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The existence of more than one steady-state in a many-body quantum system driven out-of-
equilibrium has been a matter of debate, both in the context of simple impurity models and in the
case of inelastic tunneling channels. In this paper, we combine a reduced density matrix formalism
with the multilayer multiconfiguration time-dependent Hartree method to address this problem.
This allows us to obtain a converged numerical solution of the nonequilibrium dynamics. Considering
a generic model for quantum transport through a quantum dot with electron-phonon interaction, we
prove that a unique steady-state exists regardless of the initial electronic preparation of the quantum
dot, consistent with the converged numerical results. However, a bistability can be observed for
different initial phonon preparations. The effects of the phonon frequency and strength of the
electron-phonon couplings on the nonequilibrium dynamics and on the emergence of bistability is
discussed.

I. INTRODUCTION

The existence of a unique steady-state in strongly cor-
related quantum systems out-of-equilibrium is a subject
of great interest and controversy. For the case of the
Anderson impurity model, it has been argued using the
Bethe ansatz that a single steady-state solution exists1.
However, recent calculations of the nonequilibrium cur-
rent based on time-dependent density functional theory
seem to indicate that at long times the system reaches
a dynamical state characterized by correlation-induced
current oscillations2. Similarly, questions regarding hys-
teresis, bistability and the dependence of the steady-state
current on the initial occupation have been raised in the
context of inelastic transport through nanoscale quantum
dots3–11.

Addressing the issue of a unique steady-state is a chal-
lenging task for theory, as systems exhibiting bistability
involve strong electron-electron or electron-phonon cor-
relations. Under these conditions, an exact solution is
unavailable, and one has to resort to approximate meth-
ods or to numerical techniques. The former are based
on either a mean-field approximation or perturbative
schemes, where the inclusion of higher order corrections
is not always clear or systematic, and thus may lead to
questionable results. Numerical brute-force approaches,
such as time-dependent numerical renormalization-group
techniques12–15, iterative16–18 or stochastic19–22 diagram-
matic methods, and wave function based approaches23,
have been very fruitful, but are limited in the range of
parameters and timescales that can be studied.

In this paper, we address the problem of bistability and
a unique steady-state in a system with electron-phonon
interaction under nonequilibrium conditions caused by
a finite bias. We develop an approach based on a re-
duced density matrix (RDM) formalism, which requires
as input a short-lived memory kernel24. The formalism

is combined with the multilayer multiconfiguration time-
dependent Hartree method (ML-MCTDH)25 to numer-
ically converge the memory kernel at short times until
it decays, and infer from it the dynamics of the system
at longer times and the approach to steady-state. Our
approach offers a numerically exact description of the dy-
namics of a quantum system driven out-of-equilibrium on
timescales not previously accessible. The RDM formal-
ism provides us with means to prove analytically that if a
steady-state exists then it must be unique, regardless of
the initial electronic preparation. However, a bistability
can develop for different initial phonon states. The re-
laxation to steady-state and the appearance of the bista-
bility depends on the phonon frequency and the strength
of the electron-phonon couplings.

II. MODEL

We consider a generic model for charge trans-
port through a quantum dot with electron-phonon
interaction.26 The model is described by the Hamiltonian

H = HS +HB + VSB , (1)

where

HS = εdd
†d (2)

is the system (quantum dot) Hamiltonian with cre-
ation/annihilation fermionic operators d†/d and energy
εd, HB = Hl +Hph where

Hl =
∑
k∈L,R

εka
†
kak (3)
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represents the noninteracting leads Hamiltonian with
fermionic creation/annihilation operators a†k/ak, and

Hph =
∑
α

ωα

(
b†αbα +

1

2

)
(4)

represents the phonon bath with creation/annihilation
bosonic operators b†α/bα for phonon mode α with energy
ωα. The coupling between the system and the baths is
given by VSB = Vl + Vph where

Vl =
∑
k∈L,R

(
tkda

†
k + t∗kakd

†
)

(5)

is the coupling between the system and the leads with
couplings strength tk, and

Vph = d†d
∑
α

Mα

(
b†α + bα

)
(6)

is the couplings between the system and the phonon bath,
where Mα is the electron-phonon couplings to mode α.

