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We present a microscopic theory of neutral excitons and charged excitons (trions) in monolayers of transition
metal dichalcogenides, including molybdenum disulfide. Our theory is based on an effective mass model of
excitons and trions, parametrized byab initio calculations and incorporating a proper treatment of screening
in two dimensions. The calculated exciton binding energiesare in good agreement with high-level many-body
computations based on the Bethe-Salpeter equation. Furthermore, our calculations for the more complex trion
species compare very favorably with recent experimental measurements, and provide atomistic insight into the
microscopic features which determine the trion binding energy.
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I. INTRODUCTION

Monolayer transition metal dichalcogenides (TMDs) have recently emerged as two-dimensional (2D) semiconducting alter-
natives to metallic graphene with remarkable properties.1–3 For example, MoS2, a prototypical family member, exhibits strong
photoluminescence,2,3 high charge mobility,4 and selective optical pumping of spin and valley degrees of freedom.5–7 Typically
produced by mechanical exfoliation, MoS2 has more recently been synthesized via chemical vapor deposition,8,9 opening the
door to further investigation on large, high-quality samples and incorporation into atomically thin optoelectronic devices. Quite
recently, several studies have demonstrated the generation and electrostatic manipulation of singly-charged excitons ortrions in
MoS2,10 MoSe2,11 and WSe2,12 akin to those previously observed in quasi-2D semiconductor quantum wells.13–15However, the
large magnitude of observed trion binding energies (20–30 meV) is unprecedented. This is a clear signal that such atomically
thin semiconductors exhibit unusually strong Coulomb interactions.

The scenario revealed by experiments to date is summarized pictorially in Fig. 1, which shows the 2D hexagonal lattice of
MoS2 in panel (a) and the low-energy band structure near the fundamental, direct gap at theK point in panel (b), including
significant spin-orbit splitting in the valence band. The latter gives rise to two distinct excitonic features, labeledA andB in the
schematic absorption spectrum shown in panel (c). The primary excitonic features show a substantial binding energy, relative
to the electron-hole continuum, e.g. for the neutral exciton, EA. The exciton features exhibit a fine structure, with a splitting
attributable to the formation of trions labeledA− andB−, with binding energiesEA− andEB−. The B− trion has not yet been
experimentally observed to the best of our knowledge.

In this work, we present a microscopic theory of excitonic effects in monolayer TMDs that describe the main features shown
in Fig. 1 remarkably well. Our theory is based on two-body andthree-body excitonic Hamiltonians in the effective mass
approximation with screened interactions appropriate forstrictly 2D semiconductors. The Hamiltonians are parametrized byab
initio calculations. Variational wavefunctions, inspired by previous treatments of excitons in semiconductor quantum wells,16–18

are employed. By treating neutral and charged excitons on anequal footing, we achieve an internal consistency that yields
accurate, nontrivial predictions for neutral excitons while also providing quantitative insight into the more complex trion species
as well as trion binding energies that agree well with those inferred from experiment. Our theory yields exciton bindingenergies
in good, overall agreement with recentab initio calculations based on the Bethe-Salpeter equation19 for TMDs.20–23 Extension
of those calculations to the three-body trion problem is expected to be quite challenging.

II. METHODS

Within the effective mass approximation,µ−1 = m−1
e + m−1

h , our theory employs the neutral excitonic Hamiltonian
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FIG. 1. Top and side view of monolayer MoS2 (a), low-energy band structure near theK point calculated by density functional theory with a
rigid shift to increase the gap (b), and schematic absorption spectrum (c). Panel (b) shows the parabolic band structureassumed in the effective
mass approximation for theA (blue) andB (red) excitons that result from the sizable spin-orbit splitting∆so ≈ 200 meV.



3

and trion Hamiltonian

HX− = −
1
2µ

(

∇2
ρ1
+ ∇2

ρ2

)

−
1

2mh
∇ρ1 · ∇ρ2

− V2D(ρ1) − V2D(ρ2) + V2D(|ρ1 − ρ2|),
(2)

the latter of which is a generalization of the familiar Hamiltonian for the negative hydrogen ion24 or for trions in quasi-2D
quantum wells.16–18 It implicitly assumes that the trion can be treated as an isolated, three-body problem reached in the low
doping limit25. This approximation precludes the observation of Fermi edge effects arising from the dynamical response of the
electron gas,15,26 an effect which has been observed in the absorption spectra of MoS2.10 We also neglect interband mixing, due
to the large spin-orbit splitting in TMDs, and consider onlytheA exciton and and its associated trion feature (see Fig. 1(c)); the
B features could be treated analogously. We also neglect any intervalley (K–K′) coupling under the assumption of a selective,
circularly polarized excitation.5–7 The use of linear polarization can excite coherent superpositions of valley excitons, inducing
a valley exchange interaction,12 also not treated here.

