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We use a first-principles based kinetic Monte Carlo simulation to study the movement of a solid
iron nanocrystal inside a carbon nanotube driven by the electrical current. The origin of the iron
nanocrystal movement is the electromigration force. Even though the iron nanocrystal appears to
be moving as a whole, we find that the core atoms of the nanocrystal is completely stationary, and
only the surface atoms are moving. Movement in the contact region with the carbon nanotube is
driven by electromigration forces, and the movement on the remaining surfaces is driven by diffusion.
Results of our calculations also provide a simple model which can predict the center of mass speed
of the iron nanocrystal over a wide range of parameters. We find both qualitative and quantitative
agreement of the iron nanocrystal center of mass speed with experimental data.

PACS numbers: 66.30.Qa, 61.48.De, 66.30.Pa, 73.63.Fg

I. INTRODUCTION AND MOTIVATION

The interior of multiwall carbon nanotubes can be
filled with various metallic nanocrystals. Additionally
a metallic nanocrystal will start to move inside a car-
bon nanotube if an electrical current is applied axially
to the carbon nanotube. The speed of the nanocrystal
can be tuned over many orders of magnitude, since the
speed of the nanocrystal depends exponentially on the
applied electrical current1. The motion of the metal-
lic nanocrystal on the interior or exterior of the car-
bon nanotube has been observed previously for iron1–4,
copper5, tungsten6, indium7, and gallium8. The move-
ment of nanocrystals inside carbon nanotubes is inter-
esting from the perspective of memory applications1, as
a constituted element of nanomachines, or for tunable
synthesis of metal nanocrystals9.

The direction of the nanocrystal movement depends
on the polarity of the applied electrical current. There-
fore, the movement of a nanocrystal most likely origi-
nates from electromigration forces acting on the metal-
lic atoms such as the electron wind force. However,
the precise mechanism of nanocrystal movement is not
well understood. Additionally, recently it was found
experimentally9 that an iron nanocrystal of a given di-
ameter can move through a constriction inside a carbon
nanotube of a smaller diameter while remaining an or-
dered solid.

We performed a series of theoretical calculations to
try to understand the nature of the movement of metal-
lic nanocrystals inside carbon nanotubes in more detail.
We model a nanocrystal of iron, since this is a commonly
studied nanocrystal. However we expect that the qual-
itative nature of movement of other metal nanocrystals
will be similar to that of iron. We find that even though
it appears that the iron nanocrystal is moving as a whole
through the nanotube, in fact, the individual iron atoms
are only moving on the surfaces of the nanocrystal. The
bulk iron atoms remain stationary as long as they are
in the bulk. Once the atoms that were in the bulk are

exposed to the end surface, they move along the inter-
face with the carbon nanotube towards the front surface.
A somewhat related mechanism, but involving heating
of iron nanocrystals and its chemical reaction with the
carbon nanotube, was proposed in Ref. 4.

II. METHODS

Here we describe our theoretical modeling of the move-
ment of an iron nanocrystal inside a carbon nanotube.
Although density functional theory (DFT) is a power-

ful technique for first-principles study of material prop-
erties, it is most commonly used to study systems with
stationary positions of atoms. With the help of a molec-
ular dynamics method10, one can study dynamical prop-
erties from first-principles. However, in practice one can
use first-principles molecular dynamics method only on
time scales comparable to period of atomic vibrations
∼ 10−12 seconds.
In order to study movement of an iron nanocrystal in-

side a carbon nanotube, we need to analyze the processes
on time scale close to ∼ 10−3 seconds since typical en-
ergy barriers for iron atom movement are close to 0.6 eV,
while the relevant temperature is about twenty times
smaller, 0.03 eV. Therefore typically an iron atom will
jump across the barrier once in ∼ e0.6/0.03 ∼ 109 atomic
vibrations, or equivalently, once every ∼ 10−3 seconds.
In order to deal with these rare events, we approximate
the time dynamics of this system using the kinetic Monte
Carlo (kMC) method. The kinetic Monte Carlo method
ignores the details of time dynamics, instead it deals only
with fixed11 crystal sites which do or do not contain an
atom at a given time. For each time step one moves an
atom from one site to the next according to a rate given
by energy barrier height of the move in question. There-
fore, kMC simulations require only knowledge of energy
barriers for iron diffusion processes.
In order to obtain reliable energy barriers for iron dif-

fusion, we perform first principles DFT calculations of
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selected subsets of relevant diffusion processes in iron.
We find that these barriers depend strongly on the en-
vironment of the iron atom (for example, bulk diffusion
has a larger barrier than surface diffusion). Since it be-
comes combinatorially expensive to compute all possible
iron diffusion barriers, we constructed a simple model
for an estimation of any given diffusion barriers which
we parametrize using our DFT calculations. We also in-
corporated in this model the interaction of iron atoms
with the carbon nanotube. Later we will show that the
qualitative nature of our results is robust under changes
of parameters of this simple model.
In our calculations we do not discuss the microscopic

origin of the electromigration forces on iron atoms from
the current flowing through the carbon nanotube. We
simply consider the electromigration force per iron atom
as a parameter. Nevertheless, based on our results and
experimental data from Ref. 1 and 9 we speculate that
the origin of electromigration forces on iron is the electron
wind force and not a direct force, as is the case for most
metals12.