The coupling strengths were parameterized by various
spectral functions. The dot-leads coupling terms were
determined from the spectral density

ΓL,R(ε) = 2π
∑
k∈L,R

|tk|2δ(ε−εk) =
a2

b2

√
4b2 − (ε− µL,R)2,

(7)
where a tight-binding model was employed, with a =
0.2eV and b = 1eV. µL,R is the chemical potential of
the left (L) or right (R) lead, respectively. Similarly,
the electron-phonon couplings were determined from a
phonon spectral function

J(ω) = π
∑
α

M2
αδ(ω − ωα) =

π

2
ηωe−

ω
ωc (8)

taken to be of Ohmic form. The dimensionless Kondo
parameter, η = 2λ

ωc
, determines the overall strength

of the electron-phonon couplings where λ =
∑ M2

α

ωα
=

1
π

´
dω
ω J(ω) is the reorganization energy (or polaron

shift) and ωc is the characteristic phonon bath frequency.

III. REDUCED DYNAMICS

Following the derivation outlined in Ref. 24 for the
Anderson impurity model, the equation of motion for the
RDM of the quantum dot, σ(t) = TrB{ρ(t)}, is given by

i~
∂

∂t
σ (t) = LSσ (t) + ϑ (t)− i

~

ˆ t

0

dτκ (τ)σ (t− τ) (9)

where LS = [HS , · · · ] is the system’s Liouvillian,
TrB{· · · } is a trace over the baths degrees of freedom
(leads and phonon baths) and ρ(t) is the full density ma-
trix. In the above,

ϑ (t) = TrB

{
LV e−

i
~QLtQρ (0)

}
(10)

depends on the choice of initial conditions and vanishes
for an uncorrelated initial state (which is the case dis-
cussed below), i.e. when ρ(0) = σ(0) ⊗ ρB(0), where
σ(0) and ρB(0) are the system and baths initial density
matrices, respectively, and Lv = [VSB , · · · ]. The memory
kernel, which describes the non-Markovian dependency
of the time propagation of the system, is given by

κ (t) = TrB

{
LV e−

i
~QLtQLρB

}
(11)

where Q = 1− P , P = ρB(0)TrB{· · · } and L = [H, · · · ].
To obtain σ(t), one requires as input the super-matrix

of the memory kernel, which can be expressed in terms
of a Volterra equation of the second type, removing the
complexity of the projected dynamics of Eq. (11):27

κ (t) = i~Φ̇ (t)− Φ (t)LS +
i

~

ˆ t

0

dτΦ (t− τ)κ (τ) (12)

with

Φ (t) = TrB

{
LV e−

i
~LtρB

}
. (13)

Evaluating the super-matrix Φ(t) requires a calculation
analogous to that carried out in Ref. 24 for the Anderson
impurity model.

For the present model, it can be shown that the popu-
lations and coherences of σ(t) are decoupled, and if one is
interested in the behavior of the populations alone, only
the diagonal elements of Φii,mm(t) are required. These
can be expressed in terms of the sum of the left and right
currents Φii,mm(t) = −i~e (ILm(t) + IRm(t)), where

IL,Rm (t) = −2e

~
=

 ∑
k∈L,R

tk〈m|d(t)a†k(t)|m〉

 , (14)

and e is the electron charge. The resulting (exact) equa-
tions of motion for the diagonal elements of σ(t) are given
by:

∂

∂t
σii (t) = − 1

~2
∑
m

ˆ t

0

dτκii,mm (τ)σmm (t− τ) . (15)

If the coherences of σ(t) are of interest, then one re-
quires the off-diagonal elements of Φij,nm(t), which are
given by Φij,nm(t) = δj1δi0ψmn(t) + δj0δi1ψ

∗
nm(t), where

ψmn(t) = TrB

{
ρB 〈n|

∑
k

tka
†
k(t)

− d†(t)
∑
α

Mα

(
b†α(t) + bα(t)

)
|m〉

}
.