In typical experiments, the monolayer TMD material is surrounded by an environment with dielectric constantsε1 (above)
andε2 (below), but the electron and hole are restricted to orbitals that are primarily made up of TMd-states at the center of
the trilayer TMD unit. When there is a large dielectric contrast, which is typical of monolayer TMDs in vacuum or on weak
dielectrics, the effective in-plane 2D interaction for charges separated byρ = (x2+y2)1/2 reduces to a form derived by Keldysh,27

V2D(ρ) =
πe2

(ε1 + ε2)ρ0

[

H0

(

ρ

ρ0

)

− Y0

(

ρ

ρ0

)]

, (3)

whereH0 andY0 are the Struve function and the Bessel function of the secondkind. This interaction behaves like a screened
1/ρ Coulomb potential at long range, but has a weaker logarithmic divergence at short range, where the crossover is determined
by the screening lengthρ0. The above interaction follows for a geometry which assumesthe monolayer material has a thickness
d and isotropic dielectric constantε, for which the screening length is given byρ0 = dε/(ε1 + ε2). In the strictly 2D limit of
a polarizable plane in vacuum (ε1,2 = 1), Cudazzoet al. have recently rederived Eq. (3), showing that the screeninglength is
given byρ0 = 2πχ2D, whereχ2D is the 2D polarizability of the planar material.28 For the case of surrounding vacuum, we have
numerically verified that the screening length often times can be accurately calculated using either definition ofρ0, vide infra,
assuming that the relevant dielectric constant of the monolayer is the in-plane component of the dielectric tensor of the bulk
material. Within this simple approximation, one can resortto a classical electrostatic solution of a three-dielectric slab geometry.
This solution naturally interpolates between a bulk 3D interaction and the quasi-2D interlayer interaction above, allowing for a
systematic study of layer thickness effects on the evolution of excitons. Here, we focus only on freestanding monolayer TMDs,
but in future work on mono- and multi-layer TMDs in novel environments, the more general treatment of screening will be
essential.

The necessary parameters for the exciton and trion Hamiltonians can be calculated from first principles. The effective masses
can be extracted from the low energy band structure (see Fig.1(b)), calculated in density functional theory (DFT) or theGW
approximation.29 To extract the 2D polarizability, and thus the screening length ρ0, we modify the protocol in Ref. 28 slightly.
We employ the relation

ε⊥(Lc) = 1+
4πχ2D

Lc
+ O(1/L2

c) (4)

whereLc is the interlayer separation for a supercell containingtwo AB-aligned monolayers of TMD separated by vacuum. The
in-plane dielectric constantε⊥ is the (qx, qy) → 0 limit of the head of the inverse dielectric tensor, calculated within the random
phase approximation (RPA).30 Our protocol naturally interpolates between bulk TMDs (Lc = c/2 wherec is the lattice constant)
and monolayer TMDs (Lc → ∞). This procedure tests the extraction of the monolayer 2D polarizability from the bulk dielectric
constant via Eq. (4) retaining only the term of order 1/Lc. A survey of calculated bulk dielectric constants for MoS2 from our
own and other reported works can be found in Appendix A.

We study four monolayer TMDs: MoS2, MoSe2, WS2, and WSe2. The effective mass of the electron and hole were calculated
based on the parametrized band structures of Xiaoet al..5 The k · p Hamiltonian adopted in that work includes terms up to
first order ink, yielding identical electron and hole masses. Higher orderterms ink predict differing effective masses,31,32 as
also found inab initio calculations.20,23,33,34For evaluation of the polarizability, DFT and subsequent RPA calculations were
performed with thequantum espresso35 andberkeleygw36 packages, respectively. For MoS2, in addition to the RPA result
obtained with DFT input, we have also calculated the RPA dielectric constant with an approximateGW input, obtained by
applying anLc-dependent rigid shift to the unoccupied DFT bands,∆EGW

c (Lc) = ∆EGW
c (∞) − α/Lc, with ∆EGW

c (∞) = 1.2 eV
andα = 6.15 eV·Å, based on the results of Ref. 21. Further computational details appear in Appendix B.

