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Abstract 

The Shubnikov-de Haas effect is used to explore the conduction band edge of high mobility 

SrTiO3 films doped with La.  The results largely confirm the earlier measurements by Uwe et al. 

[Jap. J. Appl. Phys. 24, Suppl. 24-2, 335 (1985)].  The band edge dispersion differs significantly 

from the predictions of ab initio electronic structure theory. 

 

PACS number(s): 71.18.+y,71.38.-k, 71.70.Fk 

  



3 
 

I. Introduction 

Strontium titanate is a perovskite oxide that is prominently featured in the emerging arena 

of oxide electronics.1,2,3  Heterostructures formed between SrTiO3 and other oxides4 exhibit an 

interfacial, two dimensional electron gas (2DEG) that can be controlled by applied electric 

fields5, and for which relatively high 2D densities on the order of 3×1014 cm-2 can be achieved6.  

Furthermore, superconductivity7,8, ordered magnetic ground states9,10,11,12 and the Kondo effect13 

are observed.  In most cases, transport occurs on the SrTiO3-side of the interface.  The 2 

dimensional electron gas is thought to be formed from the three 3d-t2g states with the t2gxy lying 

lowest.  The energy scale for the electric subband states is determined by interface electric field, 

interface electron density as well as strain and is expected to be of the order of tenths of an eV. 

The energy scale probed in the following experiments is on the scale of milli eV.  But they do 

provide a quantitative description of the conduction band states in bulk SrTiO3 at the band edge 

which is an essential starting point14 to model and theoretically understand the properties of 

confined 2DEGs.  

The conduction band of bulk SrTiO3, a wide gap band insulator, has been the subject of 

experimental and theoretical attention for about 50 years.15,16,17,18,19,20  While early models 

featured a conduction band edge similar to Si with valleys near the Χ -point, subsequent 

experiments21 and modeling placed the conduction band minimum at Γ , the zone center.  Uwe et 

al. 22,23 used the Shubnikov-de Haas effect and Raman scattering to determine the spin-orbit 

interaction strength and sign, the band edge splitting caused by the low temperature tetragonal 

distortion, and details of the Fermi surface.  Most recently, quantum oscillations of the Nernst 

effect have been documented in very low doped SrTiO3 and the authors conclude that at 
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sufficiently low doping the conduction electrons occupy a single “barely anisotropic” Fermi 

surface but details about the shape are not pursued.24   

The low energy conduction bands can be characterized by three t2g Luttinger parameters, 

the spin-orbit interaction, and tetragonal distortion energies.  More recently Uwe et al.’s results 

were questioned by ARPES experiments25.  There has been no consensus on the relative strength 

of spin-orbit and tetragonal strain parameters responsible for band-splitting at the band edge.  

Accurate knowledge of the bulk bands is essential if progress is to be made toward 

understanding of 2DEGs in SrTiO3.   

Here we use the earlier results from Uwe et al. 22,23 as a guide for Shubnikov de-Haas 

oscillation experiments in high mobility, lightly La-doped SrTiO3 films.  Using the parameters 

determined by Uwe et al. 22,23, Fig. 1 shows the dispersion along [001], and the Fermi surfaces 

and energy for an electron density of 7.5×1017cm-3.   The model dispersion and Fermi surfaces 

shown here include the effect of a relatively large spin-orbit interaction and discussed further in 

our data analysis that follows.  At the lowest doping concentration a single closed Fermi surface 

is expected, while higher concentrations cause the occupation of a higher band, which is split-off 

at low temperature by the tetragonal distortion of the unit cell.  Its Fermi surface provides a tight 

constraint on the strain-induced splitting.   At this concentration two bands are expected to be 

occupied.  Our Shubnikov-de Haas experiments are carried out on samples that range from 

doping (or electron concentrations) that are sufficiently low that only one Fermi surface is filled, 

to higher concentrations in which two Fermi surfaces are filled, as depicted in Fig. 1.  At the 

outset we note that although the results reported here differ quantitatively from Uwe et al. 22,23, 

they substantially support their interpretation, despite the fact that their experiments were carried 
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out at substantially higher doping concentrations, requiring them to extract extremal Fermi 

surface cross sections that were interconnected by magnetic breakdown. 

The results reported here measure the Luttinger parameters26 for the t2g  conduction band 

minimum.  We are able to successfully interpret our experiments by assuming that the spin-orbit 

energy (measured by Uwe et al. to be ~17 meV 23) is much larger than the Fermi energy at the 

electron density of the samples investigated here.  The measured Luttinger parameters differ 

substantially from recent band structure models opening the possibility that the ab initio 

calculations are not accurate, or the band edge mass is substantially enhanced by electron phonon 

coupling27, or a combination of both.  

II. Experimental 

SrTiO3 films doped with La were grown on (001) SrTiO3 substrates by molecular beam 

epitaxy (MBE), as described elsewhere28,29.  These films exhibit the high mobility needed to 

observe the Shubnikov-de Haas effect and to explore the conduction band edge.  Low 

temperature (1.8 K) Hall carrier density (calculated as n =1 t ⋅e ⋅ RH( ) , where t is the film 

thickness, RH
 the Hall coefficient, and e the elementary charge) and mobilities varied from 

3.6×1017 cm-3 (mobility 37,000 cm2V-1s-1) to 12×1017 cm-3 (mobility 33,000 cm2V-1s-1).  The 

thickness of the epitaxial layers varied from 800 nm to 1200 nm.  While a total of five epitaxial 

layers were investigated, a complete set of data was taken and analyzed for the two samples 

referred to in the following as samples 1 and 2, see Table I.  Swept field magnetotransport 

experiments were carried out at the National High Magnetic Field Lab at temperatures down to 

0.4 K and magnetic fields (B) to 31 T as a function of angle between the magnetic field and 

sample normal.  
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III. Results and Discussion 

Results for sample 1 with the magnetic field aligned along [111] are shown in Fig. 2.  The 

oscillatory features (relative resistance maxima) are indexed and plotted as a function of 1/B in 

Fig. 3; they display a straight line corresponding to an extremal Fermi surface cross section of ~ 

17.5 T.  The extremal area, FS , is related to the slope by 
( )

24
1 /F

n eS
B h

π∂= ⋅
∂

.  Figure 2 shows 

that the quantum limit is reached around this field and the oscillations begin to show a doubling 

of the resistance maxima as spin split Fermi surfaces are resolved. 

Quantum oscillations for sample 2 with the magnetic field aligned along [001], the surface 

normal, are shown in Fig. 4.  At low fields a weak, low frequency oscillation is detected and 

assigned to the Fermi surface for electrons in the band split-off from the conduction band 

minimum by the tetragonal strain.  As in sample 1, at the highest fields the resistance maxima 

split, due to the spin split Fermi surfaces.  Indices for the relative resistance maxima for the two 

sets of oscillations are plotted as a function of 1/B in Fig. 5.  The corresponding extremal areas 

for the two Fermi surfaces for sample 2 along [001] are 55.2 and 9.55 T, respectively. 

At 105 K, SrTiO3 undergoes a phase transformation from cubic to a tetragonal phase.  The 

tetragonal [001] direction (c-axis) can then select three different directions - normal to the 

sample surface or in two orthogonal directions in the plane of the film, corresponding to three 

orientation variants or domains.  In this case the experimental results for any given orientation of 

the magnetic field could display several different periods of oscillation each corresponding to a 

particular domain.  Each sample was measured along the three principal directions, [110], [111] 

and [001] defined such that [001] is the surface normal.  Figure 6 shows the measured extremal 
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area for the larger Fermi surface in sample 2 for these orientations.  Also shown is the extremal 

areas calculated using Uwe et al.’s parameters and assuming that the tetragonal axis is normal to 

the surface (90° or [001]) in the figure.  There is a numerical discrepancy, but the angle 

dependence is similar.  More importantly, if we calculate the orientation dependence for a 

domain with the tetragonal axis in the plane, a <010> direction, we find a qualitative difference 

in the angular dependence.  From this we conclude that we are observing quantum oscillations 

only from domains with the tetragonal c-axis normal to the surface, or, alternatively, that the 

sample is a single domain, with tetragonal c-axis normal to the sample surface.  The latter 

explanation seems unlikely.  Nonetheless, the quantum oscillations that are observed appear to 

sense only domains with the tetragonal axis normal to the sample surface; we take advantage of 

this fact as we model the experimental results. 

Shubnikov-de Haas oscillations were measured for these two samples, each in the three 

aforementioned orientations.  This information is sufficient to determine Fermi surface shapes 

and consequently the low energy band parameters, subject to an energy scale factor.  To 

determine the energy scale factor, the temperature dependence of a set of quantum oscillations 

was measured and an effective mass (m*) extracted for that extremal cross section.  This is 

sufficient to establish an energy scale by relating the measured mass to the rate of change of the 

extremal cross section with energy, *
2

2FS
m

E
π∂

= ⋅
∂

.  Figure 7 shows the temperature dependence 

of the Shubnikov-de Haas oscillations for sample 2 with the magnetic field oriented along [110].  

Also shown is a model calculation30 that fits the measurements with an effective mass of 1.41 em  

, for this particular extremal orbit. 
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  IV Analysis 

The experimental data are fit to Fermi surfaces that are described by a band edge effective 

mass Hamiltonian subject to a large spin-orbit interaction.   The key assumption is that the spin-

orbit interaction is much larger than the Fermi energies at the doping levels in the samples used 

here and much larger than the splitting induced by the tetragonal distortion.  Then we follow the 

model of Khalsa and MacDonald.31 

 The band edge effective mass Hamiltonian in the t2g basis, { }, , , , ,yz zx xyσ σ σ , is 

expressed as: 

( ) ( ) ( )

( ) ( )( )

( ) ( )( )

2 2 2
1 2 1 2 3 3

2 2 2
3 1 2 1 2 3,

2 2 2
3 3 1 2 1 2

1 14 2 3 3
2 2

1 13 4 2 3
2 2

1 13 3 4 2 2
2 2

x z y x y x z

x y y z x z yk

x z y z z x y

k k k be k k k k

H k k k k k be k k

k k k k k k k be

σ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

⎡ ⎤− + + + +⎢ ⎥
⎢ ⎥
⎢ ⎥= − + + + +⎢ ⎥
⎢ ⎥
⎢ ⎥− + + + −
⎢ ⎥⎣ ⎦

 

(1), 

independent of spin, σ , and where 2 2 2 2
x y zk k k k= + + , and 1γ , 2γ  and 3γ   are closely analogous to 

the Luttinger32 parameters commonly used to describe the valence band structure in elemental 

semiconductors.  The effect of the tetragonal strain33 is parameterized by be , following Uwe et 

al.’s notation where e is the tetragonal strain and b the deformation potential.  In Eq. (1) k  is 

dimensionless and equal to 1 at the zone boundary X point, / aπ . 

The diagonal components of  (1) can be related to an anisotropic effective mass for each of 

the three t2g states. If we define a heavy effective mass, hm , and relatively lighter transverse 

effective mass tm  as follows 
22

1 2

1
( 4 )h

e

m
m a

π
γ γ

⎛ ⎞= ⎜ ⎟ −⎝ ⎠
 and 

22

1 2

1
( 2 )t

e

m
m a

π
γ γ

⎛ ⎞= ