between a normal
lead and a TS as a function of the in-plane magnetic
field strength. It is found that MFBs and uni-directional
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FIG. 5: The ZBC versus Vy. a) ZBC from a lead to a p± ip-
wave superconductor. The setup is depicted in Fig.1a. The
superconductor has dimensions Lx = 100a and Ly = 300a.
Periodic boundary conditions in the x-direction is assumed.
t = 12∆p, µ = 3∆p − 2t in the superconductor and the lead.
The barrier between the lead and the superconductor is sim-
ulated by a reduced hopping amplitude tc = 0.3t. A semi-
infinite lead with width 8a is used in the simulation. The
number of conducting channels in the lead is Nc = 4. The di-
rect tunneling contribution to the ZBC is denoted as T . Gaus-
sian on-site disorder with variance w2 = (1.5∆p)2 is present.
b) S-wave pairing and Rashba terms with ∆s = 0.3∆p and
αR = 0.2∆p are added to a). The red lines near Vy = 4∆p

indicate the regime where the ZBC is quantized due to the
presence of the uni-directional MESs.

MESs induce nearly quantized ZBC even when the bulk
is gapless and in the presence of disorder.

A schematic picture of the experimental setup is shown
in Fig.1a. A normal lead is coupled to an edge of the
TS to form a tunnel junction. Using the lattice Green’s
function method [27–29], we calculate the direct tunnel-
ing amplitude and the Andreev reflection ampltidute of
the tunnel junction.

Fig.5a shows the ZBC as a function of Vy for a p± ip-
wave superconductor in the presence of on-site disorder.
To understand the results, we note that time-reversal
symmetry is preserved and the system is fully gapped
at Vy = 0, the 4e2/h quantization of ZBC is the property
of a DIII class TS which has two Majorana zero modes
on the edge [30,31]. As Vy increases, time-reversal sym-
metry is broken and the ZBC is suppressed by disorder.
Further increasing Vy closes the bulk gap and there is a
large jump in the ZBC. This jump is due to the contribu-
tion from the Andreev reflection caused by the MFBs and
the direct tunneling caused by the gapless bulk. This can
be clearly seen from the Vy dependence of T in Fig.5a. It
is interesting to note that the final ZBC is almost quan-

tized at 2e2

h Nc with Nc = 4, where Nc is the number
of conducting channels in the normal lead. This is due
to the Andreev reflection caused by the large number of
independent Majorana fermions from the flat band.

The nearly quantized ZBC in the presence of disorder
at large Vy in Fig.5a suggests that the MFBs are robust
against disorder. To confirm this, the energy spectrum of
the p±ip superconductor with parameters corresponding
to Fig.5a is shown in Fig.3b. It is evident from Fig.3b

that finite energy states collapse to zero energy and stay
there, increasing the number of zero energy modes as Vy
increases. A detailed account of the robustness of the
MFBs is given in next section.

Fig.5b shows the ZBC versus Vy when s-wave pairing
and Rashba terms are added to Fig.5a. There are ZBC
plateaus near Vy = 4∆p in this case. However, the ZBC

is quantized at 2e2

h due to the presence of only one zero
energy edge mode on the edge when a MFB becomes an
uni-directional edge state in this regime.

V. ROBUSTNESS OF MAJORANA FLAT
BANDS

It is evident from Fig.3b that the MFBs are robust
against disorder. In this section, we argue that the MFBs
are protected by the chiral symmetry S1d in Eq.2.

In our case, the zero energy edge states localized on
the same edge of the sample have the same chirality. The
chirality of an eigenstate of S1d is defined as the eigen-
value of the state with respect to S1d which is always +1
or −1. Therefore, the net chirality number of an edge,
which is the sum of the chirality numbers of all the zero
energy states localized on the edge, is always non-zero
when MFBs appear.

Moreover, it can be shown that the number of stable
zero energy modes on an edge equals to the net chirality
number of the edge [12]. Since on-site disorder does not
break the chiral symmetry and cannot change the net
chirality number, the number of stable zero energy modes
cannot be changed by disorder. In contrast, in previous
examples of MFB’s [10,12] the net chirality number on
each edge is zero.

To illustrate that the net chirality number on an edge
is non-zero, we solve the eigenstates of the Hamiltonian
in Eq.2. In the presence of an edge parallel to the x-
direction at y = 0 and assuming that the superconductor
is in the positive y-plane, Akx(ky) can be written as(

iVy − i∆ ∂
∂y + ∆ ∂

∂x −t(2 + 1
2
∂2

∂y2 + 1
2
∂2

∂x2 )− µ
t(2 + 1

2
∂2

∂y2 + 1
2
∂2

∂x2 ) + µ iVy − i∆ ∂
∂y −∆ ∂

∂x

)
.

(8)
Using the ansatz [0, 0, α−, β−]T sin(a−y)e−y/b−+ikxx and
[α+, β+, 0, 0]T sin(a+y)e−y/b++ikxx, we find two zero en-
ergy eigenstates for the Hamiltonian at kx = 0 with
a∓ = [2t(2t + µ) −∆2

p ∓ 2Vyt]/t
2 and b∓ = t

∆p
. As ex-

pected, the decay length b∓ equals the superconducting
coherence length. These two eigenstates are manifested
as zero energy modes at kx = 0 in Fig.2a and 2b.

Interestingly, when Vy > |2t + µ|, a− becomes imagi-
nary and the corresponding wavefunction is not normal-
izable. As a result, only one zero energy mode with chi-
rarlity +1 is left at kx = 0 as shown in Fig.2c. It can
be shown similarly that for large Vy, all the zero energy
modes localized on one edge have the same chirality. As
a result, the net chirality number on an edge is not zero
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and the zero energy modes cannot be lifted by local per-
turbations which preserve the chirality number. Since
Vx does not break the chiral symmetry, the MFBs can
appear in the presence of Vx. However, Vz breaks the
chiral symmetry that an out-of-plane magnetic field can
destroy the MFBs.

VI. CONCLUSION

We show that an in-plane magnetic field can drive a
p±ip-wave superconductor to a gapless phase which sup-
ports chiral symmetry protected MFBs. In the presence
of s-wave pairing and Rashba terms, novel uni-directional

MESs appear.
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