(16)

In the above equations, the indices i, j, m, and n can
take the values 1 or 0, corresponding to an occupied or
an unoccupied dot, respectively.
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IV. RESULTS

We first address the question of whether σ(t) has a
unique steady-state solution for different initial electronic
preparation of the dot. In this case, if σ(t) has a steady-
state solution as t→∞, then

∂

∂t
σii (t) = 0 (17)

and ∑
m

ˆ ∞
0

dτκii,mm (τ)σmm (t− τ) = 0 (18)

can be replaced by a linear set of equations given by:∑
m

Kimσm = 0, (19)

where

Kim =
1

~2

ˆ ∞
0

dτκii,mm (τ) (20)

and σm ≡ σmm(t → ∞). The steady state is given by
the eigenvector of matrix K with a zero eigenvalue. The
analysis shows that this eigenvalue is nondegenerate and
has an eigenvector given by σ00 = K00

K00+K11
and σ11 =

1− σ00 = K11

K00+K11
. For a physical steady-state solution,

both K00 and K11 must share the same sign. Otherwise,
the diagonal elements of σ cannot both be positive. Since
the steady-state depends only on the value of K00 and
K11 and since both are independent of the initial dot
population, the steady-state is independent of the initial
preparation of the dot occupation and is therefore unique.

The above consideration shows that the steady-state
is unique with respect to the electronic initial prepara-
tion. This is a strong statement by itself, but it does
not rule out bistability for different initial phonon prepa-
rations. To address this question, we combined the
formalism described above for the RDM with the ML-
MCTDH approach in second quantized representation
(SQR)23,28. The ML-MCTDH-SQR method provides a
tool to compute the currents in Eq.(14) numerically ex-
actly. The kernel κ(t) is then obtained by numerically
solving Eq. (12). In comparison, for most model param-
eters studied in this work, it is practically impossible to
obtain converged values for the RDM directly from the
ML-MCTDH-SQR, since the time to reach a steady-state
solution is significantly longer than the maximum simu-
lation time reachable by the ML-MCTDH-SQR. How-
ever, since the memory kernel decays on much shorter
timescales compared to the RDM itself24, it is rather
straightforward to calculate it using the ML-MCTDH-
SQR and then solve Eq. (15) for the RDM.

To characterize the population dynamics, we start with
a factorized initial condition of the form

ρ (0) = σ (0)⊗ ρph (0)⊗ ρleads(0), (21)

where σ (0) determines whether the electronic level is ini-
tially occupied/unoccupied,

ρph (0) = exp

[
−β

{∑
α

ωα

(
b†αbα +

1

2

)
+
∑
α

δα
(
b†α + bα

)}]
(22)

represents the initial density matrix of the phonon bath.
Hereby two values of the parameters δα are considered:
δα = 0 (corresponding to a phonon initial state equili-
brated with an unoccupied dot) and δα =

√
2ωαλ (cor-

responding to phonons equilibrated to an occupied dot).
The initial density matrix for the leads is given by:

ρleads(0) = exp

[
−β

(∑
k∈L

(εk − µL) a†kak +
∑
k∈R

(εk − µR) a†kak

)]
.

(23)
In the above equations β = 1

kBT
is the inverse tempera-

ture. In all results shown below we take T = 0 and apply
a finite bias of eV = µL − µR = 0.1eV = 5

8Γ, where Γ is
the maximum value of ΓL + ΓR.

In Fig. 1 we plot the time evolution of σ11(t) (lower
panels) and the corresponding nonzero elements of the
memory kernel (upper panels), for two different initial
vibrational preparations. We show the time evolution of
σ11(t) for different values of the cutoff time tc at which
we assume that the memory kernel has essentially de-
cayed to zero, such that it can be safely truncated. For
δα = 0, it is safe to truncate the memory kernel at
tc > 30fs = 7.5/Γ while δα =

√
2ωαλ requires a larger

cutoff time of tc > 80fs = 20/Γ. In both case, the cutoff
time is much larger than 1

µL−µR . Comparing the time it
takes for the memory kernel to decay (upper panels of
Fig. 1) with the time taken by the RDM to reach steady-
state (corresponding lower panels of Fig. 1), it is clear
that the latter is slower by nearly an order of magnitude
and in some cases even more. Since the calculation of
the memory kernel using the ML-MCTDH-SQR method
is by far the most time consuming portion of the calcula-
tion, the combination with the RDM formalism provides
a significant saving, and more importantly extends the
ML-MCTDH-SQR approach to regimes inaccessible by
direct application.

The inset of Fig. 1 shows the steady-state value of σ11
as a function of 1/tc for δα =

√
2ωαλ. For large val-

ues of 1/tc (short cutoff times) we find that the formal-
ism may lead to unphysical situations in which σ11 be-
comes negative. Of course, this is expected, since only
when the memory kernel has decayed to zero does the
cutoff approximation provide a physically meaningful so-
lution. As 1/tc decreases σ11 converges and approaches
a plateau value. In the present case of parameters, the
steady-state value of σ11 computed for the two initial
vibrational states roughly coincides. However, the dy-
namics and timescales to relax to the steady-state are
clearly sensitive to the initial vibrational preparation.

In Fig. 2 we plot σ11(t) for four different values of char-
acteristic phonon frequency ωc and compare the time de-
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Figure 1: The occupation of the quantum dot σ11(t) (lower
panels) for different cutoff times and the nonzero elements of
the memory kernel (upper panels) for δα = 0 (left panels) and
δα =

√
2ωαλ (right panels). The inset shows the steady-state

value of σ11 for the case of δα =
√
2ωαλ as a function of 1/tc.

The model parameters used are: εd = 0.5eV, ωc = 500cm−1,
and λ = 3000cm−1.

pendence for four different initial conditions, correspond-
ing to an initial empty (nd = 0) or occupied (nd = 1) dot
and to δα = 0 or δα =

√
2ωαλ. For a given δα (i.e. a

fixed initial state for the phonons), we find that σ11(t)
has a unique steady-state solution regardless of the ini-
tial dot occupation. This numerically converged result
is consistent with the analytical proof given above. In
contrast, for two different initial states of the phonons, a
clear bistability is observed even at a finite bias, and the
RDM decays to a different steady-state solution depend-
ing on the value of δα.

The appearance of a bistability is consistent with pre-
dictions based on a mean field treatment, which is accu-
rate in the adiabatic limit where ωc → 05. For all four
frequencies studied, the adiabatic effective potentials29
shows two distinct minima (upper panel of Fig. 2), cor-
responding to two possible stable configurations30. The
height of the barrier between the two minima is indepen-
dent of the phonon frequency, however, as clearly ev-
ident in the figure, the width of the barrier increases
as ωc decreases. This implies that the tunneling time
between the two configurations also increases as ωc de-
creases. As a results, the extent of bistability (given by
the difference between σ11 at steady-state for δα = 0
and δα 6= 0) increases with decreasing ωc, as shown in
Fig. 2. The transient dynamics and the approach to
steady state depends sensitively on the preparation, in
particular, whether the initial state is close to equilib-
rium ({nd = 0, δα = 0} and {nd = 1, δ =

√
2ωαλ}) or far

from equilibrium ({nd = 0, δα =
√

2ωαλ} and {nd = 1,
δα = 0}). For small ωc we observe a rapid decay to
steady state on a time scale ~Γ−1, where Γ denotes the
maximum of leads spectral function. As ωc increases, the
dynamics become more complex. In particular, a longer
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Figure 2: Plots of the occupation of the quantum dot σ11(t)
for different ωc. The solid black, dashed black, solid red,
and dashed red curves correspond to {nd = 0, δα = 0},
{nd = 1, δα = 0}, {nd = 0, δα =

√
2ωαλ}, and {nd = 1, δα =√

2ωαλ}, respectively. Upper panel shows the adiabatic ef-
fective potentials for the different values of ωc. The model
parameters used are: εd = 0.5eV, and λ = 4000cm−1.

time scale in the relaxation of σ11(t) develops, consistent
with the appearance of a slow tunneling channel between
the two configurations as discussed above. However, over
the time scale considered, the existence of this channel
does not lead to a unique steady state solution for the
populations at a finite value of ωc, even away from the
adiabatic limit.