Using MoS2 as an example, Fig. 2 shows the calculated dielectric constant ε⊥ and the two-dimensional polarizabilityχ2D

as a function of the interlayer separationLc employed in the supercell calculations. The dielectric constant clearly follows
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FIG. 2. In-plane dielectric constant (a) and two-dimensional polarizability (b) of MoS2 as a function of the interlayer separationLc employed
in the supercell calculations. The smallest value ofLc employed corresponds to bulk MoS2. Solid and dashed lines in panel (a) correspond
to 1+ 4πχ2D/Lc with χ2D extracted from panel (b). Open symbols denote the values obtained via DFT and self-consistentGW reported in
Refs. 38 and 34, respectively.

Eq. (4), giving the trivial limit of unity in theLc → ∞ limit. Many studies utilize similar 3D supercells to calculate dielectric
properties for 2D monolayer materials.20,34,37,38Two reported values for MoS234,38 are plotted in Fig. 2(a), showing agreement
with the present results. From these results, it should be clear that the dielectric constant at a fixed supercell size together with
an effective 1/εr screened Coulomb interaction does not represent dielectric screening in monolayer TMDs. Furthermore, use of
the conventional 2D Wannier-Mott theory with such a model toestimate exciton binding energies or radii20,34 is not physical. In
contrast, the two-dimensional polarizability shown in Fig. 2(b) converges to a finite and physically meaningful value independent
of the final supercell size39. Specifically, we findχ2D = 6.6 Å and 5.0 Å, for DFT andGW, respectively. These values imply a
two-dimensional screening length ofρ0 ≈ 30–40 Å. To elucidate trends across materials, we use the DFT+RPA value and discuss
the impact of the smallerGW polarizability below. Interestingly, we see that the DFT polarizability extracted from bulk MoS2
is extremely close to its converged monolayer value, showing the near-equivalence of the two previously discussed definitions
of screening length,ρ0 = 2πχ2D(Lc = c/2) = d(ε⊥ − 1)/2 ≈ dε⊥/2.

As a first approximation to the neutral excitonic propertiesof monolayer TMDs, we employ the total exciton wavefunction
ΨX(re, rh) = ψX(re−rh)φc(re)φv(rh), whereφc andφv are conduction and valence Bloch wavefunctions, with a simple variational
guess for the envelope function,

ψX(ρ; a) ≡ ψX(ρ; a) =
√

2/πa2 exp(−ρ/a). (5)

This variational wavefunction becomes theexact ground state wavefunction in the limit of weak screening, where V(ρ) →
1/ρ. For a nonzero polarizability, the wavefunction is no longer exact, but will exhibit the correct asymptotic behavior, i.e.
exponential decay for distances larger than the screening lengthρ0. For this wavefunction, the kinetic energy is easily shown
to beT (a) = 1/(2µa2) and the potential energyV(a) is readily evaluated by quadrature. The exciton binding energy is then
found by minimizingEX = T (a) + V(a), where the optimum value ofa is an estimate of the exciton radius. Such a variational
solution to the 2D Hamiltonian (1) has recently been employed in related, strongly interacting 2D materials.40,41Our preliminary
results using a numerically exact grid-based diagonalization of the Hamiltonian (1) suggest the the variational approximation is
an excellent one, as will be analyzed in more detail in futurework.

For the trion envelope wavefunction, we consider the simplevariational form

ψX−(ρ1,ρ2; a, b) = 2−1/2[ψX(ρ1; a)ψX(ρ2; b)

+ ψX(ρ1; b)ψX(ρ2; a)
]

,
(6)

a symmetrized product of exciton wavefunctions. First proposed by Chandrasekhar,42 it is perhaps the only two-parameter
wavefunction to correctly predict a bound state of the negative hydrogen ion.24 The differing exciton radii,a , b, essentially
allows one electron to sit close to the hole, near the neutralexciton radius, while the other is further away to minimize the
unfavorable electron-electron repulsion. A polarizationterm (1+ cρ12) can also be included, although we will not do so here
for simplicity. For such a variational wavefunction, Eq. (6), with no dependence on the distance between the two electrons, the
so-called Hughes-Eckart term∇ρ1 · ∇ρ2 vanishes,43 simplifying the numerical calculations. Again, the kinetic energy can be
evaluated analytically and the potential energy can be calculated numerically as a three-dimensional integral.
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III. RESULTS

The results for all four TMDs considered in this work are summarized in Table I. Exciton binding energies are all predicted
to be around 0.5 eV, with the ordering MoS2 &WS2 > MoSe2 &WSe2. This trend generally agrees with recentab initio Bethe-
Salpeter equation (BSE) calculations on the same four materials.20 Specifically for MoS2, we find a binding energy of 0.54 eV
and an exciton radius of 10.4 Å. Four recent BSE studies,20–23 which vary in details of implementation, give results that vary
by a factor of two, falling between 0.5 and 1.1 eV (Table I). Two technical challenges need to be fully resolved: convergence
with respect to Brillouin zone sampling and the extrapolation of the results toLc → ∞ limit, a particular challenge for theGW
results.21 Self-consistency would reduce screening, as is evident in Fig. 2. If we use ourGW polarizability in the monolayer
limit, we find a correspondingly larger binding energy of about 0.7 eV. It is common for DFT to overestimate polarizability, and
so taken together, our variational estimates predict an exciton binding energy between 0.5 and 0.7 eV. All things considered, our
variational estimate for the exciton binding energy is in good agreement with availableab initio calculations.

Carrying out the variational minimization ofEX− = 〈ψX− |HX− |ψX−〉 for MoS2, we find a trion binding energy (defined as the
difference between the trion and exciton variational energies)between 26 and 32 meV using the DFT andGW polarizability,
respectively. These values are impressively close to the experimental value of 18 meV,10 suggesting that the approximations
used here, including the form of the variational wavefunction, are accurate and physically meaningful. We find optimal radii of
a = 10.3 Å andb = 25.2 Å, i.e. one electron is at the neutral exciton radius while the other is more than twice as far away, just
as in the negative hydrogen ion. The largeness of this trion binding energy, which is almost exactly equal to thermal energy at
room temperature, suggests that trions are intrinsically abundant and may play active roles in the excitonic physics ofmonolayer
TMDs.

The calculated trion binding energies for all four TMDs studied fall in the range of 20–30 meV, in reasonable agreement
with recently measured trion binding energies.10–12 The similarity of trion binding energies in MoSe2 and WSe2 is perfectly
reproduced. We find competing effects in the trion binding energy, parallel to the well-knowntrends for the exciton binding
energy. As Fig. 3 shows, increase in effective mass or reduction in polarizability both lead to stronger trion binding. The exciton
mass is largely determined by the metal (i.e. W 5d versus Mo 4d electrons) whereas the polarizability depends on both the metal
and the chalcogen: selenides have larger polarizabilitiesthan sulfides, and within a given chalcogenide family, molybdenum
yields larger polarizabilities than tungsten. This argument also predicts a larger trion binding energy in MoS2 than in MoSe2,
contrary to the limited experimental results to date.10,11However, while the experiments on MoSe2 and WSe2 were done almost
identically, the experiments on MoS2 required significant gating to achieve charge neutrality and exhibited extensive broadening
in the lineshapes, both argued to be artifacts of defects introduced by mechanical exfoliation.10 Definitive trends for intrinsic
trion binding energies remain an ongoing challenge for boththeory and experiment44.

We briefly consider the positive trion. Its Hamiltonian is identical to Eq. (2), except that the electron mass replaces the hole
mass in the Hughes-Eckart term. Since this term vanishes forour choice of wavefunction, we predict the positive trion binding
energy to be identical to that of the negative trion. More generally, any difference in the electron and hole masses only affects
the binding energy to the extent that the true wavefunction depends explicitly on the distance between the electrons (for X−) or
between the holes (forX+). This simple result may explain the equivalent positive and negative trion binding energies recently
observed in monolayer MoSe2,11 although more recent results on WSe2 exhibit asymmetric trion binding energies.12

IV. CONCLUSIONS

While our variational approach has proved very effective, particularly to elucidate trends in the trion binding energies, several
physical effects remain to be quantified. A non-variational treatment will obviously increase the neutral exciton binding energy,
although preliminary results show that both the variational energy and wavefunction are very accurate. Although we have

TABLE I. Reduced mass (inm0), polarizability (in Å), exciton binding energies (in eV) and trion binding energies (in meV) of TMDs as
calculated with DFT+RPA. Many-body Bethe-Salpeter equation (BSE) exciton binding energies and experimental negative trion binding
energies are also listed.

Exciton binding energy Trion binding energy
µ χ2D Theory BSE Theory Exp

MoS2 0.25 6.60 0.54 1.03,20 1.121 26 1810

0.5,22 0.5423

MoSe2 0.27 8.23 0.47 0.9120 21 3011

WS2 0.16 6.03 0.50 1.04,20 0.5423 26 N/A
WSe2 0.17 7.18 0.45 0.9020 22 3012
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FIG. 3. Calculated trion binding energy as a function of the exciton massµ and the 2D polarizabilityχ2D, along with the four TMDs considered
in this work. Contours are plotted in 5 meV increments. It is evident why the sulfides and selenides each have essentially the same trion binding
energies despite differing material properties.

neglected the repulsive electron-hole exchange interaction, which would decrease the binding energy, the relativelylarge exciton
radius suggests that this contribution will be small.

The trion binding energy, being an energydifference, is presumably even less sensitive to these effects, such that a favorable
cancellation of errors is likely responsible for the observed accuracy as compared to recent experiments. This latter effect is
apparent in comparing binding energies based on DFT andGW polarizabilities: while the exciton binding energy increases by
40%, the trion binding energy only increases by 20%. Other atomic-scale factors include local fields in the screened interaction
at shorter range, the role of the perpendicular extent of theelectron and hole wavefunctions, and a more accurate treatment of
the low-energy band structure that accounts for anisotropyin the effective mass and trigonal warping effects.31,32

Our encouraging results for neutral excitons has also encouraged a search for excited state excitons, akin to the 2s, 3s,
etc. states of the hydrogen model. The numerically exact eigenstates of the Hamiltonian (1) have been found to be in excellent
agreement with measured peak positions in high-quality monolayer WS2 samples,45 highlighting the particular form of the
screened electron-hole interaction discussed here.

To summarize, we have presented a simple, physically appealing theoretical treatment of both neutral and charged excitons
in monolayers of TMDs, a family of prototypical two-dimensional semiconductors. Our results highlight the strong effective
Coulomb interactions in monolayer TMDs and related 2D semiconductors that result in a dominant role for excitons in the low
energy optical physics, including bound trions that may be further engineered to play a significant role at room temperature for
device applications.
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Appendix A: Macroscopic dielectric constants of bulk MoS2

Unlike in the case of monolayer systems, the static dielectric constant is well-defined for bulk TMDs. Using the procedure
described in the text, we have calculated the transverse andlongitudinal dielectric constant of bulk MoS2 as an example. These
values are reported in Table II and compared to other recent values found in the literature.

Appendix B: Computational details

DFT calculations were performed with thequantum espresso35 software package, using a 12× 12× nkz k-point grid withnkz

between 3 (for bulk) and 1 (for monolayer), using the exchange-correlation functional of Perdew, Burke, and Ernzerhof,46 norm-
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Reference ε⊥ ε||

Present work (PBE) 14.29 6.87
Present work (approximateGW) 13.36 6.60
38 (LDA) 15.40 7.43
34 (scGW) 13.5 8.5
20 (G0W0) ∼ 14.5

TABLE II. Static dielectric constants of bulk MoS2 as determined by a variety of methods in the literature.

a (Å) c (Å) dMX (Å)

MoS2 3.16 12.30 1.59
MoSe2 3.30 12.94 1.67
WS2 3.16 12.35 1.59
WSe2 3.29 12.98 1.67

TABLE III. Crystal structure lattice constants (a and c) and metal-chalcogen vertical separation (dMX ) for the monolayer and bulk TMDs
employed in this work.

conserving pseudopotentials, and a plane-wave cutoff of 40 Ry (∼ 550 eV). RPA calculations were done with theberkeleygw36

package on the samek-point grid and included 50 unoccupied bands. The size of thedielectric matrix is determined byG2 < Ecut

where the cutoff energy is equal to the energy of the highest unoccupied band included. Theq → 0 limit is taken numerically
with a slightly shiftedk-point grid as described in Ref. 36.

For all materials studied, we employed experimental lattice constants and metal-chalcogen separations as given in Table III.
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