A. Density functional theory calculation of iron

diffusion

We perform a density functional theory calculation for
a body-centered cubic iron diffusion in the following ge-
ometries: bulk iron diffusion and (001) and (011) surface
diffusion. We consider both diffusion of surface vacancies
and surface iron adatoms, and we consider the influence
of a carbon overlayer on iron surface diffusion, and in-
clude both first and second neighbor hopping. Further-
more, we neglect exchange diffusion processes and only
consider diffusion processes in which a single atom is dis-
placed between initial and final configuration.
As a first step in the computation of diffusion barriers

we perform full structural relaxation of initial and final
configurations of the diffusion process at hand. The only
exception is the relaxation of the carbon layer, since that
would introduce additional numerical noise due to imper-
fect lattice matching between iron and carbon lattices.
Therefore we only allowed rigid shifts of entire carbon
layers in the direction perpendicular to the iron surface.
In a second step, we perform a nudged elastic band

calculation13 with three configurations between initial
and final configuration. For the middle of the three con-
figurations, we use the climbing image method13 to ob-
tain a more precise value of energy barrier.
We performed density functional theory calculations

using the SIESTA14 computer package with a vdW-DF2
density functional15. This functional includes non-local
van der Waals interaction, which are important for our
calculation since ordinary GGA functionals show almost
no binding between metal surfaces and a carbon layer16.
For both iron and carbon, we use norm-conserving pseu-
dopotentials and a double-zeta polarized basis set. We
use a grid cutoff energy of 440 Ry and an effective

TABLE I. Density functional theory computed diffusion bar-
riers in eV for various geometries either with or without an
additional carbon layer on top of the iron surface. Diffusion
pathways are always considered between sites closest to the
surfaces and between closest first (or second) neighbor bcc
sites. For each process we also show for the diffusing atom
the number of first neighbor iron atoms in initial (Zi

Fe) and
final (Zj

Fe) configuration.

Type of process Barrier (eV) Zi
Fe Z

j

Fe

Bulk diffusion

to first neigh. 0.72 7 7

to second neigh. 2.72 8 8

Adatom diffusion

on (001) surface to second neigh. 1.32 4 4

on (011) surface to first neigh. 0.36 2 2

Vacancy diffusion

on (001) surface to first neigh. 1.23a 7 3

on (001) surface to second neigh. 1.17 4 4

on (011) surface to first neigh. 0.55 5 5

on (011) surface to second neigh. 1.74 6 6

Vacancy diffusion with carbon layer

on (001) surface to first neigh. 1.27b 7 3

on (001) surface to second neigh. 1.15 4 4

on (011) surface to first neigh. 0.54 5 5

on (011) surface to second neigh. 1.64 6 6

a Without saddle point.
b Asymmetric diffusion path, barrier for this process in the

opposite direction, j → i is 0.40 eV.

10× 10× 10 k-point grid for conventional 2-atom body-
centered cubic unit cell of iron. The nudged elastic band
part of the calculation was performed using an ASE17

simulation environment.

We list results for the DFT diffusion energy barrier cal-
culations in Table I. We find that processes with lowest
energy barriers are adatom diffusion on the (011) sur-
face (0.36 eV), vacancy diffusion on the (011) surface
(0.55 eV), and first neighbor bulk diffusion (0.72 eV). All
three of these processes involve diffusion between first
neighbor sites. Furthermore, in all of these cases the
initial and final atom configurations along the diffusion
pathway are equivalent (symmetric diffusion).

Second neighbor symmetric diffusion both for bulk
diffusion and (011) surface diffusion is about three to
four times larger than symmetric first neighbor diffusion
(2.72 eV versus 0.72 eV and 1.74 eV versus 0.55 eV).
For this reason, we neglect second neighbor diffusion and
focus only on first neighbor diffusion.

Furthermore, we find that asymmetric processes have
different barriers than symmetric processes. For exam-
ple, the energy barrier for first neighbor diffusion in bulk
is 0.72 eV, while first neighbor diffusion on a (001) surface
is almost twice as large, 1.23 eV. In a body-centered cubic
crystal, the first neighbor diffusion on the (001) surface
must occur between the top-most surface layer and the
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next-to-top-most surface layer. Therefore the difference
in binding energy for an iron atom in these two layers
explains the observed increase in first neighbor diffusion
on the (001) surface.
Furthermore, we find that having a single carbon layer

(graphene) next to the iron surface has negligible influ-
ence on surface diffusion of iron atoms. We computed the
distance between the iron surface and the carbon layer
to be 2.45 Å for a (001) surface and 3.18 Å for a (011)
surface.

B. Model of iron diffusion

Based on theoretical calculations of iron diffusion bar-
riers, we next describe a model which will assign an en-
ergy barrier to any diffusion process in iron.
For the diffusion of an iron atom from site i to site j

having the same number of iron and carbon first neigh-
bors at i and j site (symmetric diffusion) we assign a
diffusion energy barrier Esym

i→j as,

Esym
i→j = a+ bZi

Fe. (1)

Here Zi
Fe = Zj

Fe is the number of first neighbor iron atoms
at either site i (counted before an atom moves from i to
j) or site j (counted after an atom moves from i to j). We
obtain values of parameters a (0.21 eV) and b (0.071 eV)
from a fit to all first-neighbor symmetric diffusion bar-
riers from Table I. These three processes also have the
lowest diffusion barriers and they include: adatom diffu-
sion on the (011) surface (0.36 eV), vacancy diffusion on
the (011) surface (0.55 eV), and first neighbor bulk dif-
fusion (0.72 eV). Fitted values for these processes given
by Eq. 1 are reproduced within 0.02 eV (they are respec-
tively, 0.35 eV, 0.57 eV, and 0.71 eV).
Since we found that the presence of the carbon layer

has almost no influence on symmetric diffusion processes,
the energy barrier Ei→j in Eq. 1 does not depend on the
number of carbon neighbors.
For asymmetric diffusion of an iron atom from site i to

site j, where the number of iron neighbors is different at
i and j, we assign a diffusion barrier with an additional
penalty term accounting for the change in number of first
neighbor atoms as,

Ei→j = a+ bZi
Fe +max (0, c∆ZFe + d∆ZC) . (2)

∆ZFe is the difference in number of first neighbor iron
atoms between sites i and j, while ∆ZC is difference in
the effective number of first neighbor carbon atoms. In
section II C we describe how we assign the effective num-
ber of first neighbor carbon atoms.
The parameter c quantifies the strength of the interac-

tion between neighboring iron atoms, and it is formally
similar to the exchange J parameter in the Ising model.
We obtained the value of parameter c (0.31 eV) by com-
paring a DFT computed total energy for a structure with
an iron vacancy in the first layer on a (001) surface to

structure with iron vacancy in second layer on (001) sur-
face. When the iron vacancy is in the first layer, the total
ground state energy is lower by 1.23 eV. Since in this pro-
cess exactly four iron-iron first neighbor pairs get broken
(Zi

Fe−Zj
Fe = 7−3 = 4), we obtain c = 1.23/4 = 0.31 eV.

We decided not to fit first-neighbor diffusion process on
the (001) surface directly to Eq. 2, since in our DFT
calculations we find that this process does not have an
energy saddle point, instead the energy is monotonically
increasing while going from the initial to the final config-
uration. Instead, we find it more important to obtain a
more reliable value of the iron-iron interaction strength.
We obtain a similar value of parameter c by considering
the displacement of the iron vacancy between first and
second layers of the (011) surface (0.33 eV) where only
two iron-iron first neighbor pairs get broken. Somewhat
larger values of parameter c are obtained from surface
formation energy of the (001) surface (0.37 eV) and the
(011) surface (0.50 eV). In section III A 5 we show the
robustness of our results to changes to value of this and
other model parameters.
Parameter d quantifies the strength of the iron-carbon

interaction. We obtained a value for parameter d
(0.14 eV) by comparing the DFT computed energy of an
iron surface terminated with a carbon layer (graphene)
to a DFT energy of clean iron surface and a carbon layer
in vacuum. The value for the parameter d for a (001)
iron surface (0.13 eV) is somewhat smaller than on a
(011) iron surface (0.15 eV), which is why we use their
arithmetic average in the calculation.
In our model, we neglect diffusion of iron atoms to sec-

ond nearest neighbor since those processes have higher
diffusion barriers (see Table I). Furthermore, our DFT
calculations show that the energy required to remove sin-
gle iron atom from bulk or surface to the vacuum is much
underestimated by the penalty term c∆ZFe from Eq. 2.
For such process one would need to use an effective value
of c to be 0.90, 1.05, or 1.46 eV (for an atom removal
from bulk, (011), and (011) surfaces respectively) which
is three to five times larger than the value of c we ob-
tained earlier. For this reason, we have decided to sim-
ply neglect processes in which an atom moves to site j
which does not have any iron atoms in first neighbor sites
(Zj

Fe = 0).

C. Kinetic Monte Carlo simulation

Given the model from Sec. II B to describe the diffusion
process in iron, we can proceed to do a kinetic Monte
Carlo simulation of an iron nanocrystal movement inside
a carbon nanotube.
We first define a fixed set of atomic sites along which

iron atoms can move. We start with an infinite arrange-
ment of body-centered cubic sites with an iron lattice
constant a = 0.29 nm. Next, we construct a cylin-
der with radius rcyl about an order of magnitude larger
than a immersed in this infinite arrangement of body-
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centered cubic lattice sites. We ignore all iron sites out-
side of this cylinder and consider only sites inside the
cylinder, to simulate an iron nanocrystal contained in-
side carbon nanotube. We take the orientation of the
cylinder axis to point along the crystal [100] direction as
found experimentally3. At the beginning of the simula-
tion (time t = 0), we occupy certain number of such sites
within the tube, while all other sites inside the cylinder
(carbon nanotube) are initially empty. For simplicity we
always start from a configuration in which the occupied
sites are taken in a certain range of heights [zmin, zmax]
along the cylinder axis.
Starting from an initial arrangement of iron atoms we

compile a list of all possible moves that iron atoms can
make. Our DFT calculation has shown that it is suffi-
cient to consider only moves of iron atoms to empty first
nearest neighbor sites. To each such move from the list
(between sites i and j) we assign a rate ρi→j ,

ρi→j = ρ0 exp

[

−
Ei→j

kT
+

1
2 (rj − ri) · Fem

kT

]

. (3)

Here ρ0 is constant commonly used in kMC modeling
(ρ0 = 1012 s−1) corresponding to the inverse of a typi-
cal phonon frequency, k is Boltzmann constant, T is the
simulation temperature, and Ei→j is the energy barrier
height as computed from a first-principles based model
given in Eq. 2.
Since an iron nanocrystal and a carbon layer have in-

commensurate lattices, the assignment of the number of
carbon neighbors to a given iron site becomes difficult.
Therefore we employ the following simple scheme to as-
sign the number of first neighbor carbon atoms. For each
iron site on the boundary of the nanocrystal, we simply
count the number of first neighbor iron-iron pairs broken
by the cylindrical cut and we assign that number to be
the effective number of carbon bonds.
Finally, ri and rj in Eq. 3 are Cartesian coordinate

vectors for atomic sites i and j, while Fem is the elec-
tromigration force acting on an iron atom, originating
from the current in the carbon nanotube. Assuming that
the energy barrier maximum between sites i and j occurs
halfway in between, the factor 1

2 (rj −ri) ·Fem appearing
in Eq. 3 accounts for increase in diffusion rate ρi→j along
the direction of the electromigration force. Similarly, this
factor reduces diffusion rate ρi→j in the direction oppo-
site to the electromigration force.
We assume that the force Fem is non-zero only if ei-

ther site i or j is adjacent to the nanotube (i.e. either
site i or site j has non-zero number of effective carbon
neighbors), and we test robustness of this assumption in
section III A 5. Furthermore, we take the vector Fem to
point in the direction of the cylinder (nanotube) axis,
along the direction of the current. The magnitude of the
vector Fem is then taken as a parameter of the simula-
tion. In Sec. III A 4 we relate force Fem to the electrical
current density j.
Now that we have assigned the rate ri→j to each pos-

sible atomic move i → j in the initial configuration, we

proceed by performing atomic steps. We choose which
step to perform based on a standard kMC probabilis-
tic model18,19 which chooses at random one of the steps
according to the rate given by Eq. 3. Once the move
has been performed the simulation time is updated from
t = 0 to t = ∆ according to the rates given by Eq. 3.
Since performing this atomic step has altered the atom
configuration, we need to update the list of all possible
moves and update the rates assigned to the moves. With
an updated list of moves and their rates, we repeat this
process until we reach the desired number of simulation
steps, or the desired simulation time t. In order to speed
up the kMC simulation, we also employ the binary tree
algorithm20.

III. RESULTS AND DISCUSSION

In this section we will present results of our kinetic
Monte Carlo simulation.

A. Character of movement in constant

cross-section area carbon nanotube

We find that for a wide range of parameters, the iron
nanocrystal can move through a carbon nanotube un-
der the application of an external electromigration force.
Figure 1 shows the dependence of the nanocrystal center
of mass speed on the magnitude of the electromigration
force per atom Fem = |Fem| for fixed simulation temper-
ature, nanocrystal area, and length. It is clear that the
speed depends non-linearly on the external force just as
in the experiments1,4. We postpone the analysis of the
center of mass speed dependence on force, temperature,
area, and length to sections III A 1,III A 2, and IIIA 3.
Here we first focus on the nature of iron nanocrystal
movement in the nanotube.

It is easier for demonstration purposes to describe the
nanocrystal motion for temperatures somewhat higher
than those found in experiment1. Therefore we defer
analysis of our model calculation in experimental range
of temperatures to Sec. III A 4.

Figure 2 shows the cross-section along cylinder axis of
the iron nanocrystal and carbon nanotube. Four regions
of the iron nanocrystal are indicated. Regions A, B, and
C consist of atoms on the boundary of the nanocrystal,
while atoms in region D are in the bulk (core) of the
nanocrystal. Furthermore, the circular regions A and C
are on opposite sides (caps) of the nanocrystal, while the
cylindrical shell B is in contact with the carbon nanotube.
In the following discussion the assignment of regions A,
B, C, and D is assumed to be stationary, i.e. atoms
can move from one region to another, but the region as-
signment relative to nanocrystal remains the same. For
definiteness we assume that the electromigration force is
pointing to the right in Fig. 2.
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FIG. 1. Computed iron nanocrystal center of mass speed as
a function of electromigration force Fem. Simulation tem-
perature is 700 K, somewhat larger than in the experiment1,
iron nanocrystal radius is rcyl=1.05 nm, and the length is
l = 4.31 nm. Line is a fit to functional form as in Eq. 4.

Our kMC simulation shows that atoms in region D are
stationary, as long as they remain in region D. Atoms in
region B under the influence of the electromigration force
get pushed towards region C, where they diffuse evenly
along the cylinder cap. Vacancies created in region B cre-
ate a concentration gradient which by diffusion attracts
atoms from region A to region B.
We now focus on the movement of a single atom that

starts out in region A. Under the influence of the dif-
fusion force created by vacancies in region B, this atom
will eventually reach region B. Once in region B under
the influence of the electromigration force it will move to-
ward region C. Once it reaches region C, it will distribute
there with near uniform probability, again due to diffu-
sion forces. After more and more atoms get extracted
from region A into region C, this particular atom will
eventually get covered by enough layers of new atoms so
that it will effectively become part of region D. Once in
region D, this atom remains stationary! Once all remain-
ing atoms are removed from region A and added to region
C, this atom will become part of region A and the entire
process repeats. Therefore, schematically the pattern of
movement of individual iron atom can be described as,

A −−−−−→
diffusion

B −−−→
Fem

B −−−−−→
diffusion

C −−−→
wait

D −−−→
wait

A.

Figures 3 and 4 show eight snapshots of the single
kinetic Monte Carlo simulation of the iron nanocrystal
movement inside a carbon nanotube with constant cross-
section. The first snapshot (t = 0 ms) corresponds to the
initial configuration, the second snapshot follows after
t = 10 ms, while the remaining six snapshots all follow in
intervals of 30 ms from the initial configuration. Figure 3
shows projection of atom coordinates (gray spheres) onto
two-dimensional plane parallel to the cylinder (nanotube)
axis. From this figure we can see that the carbon nan-
otube in this particular configuration moves by its one

A
CD

B

B

FIG. 2. Cross-section of iron nanocrystal inside carbon nan-
otube. Four regions of the nanocrystal are indicated (A, B,
C, and D) see main text for details. For definiteness, the di-
rection of the electromigration force is assumed to be to the
right in this figure.

length in roughly 180 ms.
Figure 4 shows, for the same kinetic Monte Carlo run

as in Fig. 3, the distribution of atom occupation in the
form of a histogram. Each bin in the histogram has a
length of one lattice constant (a = 0.29 nm), and its
height represents the number of iron atoms within that
region of the nanocrystal. Additionally, Fig. 4 indicates,
in red and blue, the number of atoms that are in the
initial configuration (t = 0 ms) in regions A and C re-
spectively (vertical position of gray, red, and blue regions
is meaningless). In subsequent snapshots, these atoms
move from one region to another, as discussed previously.
For example, we find that atoms which at t = 0 ms are in
region A (red) by time t = 30 ms are almost entirely in
region B. By t = 90 ms these atoms are distributed along
regions C and D, while at t = 180 ms they are entirely in
region D. On the other hand, atoms initially (t = 0 ms)
in region C (blue) are in region D by t = 30 ms and re-
main stationary in region D until entering region A at
t = 180 ms.
Finally, Fig. 5 shows the computed flow of atoms in

the nanocrystal as a function of their radial coordinate
and the coordinate along the cylinder axis. For each step
in the kinetic Monte Carlo simulation we recorded the
initial atomic coordinate (ri) in the nanocrystal center-
of-mass reference frame and direction of atomic step (rj−
ri). For a given coordinate ri averaging the directions of
performed atomic steps over all kinetic Monte Carlo steps
involving site ri gives us a flow vector fi ∼

∑

(rj − ri)
at that point. Darker regions in Fig. 5 indicate points
with larger magnitude of flow vector fi in logarithmic
scale. Arrows in Fig. 5 indicate the direction of flow
vector fi. We have neglected azimuthal components of
fi. Additionally, Fig. 5 shows flow vectors summed over
azimuthal component of initial coordinate ri.
We conclude from Fig. 5 once again that atoms are

moving only on the surfaces (regions A, B, and C) while
they remain stationary in the bulk (region D). Further-
more, from here we infer that atomic flow in regions A
and C (caps) is about 10 to 100 times larger than flow
in region B (this difference is somewhat obscured by the
logarithmic scale in Fig. 5). Nevertheless, flow in regions
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FIG. 3. Two dimensional projection of three dimensional
iron atom positions at eight different snapshots in the kinetic
Monte Carlo simulation. Various intensities of greyness corre-
spond to rows containing more (darker gray) or less (brighter
gray) iron atoms. The simulation temperature is 700 K, some-
what larger than in the experiment1, iron nanocrystal radius
is rcyl=1.11 nm, and the length is l = 4.31 nm. The electro-
migration force magnitude is Fem = 0.28 eV/nm.

A and C is hindered by a non-uniform direction of flow
vectors fi, while flow in region B is almost perfectly uni-
form (see direction of arrows in Fig. 5).

1. Dependence on nanocrystal length

In our kMC simulations we varied nanocrystal lengths
from l = 3 nm up to l = 40 nm (in temperature ranges

FIG. 4. Results from the same kinetic Monte Carlo simula-
tion as in Fig. 3 in the form of a histogram indicating the
number of iron atoms within each bin with length of one lat-
tice constant(a = 0.29 nm). The number of atoms initially
in region A (B) are colored red (blue) and their positions are
tracked during the simulation. Vertical position of the bars in
the histograms are arbitrary, only the height of each individ-
ual bar (gray, red, or blue) is to be interpreted as the number
of atoms within that bin.

from 500 to 900 K). We find that the center of mass speed
is nearly independent of the nanocrystal length. There-
fore movement of iron atoms near the carbon nanotube
(region B) is much more efficient than the diffusion of
atoms from region A to B (or vacancies from B to C). In
other words, it takes an iron atom long time to go from
region A to B (or vacancy to go from B to C), but once
iron atom reaches region B it proceeds quickly to region
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FIG. 5. Flow of iron atoms in the iron nanocrystal during its
movement through the nanotube. See main text for a more
detailed description. Larger flow magnitude is indicated with
darker shade of gray, on a logarithmic scale. Direction of flow
is shown with arrows (regardless of magnitude, all arrows have
the same length). For clarity all flow information is duplicated
from positive radial coordinates to the negative coordinates.
The simulation temperature in this calculation is 600 K, some-
what larger than in the experiment1, iron nanocrystal radius
is rcyl=1.11 nm, and the length is l = 4.31 nm. The electro-
migration force magnitude is Fem = 0.28 eV/nm.

C on the other side of the nanocrystal.

2. Dependence on temperature and electromigration force

We find a very strong dependence of the nanocrystal
center of mass speed on the temperature and electromi-
gration force. Circular symbols in Fig. 6 show kinetic
Monte Carlo results for the iron nanocrystal center of
mass speed on a logarithmic scale for varying tempera-
ture and electromigration force. (Similarly, Fig. 1 shows
in linear scale speed for a single temperature.) Nanocrys-
tal cross-sectional area and length in this calculation are
kept constant.
When the electromigration force on iron atoms be-

comes too large, we find that the iron nanocrystal move-
ment becomes unstable and it can breakup into smaller
pieces. Occurrence of such instability in the model also
depends on the thickness of region in which iron atoms
experience electromigration force, and we discuss this de-
pendence in more detail in Sec. III A 5. Some experimen-
tal evidence for this kind of behavior has been seen in
Ref. 2.
Kinetic Monte Carlo results shown in Fig. 6 clearly

show that motion of iron nanocrystal is temperature ac-
tivated, which motivated us to model its movement with
that of an effective single particle in an external potential.
In appendix A we derived an expression for the speed of
one particle in periodic external potential (barrier height
B and period L) under the influence of constant external
force F , and in contact with a thermal bath at tempera-

ture T . Using this expression we can now try to fit our
kinetic Monte Carlo results for center of mass speed to
the following functional form,

v = ṽ exp

(

−
B̃

kT

)

sinh

(

1
2 L̃F

kT

)

. (4)

Here ṽ, B̃, and L̃ are fitting parameters which correspond
respectively to the velocity prefactor, barrier height and
period of external potential for this single effective par-
ticle. We set force F to equal electromigration force ex-
perienced by a single iron atom in the simulation, Fem.
Lines in Fig. 6 show the fit of the kinetic Monte Carlo

simulation results to the functional form given by Eq. 4.
One can see that this functional form reproduces quite
well simulated results. Fitted values of for velocity pref-
actor ṽ, effective barrier height B̃, and effective period L̃
are,

ṽ = 3.3 m/s, B̃ = 1.2 eV, L̃ = 1.4 nm. (5)

3. Dependence on nanocrystal cross-section area

Finally, we analyze the dependence of iron nanocrys-
tal center of mass speed on the nanocrystal cross-section
area. The number of atoms that need to travel from re-
gion A to region C in order for the crystal to move a
certain fixed length is proportional to nanocrystal cross-
section area ∼ r2cyl. However, with increasing cross-
sectional area the number of pathways to travel through
region B is also increasing, but only as ∼ r1cyl. Naively,
one would therefore expect that center of mass speed of
an iron nanocrystal will be proportional to ∼ r−1

cyl . How-
ever, our calculations find that there is lot of variations
on top of overall trend of decreasing center of mass speed
with radius rcyl. The reason for this discrepancy we find
in the following. Nature of diffusion pathways in region B
of iron nanocrystal will depend strongly on the details of
the cylindrical boundary of the iron nanocrystal. For ex-
ample, we find that for some specific values of nanocrystal
radius rcyl one can have in region B precisely two rows
of iron atoms on top of iron (011) surfaces. Our model
from Eq. 2 predicts that there is very small diffusion bar-
rier for movement along these two rows of atoms (since

Zi
Fe = Zj

Fe = 3) which means that movement along re-
gion B (and possibly into or out of region B) is greatly
enhanced.
Repeating the fit to the effective particle model from

Eq. 4 for nanocrystals with varying cross-sectional area
we find that fitting parameters appearing in exponential
and sinus hyperbolic functions: B̃ and L̃ are almost unaf-
fected. Only parameter which seems to depend on cross-
section area is velocity prefactor ṽ, which is of smaller
importance. For example, when comparing our results
to experiment in Sec. III A 4 precise value of ṽ will be of
almost negligible importance as compared to values of B̃
and L̃ appearing inside exponential and sinus hyperbolic
functions in fitting function, Eq. 4.
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More specifically, we performed calculations for five
different nanocrystal radii rcyl ranging from 1.05 nm
to 1.73 nm, corresponding to cross-sectional area from
3.46 nm2 to 9.40 nm2. Among these five calculations we
find that largest fitted value of parameter ṽ is about three
times larger than for the case with smallest value of ṽ.
On the other hand, parameters B̃ and L̃ are varying only
about 10%.

4. Comparison with experiment

In Ref. 1 the speed of an iron nanocrystal was measured
as a function of an applied external voltage V and current
I (red square symbols in Fig. 6). On the other hand, in
our kinetic Monte Carlo simulation we compute the speed
of an iron nanocrystal as a function of electromigration
force Fem (black circles in Fig. 6). In order to relate Fem

to I we first assume that the electromigration force Fem

is linearly proportional to the current density j,

Fem = Kj, (6)

and we later obtain the parameter K by fitting to the
experiment. (The linear dependence of Fem on j as in
Eq. 6 is consistent with an electron wind force mechanism
as discussed in Refs. 12 and 21.)
We crudely estimate the current density j in the iron

nanocrystal by making the following set of assumptions.
First, we assume a constant current density profile per-
pendicular to the carbon nanotube axis, both in the iron
nanocrystal and in the carbon nanotube. Second, we as-
sume that the conductivity of the iron nanocrystal equals
that of the bulk iron. Both of these assumptions likely
underestimate the current density j (and therefore over-
estimate K). Nevertheless, under these assumptions,
current density j flowing through the iron nanocrystal
is given as,

j =
I

Atube

(

ρiron
ρtube

+
Airon

Atube

)

−1

. (7)

Here, Atube and Airon are cross-sectional area of carbon
nanotube and iron nanocrystal respectively. We estimate
Atube and Airon from inner and outer diameters of the
carbon nanotube used in Ref. 1 (5 − 7 nm and 35 nm
respectively). For the resistivity of iron ρiron, we use 8.6 ·
10−8 Ω m, while the resistivity of the carbon nanotube
ρtube we can compute from the length of the tube (2 µm),
Atube, V , and I. This procedure gives us ρtube ∼ 2.6 ·
10−6 Ω m, close to the bulk resistivity of graphite.
We obtain good agreement with experimental

measurements1 of the iron nanocrystal center of mass
speed using K = 0.18 eV nm/µA and temperature
T = 350 K (compare dashed red line and red symbols
in Fig. 6). However, we expect that there is a large un-
certainty in value of parameter K due to our crude esti-
mate of current density j. We are unaware of any other
theoretical or experimental estimates of electromigration

FIG. 6. Dependence of iron nanocrystal center of mass speed
on electromigration force (black) and total electrical cur-
rent I (red). Kinetic Monte Carlo simulation (black circles)
was done for temperatures from 500 K to 900 K in steps
of 50 K, iron nanocrystal radius for all calculations equals
rcyl=1.05 nm, while length is l = 4.31 nm. A fit to model
from Eq. 4 with parameters given in Eq. 5 is shown with
black lines for temperatures from 350 K to 900 K in steps
of 50 K. Experimental data from Ref. 1 is shown with red
squares, and fit to model from Eq. 4 to experimental data is
shown with red dashed line (temperature used in fit is 350 K,
consistent with an independent experimental estimate). Rela-
tionship between electromigration force (bottom axis, black)
and estimated current density j through the iron nanocrystal
(topmost axis, blue) is given by Eq. 6 as discussed in the text.

force coefficient K in iron. Additionally, the value of the
parameter K varies a lot across the periodic table21 both
in magnitude and sign. Furthermore, the value of the pa-
rameter K is very sensitive to the structural parameters.
For example, it can vary a great deal between fcc and
bcc phases of the material21. Interestingly enough, the
largest value of the parameter K among all cases studied
in Ref. 21 is that of an iron impurity electromigrating
in aluminum (K = 0.01 eV nm/µA), which is within an
order of magnitude of our estimated value of K.

Experiments in Ref. 1 have been performed at room
temperature, but the actual temperature on the carbon
nanotube has not been measured directly. Independent
estimates, based on Joule heating and thermal conductiv-
ity of the Si3N4 substrate, give an estimated temperature
of ≈ 440 K, consistent with our fitted value. A similar
value is obtained by scaling the Joule heating power to
that used in Ref. 22 where temperature of the carbon
nanotube has been directly measured.
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5. Robustness of results on model parameters

Now we will discuss robustness of our results on
changes in model parameters. There are four parame-
ters (a, b, c, and d) in Eq. 2 which have all been fit-
ted to first-principles DFT calculation. Additionally we
assumed that the electromigration force Fem influences
only iron steps when either initial site i, or final site j
are immediately next to the carbon nanotube.
Let us start by testing robustness of our results on

four parameters from Eq. 2. We performed series of cal-
culations in which we either increased or decreased by
15% each of these four parameters separately. We find
in all eight calculations that qualitative character of iron
nanocrystal movement remains unchanged. Additionally,
dependence on temperature and electromigration force
remains qualitatively the same as in Eq. 4. Quantita-
tively, we find small changes in the fitting parameters ṽ,
B̃, and L̃. The resulting iron nanocrystal center of mass
speed is more sensitive to parameters b and c than to a
and d.
Additionally, we tried removing the dependence of dif-

fusion energy barrier height on initial number of first
neighbor iron atoms Zi

Fe. Therefore we set parameter b to
zero and vary value of parameter a. We again find quali-
tatively the same dependence of center of mass speed as
in Eq. 4. We changed the value of the parameter a from
0.4 to 0.7 eV and the main quantitative difference we find
is that effective period L̃ is about two times smaller than
using original values of a, b, c, and d parameters.
Another robustness test we performed is to increase

region in which iron atoms feel influence of the electro-
migration force Fem. Instead of just considering atoms
which are in contact with carbon atoms, we redid calcu-
lation in which this region was increased so as to include
iron atoms up to 0.4 nm away from the carbon nanotube.
Also, as an extreme case, we redid calculation where elec-
tromigration force Fem was acting on all iron atoms. We
find that with different regions in which the force Fem is
acting on the iron nanocrystal center-of-mass is almost
unaffected.
Nevertheless, we find that with increasing region in

which force Fem is acting, iron nanocrystal starts to
breakup at smaller and smaller forces. When only first
layer of iron atoms is experiencing electromigration force,
nanocrystal starts to break when force |Fem| is larger
than 0.5 eV/nm (other parameters are as in data from
Fig. 1). When iron atoms up to 0.4 nm away from
the nanotube are experiencing electromigration force,
nanocrystal breaks up for forces above 0.25 eV/nm. Fi-
nally, when all iron atoms are experiencing electromigra-
tion force, breaking occurs already above 0.15 eV/nm.

B. Movement through a constriction

Now we will describe movement of iron nanocrystal
through a tube with a varying cross-section. At first,

FIG. 7. Two dimensional projection of three dimensional
iron atom positions at eight different snapshots in the kinetic
Monte Carlo simulation, as in Fig. 3. Various intensity of
greyness correspond to rows containing more (darker gray)
or less (brighter gray) iron atoms. The simulation tempera-
ture is 700 K, somewhat larger than in the experiment9, iron
nanocrystal radius in the region on the left is rcyl=1.35 nm,
and on the right is rcyl=1.11 nm (as in Fig. 3). Therefore,
cross-section area on the left is about 50% larger than on the
right. Length of iron crystal at t = 0 ms is l = 4.31 nm. The
electromigration force magnitude is Fem = 0.28 eV/nm.

it seems surprising that solid piece of iron nanocrystal
could move through constrictions in nanotube with cross-
section smaller than nanocrystal cross-section. However,
taking into account the character of the iron nanocrys-
tal movement we discuss in Sec. III A, it becomes clearer
why this is possible. Iron atoms in region D remain sta-
tionary and therefore do not need to move through a con-
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striction directly. On the other hand, when iron atoms
move from region B into region C, they adapt to tube
with smaller cross-section. Movement of iron nanocrys-
tal through a constriction in the carbon nanotube has
been experimentally demonstrated in Ref. 9.
Figure 7 shows kinetic Monte Carlo simulation results

of a movement of iron nanocrystal through a tube with
area 5.7 nm2 that gets shrunk to 3.9 nm2. One can see
that between moment t = 50 ms and t = 300 ms iron
nanocrystal was able to move through a constriction. We
find the same behavior for other ratio of nanotube cross-
sections.

IV. CONCLUSION

Our first-principles based on kinetic Monte Carlo simu-
lations of iron nanocrystal inside carbon nanotube show
the nature of movement of iron nanocrystal. We find
that the iron nanocrystal does not move as a whole but
instead atoms are moving only on the surfaces, from one
end of crystal to the other. See Sec. III A for more de-
tail. Consistent with this observation, we also find that
an iron nanocrystal is able to move through a constriction
in the carbon nanotube that has larger diameter than the
nanocrystal.
Somewhat surprisingly we find theoretically that an

iron nanocrystal center of mass speed does not depend
on the length of the nanocrystal. We attribute this to
the fact that individual iron atom moves through region
B quite fast, compared to time spent in region A, or C.
Furthermore, we find that movement of entire nanocrys-
tal can be modeled quite well as thermally activated mo-
tion of single particle in tilted periodic potential with
period of 1.4 nm, and barrier height 1.2 eV, regardless
of carbon nanotube area, length, temperature, or elec-
tromigration force. In future, it would be interesting to
measure experimentally dependencies of center of mass
speed on nanocrystal length, area, and temperature. So
far, only dependence on external current has been estab-
lished, for fixed length, area, and temperature.
In our model we assumed that only iron atoms next to

the carbon nanotube are experiencing electromigration
forces. Nevertheless, even if we allow a larger region of
iron atoms to experience electromigration force (or even
entire iron nanocrystal) we still find that iron nanocrys-
tal can move through the carbon nanotube. However,
as this region gets larger and larger, movement of iron
nanocrystal becomes more and more unstable.
Comparing the experimentally measured speed of an

iron nanocrystal with our model calculation we estimate
that temperature of iron nanocrystal is not much larger
than room temperature (∼ 350 K) which is in agree-
ment with crude estimates from Joule heating. Further-
more, we find that relationship between current den-
sity through iron nanocrystal and force on individual
iron atoms is given by constant of proportionality K =
0.18 eV nm/µA.
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Appendix A: Diffusion in one-dimensional periodic

potential

Diffusion in a one-dimensional periodic potential U(x+
L) = U(x) under application of an external force F can
be modeled by the following equation of motion,

η
dx

dt
= F −

dU

dx
+
√

2ηkTξ(t). (A1)

Here η is friction coefficient, and x(t) is position of par-
ticle at time t. The stochastic force on the particle due
to thermal fluctuations at temperature T is modeled by
a random variable ξ(t) with zero mean value, 〈ξ(t)〉 = 0
and a Dirac delta correlation, 〈ξ(t)ξ(t′)〉 = δ(t− t′). The
analytic expression for the average velocity of the particle
governed by such equation is given as23,

v =
LkT

η

1− exp
(

−LF
kT

)

∫ L

0

∫ L

0
exp U(x)−U(x−x′)−Fx′

kT dxdx′

. (A2)

For a sawtooth potential (U(x) = x2B
L for 0 < x < L/2

and U(x) = 2B − x2B
L for L/2 < x < L) with period L

and barrier height B one can show that in the limit of
kT ≪ B and 1

2FL < B velocity of particle is given as,

v ≈
2B2

ηLkT
exp

(

−
B

kT

)

sinh

( 1
2LF

kT

)

. (A3)



11

∗ sinisa@civet.berkeley.edu
1 G. E. Begtrup, W. Gannett, T. D. Yuzvinsky, V. H. Crespi,
and A. Zettl, Nano Letters 9, 1835 (2009).

2 K. Svensson, H. Olin, and E. Olsson,
Phys. Rev. Lett. 93, 145901 (2004).

3 G. E. Begtrup, W. Gannett, J. C. Meyer, T. D.
Yuzvinsky, E. Ertekin, J. C. Grossman, and A. Zettl,
Phys. Rev. B 79, 205409 (2009).

4 M. Loffler, U. Weissker, T. Muhl, T. Gemming, J. Eckert,
and B. Buchner, Advanced Materials 23, 541 (2011).

5 D. Golberg, P. Costa, M. Mitome, S. Hampel,
D. Haase, C. Mueller, A. Leonhardt, and Y. Bando,
Advanced Materials 19, 1937 (2007).

6 C. Jin, K. Suenaga, and S. Iijima,
Nat. Nano. 3, 17 (2007).

7 B. C. Regan, S. Aloni, R. O. Ritchie, U. Dahmen, and
A. Zettl, Nature 428, 924 (2004).

8 M. Sun and Y. Gao, Nanotechnology 23, 065704 (2012).
9 S.C., W.G., A.Z., S.G.L., M.L.C., PRL 2013.

10 R. Car and M. Parrinello,
Phys. Rev. Lett. 55, 2471 (1985).

11 Therefore kMC method neglects possible atomic recon-
struction on the iron nanocrystal surface.

12 R. S. Sorbello, in Theory of Electromigration , Solid State
Physics, Vol. 51, edited by H. Ehrenreich and F. Spaepen

(Academic Press, 1997) pp. 159 – 231.
13 G. Henkelman, B. P. Uberuaga, and H. Jónsson,

The Journal of Chemical Physics 113, 9901 (2000).
14 J. M. Soler, E. Artacho, J. D. Gale, A. Garcia,

J. Junquera, P. Ordejon, and D. Sanchez-Portal,
Journal of Physics: Condensed Matter 14, 2745 (2002).

15 K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C.
Langreth, Phys. Rev. B 82, 081101 (2010).

16 I. Hamada and M. Otani, Phys. Rev. B 82, 153412 (2010).
17 S. R. Bahn and K. W. Jacobsen,

Comput. Sci. Eng. 4, 56 (2002).
18 A. Bortz, M. Kalos, and J. Lebowitz,

Journal of Computational Physics 17, 10 (1975).
19 A. Voter, in Radiation Effects in Solids, NATO Science Se-

ries, Vol. 235, edited by K. Sickafus, E. Kotomin, and
B. Uberuaga (Springer Netherlands, 2007) pp. 1–23.

20 J. L. Blue, I. Beichl, and F. Sullivan,
Phys. Rev. E 51, R867 (1995).

21 J. P. Dekker and A. Lodder,
Journal of Applied Physics 84, 1958 (1998).

22 G. E. Begtrup, K. G. Ray, B. M. Kessler,
T. D. Yuzvinsky, H. Garcia, and A. Zettl,
Phys. Rev. Lett. 99, 155901 (2007).

23 H. Risken, The Fokker-Planck equation: Methods of solu-

tion and applications, Vol. 18 (Springer Berlin, 1996).

mailto:sinisa@civet.berkeley.edu
http://dx.doi.org/ 10.1021/nl803800c
http://dx.doi.org/10.1103/PhysRevLett.93.145901
http://dx.doi.org/10.1103/PhysRevB.79.205409
http://dx.doi.org/10.1002/adma.201002247
http://dx.doi.org/10.1002/adma.200700126
http://dx.doi.org/10.1038/nnano.2007.406
http://dx.doi.org/ 10.1038/nature02496
http://stacks.iop.org/0957-4484/23/i=6/a=065704
http://dx.doi.org/10.1103/PhysRevLett.55.2471
http://dx.doi.org/10.1016/S0081-1947(08)60191-5
http://dx.doi.org/10.1063/1.1329672
http://stacks.iop.org/0953-8984/14/i=11/a=302
http://dx.doi.org/ 10.1103/PhysRevB.82.081101
http://dx.doi.org/10.1103/PhysRevB.82.153412
http://dx.doi.org/10.1109/5992.998641
http://dx.doi.org/10.1016/0021-9991(75)90060-1
http://dx.doi.org/10.1007/978-1-4020-5295-8_1
http://dx.doi.org/10.1103/PhysRevE.51.R867
http://dx.doi.org/10.1063/1.368327
http://dx.doi.org/ 10.1103/PhysRevLett.99.155901