We next consider in Fig. 3 the influence of the electron-
phonon coupling strength λ and the dot energy εd on the
nonequilibrium dynamics. As before, we compare the
time dependence of σ11(t) for four different initial con-
ditions. In the upper panel we show the correspond-
ing adiabatic effective potentials29 for the four values
of λ. For small values of λ, the bistability clearly dis-
appears (left panels of Fig 3). This is consistent with
the fact that the adiabatic effective potential has a sin-
gle minimum for λ ≤ 3000cm−1 (in fact, a crude esti-
mate based on a mean-field approach suggests that be-
low λ = 3150cm−1 the bistability vanishes for the cur-
rent parameters). Comparing the relaxation time for
λ = 2000cm−1 and λ = 3000cm−1, we find that the
latter is slower, particularly for the case of δα =

√
2ωαλ.

When λ is further increased to 4000cm−1 (correspond-
ing to a nearly symmetric case where the polaron shift
equals εd) the relaxation time stretches even more and
the system decays to a different steady-state depending
on the value of δα, again consistent with the appearance
of two stable configurations in the corresponding adia-
batic effective potential (upper panel of Fig. 3). While
the RDM shows a distinct bistability, it is interesting to
note that this is not the case for the current through the
quantum dot (not shown), which for the symmetric case
(λ ≈ εd) has the same value for the two different states
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Figure 3: Similar to Fig. 2 but for different values of λ and εd,
for ωc = 500cm−1. Upper panel shows the adiabatic effective
potentials for the different values of λ.

of the RDM.
In the upper right panel of Fig. 3 we show results for

the case where λ = 2000cm−1 and εd = 0.25eV. The
effective adiabatic potential for this case clearly shows
two distinct minima, however, the barrier is lower than
λ = 4000cm−1 and εd = 0.5eV. Comparing the two right
panels of Fig. 3, we find that as λ and εd are decreased si-
multaneously, the bistability decreases and the timescale
to relax to steady-state also decreases, consistent with
the adiabatic tunneling picture discussed above.

The time-dependent approach developed here de-
scribes the nonequilibrium dynamics numerically exactly
only over a certain time scale (related to the cutoff time).
Perhaps on timescales much larger than that accessible
by the current approach (i.e., larger than 500/Γ), long-
ranged memory effects not captured by the cutoff ap-
proximation may result in switching between the differ-
ent states and lead to a unique steady state. This is
certainly expected for strong nonequilibrium situations
(large voltage) and/or high temperature and preliminary
results indicate that at higher bias voltages the bista-
bility vanishes. Whether this is also the case for zero
temperature and smaller bias voltages, as predicted by
approximate methods for a single phonon4,31, is an open
question. In this respect, we find that the bistability per-
sists even for a finite bias assuming that beyond the cutoff
time the memory kernel decays as a power law (t−2).

V. SUMMARY

We have studied nonequilibrium dynamics of a many-
body quantum system with electron-phonon interactions
employing a numerically exact method based on com-
bination of a RDM formalism with the ML-MCTDH-
SQR method. For a generic model, which is widely used
to describe phonon-coupled electron transport in quan-
tum dots and single-molecule junctions, we showed that
the system may exhibit pronounced bistability even in
out-of-equilibrium situations, when the value of the bias
is far from the linear response regime (eV ≈ Γ). The
analysis reveals that the bistability increases for decreas-
ing phonon frequency and depends sensitively on the
electron-phonon coupling. Based on the RDM formalism,
we proved that the bistability is associated with different
initial phonon preparations and not with a different ini-
tial dot occupation. In all cases the bistability develops
on time scales much longer than the typical bare energy
scales, in particular (µL − µR)τ >> 1 and Γτ >> 1,
where τ is the observed relaxation time. Furthermore,
we find that the phenomenon persists over time scales of
≈ 500/Γ, which are much longer than the typical phonon
time scales and in some cases also longer than the phonon
tunneling time. Therefore, the phenomenon should also
be accessible experimentally with ultrafast spectroscopy
techniques.
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