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We present a microscopic theory of neutral excitons ancgettbexcitons (trions) in monolayers of transition
metal dichalcogenides, including molybdenum disulfide.r @eory is based on arffective mass model of
excitons and trions, parametrized bly initio calculations and incorporating a proper treatment of singe
in two dimensions. The calculated exciton binding energresin good agreement with high-level many-body
computations based on the Bethe-Salpeter equation. Fomohe, our calculations for the more complex trion
species compare very favorably with recent experimentalsmements, and provide atomistic insight into the
microscopic features which determine the trion binding-gyne



I. INTRODUCTION

Monolayer transition metal dichalcogenides (TMDs) hawerdly emerged as two-dimensional (2D) semiconductirey-alt
natives to metallic graphene with remarkable propeftiég&or example, Mo§ a prototypical family member, exhibits strong
photoluminescencg? high charge mobility, and selective optical pumping of spin and valley degreessafdon®’ Typically
produced by mechanical exfoliation, MpBas more recently been synthesized via chemical vapor diepgs® opening the
door to further investigation on large, high-quality saegphnd incorporation into atomically thin optoelectroreeides. Quite
recently, several studies have demonstrated the genegattbelectrostatic manipulation of singly-charged exw§tortrions in
Mo0S,,° MoSe,t and WSe,*? akin to those previously observed in quasi-2D semicondugtantum wells3-1>However, the
large magnitude of observed trion binding energies (20-80nis unprecedented. This is a clear signal that such atdipic
thin semiconductors exhibit unusually strong Coulombritéons.

The scenario revealed by experiments to date is summariztatiplly in Fig. 1, which shows the 2D hexagonal lattice of
MoS; in panel (a) and the low-energy band structure near the fuedéal, direct gap at thi point in panel (b), including
significant spin-orbit splitting in the valence band. Thitdagives rise to two distinct excitonic features, labefe@indB in the
schematic absorption spectrum shown in panel (c). The pyimecitonic features show a substantial binding enerdgtive
to the electron-hole continuum, e.g. for the neutral exgiten. The exciton features exhibit a fine structure, with a spitt
attributable to the formation of trions labeléd andB~, with binding energiega- andEg-. The B~ trion has not yet been
experimentally observed to the best of our knowledge.

In this work, we present a microscopic theory of excitorfteets in monolayer TMDs that describe the main features shown
in Fig. 1 remarkably well. Our theory is based on two-body #ime&:e-body excitonic Hamiltonians in théfective mass
approximation with screened interactions appropriatsfioctly 2D semiconductors. The Hamiltonians are parairedrbyab
initio calculations. Variational wavefunctions, inspired byvioes treatments of excitons in semiconductor quantumsgite
are employed. By treating neutral and charged excitons oeqaal footing, we achieve an internal consistency thatgiel
accurate, nontrivial predictions for neutral excitonsielailso providing quantitative insight into the more conxtéon species
as well as trion binding energies that agree well with thageried from experiment. Our theory yields exciton bindemgrgies
in good, overall agreement with receit initio calculations based on the Bethe-Salpeter eqution TMDs.2%-23 Extension
of those calculations to the three-body trion problem iseexgd to be quite challenging.

Il. METHODS

Within the efective mass approximation;! = ngt + m,;l, our theory employs the neutral excitonic Hamiltonian
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FIG. 1. Top and side view of monolayer Mp&), low-energy band structure near egoint calculated by density functional theory with a
rigid shift to increase the gap (b), and schematic absorgp@ctrum (c). Panel (b) shows the parabolic band struass@med in theffective
mass approximation for th& (blue) andB (red) excitons that result from the sizable spin-orbittsiplj Ag, ~ 200 meV.



and trion Hamiltonian

1,5 2 1
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= Vap(p1) = Van(p2) + Van(lp1 — p2l),

the latter of which is a generalization of the familiar Hawiiian for the negative hydrogen /nor for trions in quasi-2D
quantum well$5-18 |t implicitly assumes that the trion can be treated as araied| three-body problem reached in the low
doping limit®. This approximation precludes the observation of Fermeeafigcts arising from the dynamical response of the
electron gad>2?%an dfect which has been observed in the absorption spectra op MdSe also neglect interband mixing, due
to the large spin-orbit splitting in TMDs, and consider otilg A exciton and and its associated trion feature (see Fig.; 1)

B features could be treated analogously. We also neglectraegvalley K—K’) coupling under the assumption of a selective,
circularly polarized excitatiof.” The use of linear polarization can excite coherent supéipos of valley excitons, inducing

a valley exchange interactidAalso not treated here.

In typical experiments, the monolayer TMD material is surrded by an environment with dielectric constasitgabove)
ande; (below), but the electron and hole are restricted to orbitiat are primarily made up of Tid-states at the center of
the trilayer TMD unit. When there is a large dielectric cast; which is typical of monolayer TMDs in vacuum or on weak
dielectrics, the fective in-plane 2D interaction for charges separatea by(x? + y?)¥? reduces to a form derived by Keldy3h,
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whereHg andYy are the Struve function and the Bessel function of the se&arl This interaction behaves like a screened
1/p Coulomb potential at long range, but has a weaker logariliinergence at short range, where the crossover is detedmin
by the screening lengjty. The above interaction follows for a geometry which assuthesnonolayer material has a thickness
d and isotropic dielectric constant for which the screening length is given py = de/(e1 + €2). In the strictly 2D limit of

a polarizable plane in vacuum(; = 1), Cudazzcet al. have recently rederived Eq. (3), showing that the screeleingth is
given bypo = 27y2p, Whereyzp is the 2D polarizability of the planar materf@ For the case of surrounding vacuum, we have
numerically verified that the screening length often timas be accurately calculated using either definitiopgfvide infra,
assuming that the relevant dielectric constant of the nay@olis the in-plane component of the dielectric tensor efbiik
material. Within this simple approximation, one can retm# classical electrostatic solution of a three-dieleciab geometry.
This solution naturally interpolates between a bulk 3Driat¢ion and the quasi-2D interlayer interaction aboveyahg for a
systematic study of layer thicknes$ezts on the evolution of excitons. Here, we focus only ondftr@eding monolayer TMDs,
but in future work on mono- and multi-layer TMDs in novel emriments, the more general treatment of screening will be
essential.

The necessary parameters for the exciton and trion Harrahsrcan be calculated from first principles. Tlfkeetive masses
can be extracted from the low energy band structure (se€lHiy), calculated in density functional theory (DFT) or @B&/
approximatior?® To extract the 2D polarizability, and thus the screeningtlepo, we modify the protocol in Ref. 28 slightly.
We employ the relation

et(le) =1+ ‘hl_ﬂ +0(1/L2) 4)

C

whereL, is the interlayer separation for a supercell contairtimgAB-aligned monolayers of TMD separated by vacuum. The
in-plane dielectric constast- is the @, gy) — O limit of the head of the inverse dielectric tensor, caltedavithin the random
phase approximation (RPAY.Our protocol naturally interpolates between bulk TMIDs £ ¢/2 wherec is the lattice constant)
and monolayer TMDsl(; — o). This procedure tests the extraction of the monolayer 2Brpability from the bulk dielectric
constant via Eq. (4) retaining only the term of ordét.d A survey of calculated bulk dielectric constants for Mdf&m our
own and other reported works can be found in Appendix A.

We study four monolayer TMDs: M@SMoSe, WS,, and WSe. The dfective mass of the electron and hole were calculated
based on the parametrized band structures of Xtaa..> Thek - p Hamiltonian adopted in that work includes terms up to
first order ink, yielding identical electron and hole masses. Higher otelens ink predict difering efective masse¥,*? as
also found inab initio calculations’®23:33:34Fqr evaluation of the polarizability, DFT and subsequent RBIculations were
performed with theouanTum EsprEsso®® and BerkELEYGWS® packages, respectively. For MgSn addition to the RPA result
obtained with DFT input, we have also calculated the RPAedieic constant with an approxima@W\ input, obtained by
applying anL-dependent rigid shift to the unoccupied DFT bantiBSY (L) = AESW(o0) — a/L¢, With AESW(0) = 1.2 eV
anda = 6.15 eV'A, based on the results of Ref. 21. Further computationaliideippear in Appendix B.

Using Mo$ as an example, Fig. 2 shows the calculated dielectric conhstaand the two-dimensional polarizabilifysp
as a function of the interlayer separatibp employed in the supercell calculations. The dielectricstant clearly follows
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FIG. 2. In-plane dielectric constant (a) and two-dimenaigolarizability (b) of Mo$ as a function of the interlayer separatiopemployed

in the supercell calculations. The smallest valud.gémployed corresponds to bulk MaSSolid and dashed lines in panel (a) correspond
to 1+ 4ny.p /L With yop extracted from panel (b). Open symbols denote the valuesiradat via DFT and self-consiste®W reported in
Refs. 38 and 34, respectively.

Eq. (4), giving the trivial limit of unity in theL; — oo limit. Many studies utilize similar 3D supercells to calatd dielectric
properties for 2D monolayer materi&s3*37-38Two reported values for Ma8*38 are plotted in Fig. 2(a), showing agreement
with the present results. From these results, it should éer ¢that the dielectric constant at a fixed supercell sizethey with
an dfective J/er screened Coulomb interaction does not represent dielectréening in monolayer TMDs. Furthermore, use of
the conventional 2D Wannier-Mott theory with such a modagtmate exciton binding energies or rddfit*is not physical. In
contrast, the two-dimensional polarizability shown in.E¢b) converges to a finite and physically meaningful vahekependent
of the final supercell siZ&. Specifically, we findk,p = 6.6 A and 5.0 A, for DFT an@&W, respectively. These values imply a
two-dimensional screening length@f ~ 30—40 A. To elucidate trends across materials, we use the-BPA value and discuss
the impact of the smallggW polarizability below. Interestingly, we see that the DFTigsizability extracted from bulk MoS2
is extremely close to its converged monolayer value, shgihe near-equivalence of the two previously discussed itliefis
of screening lengthyg = 2ryop(Le = €/2) = d(e* — 1)/2 ~ de*/2.

As a first approximation to the neutral excitonic propertésnonolayer TMDs, we employ the total exciton wavefunction
Wx(re rn) = ¥x(re—rn)éc(re)dv(rn), wherep. andg, are conduction and valence Bloch wavefunctions, with a Emwgriational
guess for the envelope function,

Ux(p; @) = ¥x(p; ) = V2/ma? exp(-p/a). ®)

This variational wavefunction becomes te@ct ground state wavefunction in the limit of weak screeningeweV (o) —

1/p. For a nonzero polarizability, the wavefunction is no longeact, but will exhibit the correct asymptotic behavioe. i
exponential decay for distances larger than the screeaimghpg. For this wavefunction, the kinetic energy is easily shown
to beT(a) = 1/(2ua®) and the potential energy(a) is readily evaluated by quadrature. The exciton bindingrgyis then
found by minimizingEx = T(a) + V(a), where the optimum value @ is an estimate of the exciton radius. Such a variational
solution to the 2D Hamiltonian (1) has recently been empdagieelated, strongly interacting 2D materiafst' Our preliminary
results using a numerically exact grid-based diagonatizaif the Hamiltonian (1) suggest the the variational agpnation is

an excellent one, as will be analyzed in more detail in futuoek.

For the trion envelope wavefunction, we consider the simptétional form

Ux-(p1, p2; &, b) = 27 %[yx(p1; @)wix(p2; b)

+ Yx(p1; D (o2; d)], (6)

a symmetrized product of exciton wavefunctions. First psgul by Chandrasekh&rjt is perhaps the only two-parameter
wavefunction to correctly predict a bound state of the riegatydrogen iorf* The difering exciton radiia # b, essentially
allows one electron to sit close to the hole, near the neaekaiton radius, while the other is further away to minimibe t
unfavorable electron-electron repulsion. A polarizatierm (1+ cp;2) can also be included, although we will not do so here
for simplicity. For such a variational wavefunction, Eq),(&ith no dependence on the distance between the two efegtitoe
so-called Hughes-Eckart terRy, - V,, vanishes? simplifying the numerical calculations. Again, the kireeéinergy can be
evaluated analytically and the potential energy can bautatied numerically as a three-dimensional integral.



I11. RESULTS

The results for all four TMDs considered in this work are susmired in Table I. Exciton binding energies are all predicte
to be around 0.5 eV, with the ordering MpS WS, > MoSe > WSe. This trend generally agrees with recabtinitio Bethe-
Salpeter equation (BSE) calculations on the same four méé? Specifically for Mo$, we find a binding energy of 0.54 eV
and an exciton radius of 10.4 A. Four recent BSE stutfieS,which vary in details of implementation, give results thaty
by a factor of two, falling between 0.5 and 1.1 eV (Table I).omt@chnical challenges need to be fully resolved: convergen
with respect to Brillouin zone sampling and the extrapolatf the results th.. — oo limit, a particular challenge for thew
results?® Self-consistency would reduce screening, as is evidenignZ If we use ouiGW polarizability in the monolayer
limit, we find a correspondingly larger binding energy of ab@.7 eV. It is common for DFT to overestimate polarizajpijlénd
so taken together, our variational estimates predict aitaxbinding energy between 0.5 and 0.7 eV. All things coaed, our
variational estimate for the exciton binding energy is imdagreement with availab# initio calculations.

Carrying out the variational minimization &x- = (Yx-|Hx-l¥x-) for MoS,, we find a trion binding energy (defined as the
difference between the trion and exciton variational energpesyeen 26 and 32 meV using the DFT &&@ polarizability,
respectively. These values are impressively close to tper@rental value of 18 meW, suggesting that the approximations
used here, including the form of the variational wavefumttiare accurate and physically meaningful. We find optiadii of
a=103Aandb = 252 A, i.e. one electron is at the neutral exciton radius whikedther is more than twice as far away, just
as in the negative hydrogen ion. The largeness of this trindithg energy, which is almost exactly equal to thermal gpet
room temperature, suggests that trions are intrinsicaliypeant and may play active roles in the excitonic physicaafiolayer
TMDs.

The calculated trion binding energies for all four TMDs seatifall in the range of 20—-30 meV, in reasonable agreement
with recently measured trion binding energl€s? The similarity of trion binding energies in Mogand WSe is perfectly
reproduced. We find competingdfects in the trion binding energy, parallel to the well-knotrends for the exciton binding
energy. As Fig. 3 shows, increase ffieetive mass or reduction in polarizability both lead to styer trion binding. The exciton
mass is largely determined by the metal (i.e. Wi@rsus Mo 4 electrons) whereas the polarizability depends on both talm
and the chalcogen: selenides have larger polarizabitities sulfides, and within a given chalcogenide family, mditum
yields larger polarizabilities than tungsten. This argatradso predicts a larger trion binding energy in MdBan in MoSe,
contrary to the limited experimental results to d&t&! However, while the experiments on MoSand WSe were done almost
identically, the experiments on Me®equired significant gating to achieve charge neutralityexhibited extensive broadening
in the lineshapes, both argued to be artifacts of defeatsdnted by mechanical exfoliatidf.Definitive trends for intrinsic
trion binding energies remain an ongoing challenge for logiory and experimettt

We briefly consider the positive trion. Its Hamiltonian iidical to Eq. (2), except that the electron mass replaeehdle
mass in the Hughes-Eckart term. Since this term vanishesufochoice of wavefunction, we predict the positive trionding
energy to be identical to that of the negative trion. Moreeagally, any diference in the electron and hole masses ofilscts
the binding energy to the extent that the true wavefunctepetids explicitly on the distance between the electroms{(fpor
between the holes (fof*). This simple result may explain the equivalent positivd argative trion binding energies recently
observed in monolayer Mogé! although more recent results on WSshibit asymmetric trion binding energiés.

IV. CONCLUSIONS

While our variational approach has proved veffgetive, particularly to elucidate trends in the trion bimglenergies, several
physical €fects remain to be quantified. A non-variational treatmefitabiviously increase the neutral exciton binding energy,
although preliminary results show that both the variati@reergy and wavefunction are very accurate. Although weshav

TABLE I. Reduced mass (im), polarizability (in A), exciton binding energies (in eVie trion binding energies (in meV) of TMDs as
calculated with DFFRPA. Many-body Bethe-Salpeter equation (BSE) exciton inimanergies and experimental negative trion binding
energies are also listed.

Exciton binding energy Trion binding energy

4 xao Theory BSE Theory Exp

MoS, 0.25 6.60 0.54 1.0%1.1%* 26 180
0.5220.543

MoSe 0.27 8.23 0.47 0.92 21 301

WS, 0.16 6.03 050 1.082054° 26 NA

WSe 0.17 7.18 0.45 0.98 22 302




Ex-(meV)

N
~
]

0.3+

0.2+

0.1

Exciton mass i = m, /2 (mg)

0 2 4 6 8 10
Polarizability yop (A)

FIG. 3. Calculated trion binding energy as a function of tkeiten masg: and the 2D polarizability,p, along with the four TMDs considered
in this work. Contours are plotted in 5 meV increments. Itislent why the sulfides and selenides each have essentialaime trion binding
energies despite filering material properties.

neglected the repulsive electron-hole exchange intemraoithich would decrease the binding energy, the relatiaefye exciton
radius suggests that this contribution will be small.

The trion binding energy, being an enemdjyference, is presumably even less sensitive to thefeots, such that a favorable
cancellation of errors is likely responsible for the obsehaccuracy as compared to recent experiments. This |dfeat é&s
apparent in comparing binding energies based on DFTGMItholarizabilities: while the exciton binding energy incsea by
40%, the trion binding energy only increases by 20%. Othemat-scale factors include local fields in the screenedaution
at shorter range, the role of the perpendicular extent oétbetron and hole wavefunctions, and a more accurate tegdtof
the low-energy band structure that accounts for anisotimflye efective mass and trigonal warpinfects3-3?

Our encouraging results for neutral excitons has also eaged a search for excited state excitons, akin to the 2s, 3s,
etc. states of the hydrogen model. The numerically exaetsigites of the Hamiltonian (1) have been found to be in kel
agreement with measured peak positions in high-qualityotayer WS samples?® highlighting the particular form of the
screened electron-hole interaction discussed here.

To summarize, we have presented a simple, physically aipgethleoretical treatment of both neutral and charged emsit
in monolayers of TMDs, a family of prototypical two-dimeasal semiconductors. Our results highlight the strofigative
Coulomb interactions in monolayer TMDs and related 2D semueictors that result in a dominant role for excitons in the |
energy optical physics, including bound trions that mayuréhier engineered to play a significant role at room tempegdbr
device applications.
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Appendix A: Macroscopic dielectric constants of bulk M oS,

Unlike in the case of monolayer systems, the static dietectmstant is well-defined for bulk TMDs. Using the proceaur
described in the text, we have calculated the transverséagdudinal dielectric constant of bulk Mg%s an example. These
values are reported in Table Il and compared to other re@dues found in the literature.

Appendix B: Computational details

DFT calculations were performed with theantum Espresso®® software package, using a ¥212 x ny, k-point grid withny,
between 3 (for bulk) and 1 (for monolayer), using the excleaogrrelation functional of Perdew, Burke, and Ernzefofprm-



Reference gt gl
Present work (PBE) 14.29 6.87
Present work (approximatgWw) 13.36 6.60
38 (LDA) 15.40 7.43
34 (sEGW) 135 8.5
20 GoWo) ~ 145

TABLE Il. Static dielectric constants of bulk Mg%s determined by a variety of methods in the literature.

a(Ad) c(A) dux (A)
MoS, 3.16 12.30 1.59
MoSe 3.30 12.94 1.67
WS, 3.16 12.35 1.59
WSe 3.29 12.98 1.67

TABLE lll. Crystal structure lattice constanta énd c) and metal-chalcogen vertical separatiokyy) for the monolayer and bulk TMDs
employed in this work.

conserving pseudopotentials, and a plane-waveffootd0 Ry (~ 550 eV). RPA calculations were done with th&xeLeyow>®
package on the sankepoint grid and included 50 unoccupied bands. The size dfiglectric matrix is determined $? < E¢yt
where the cutfi energy is equal to the energy of the highest unoccupied bahdded. They — 0 limit is taken numerically
with a slightly shiftedk-point grid as described in Ref. 36.

For all materials studied, we employed experimental latticnstants and metal-chalcogen separations as givenlm[Tab
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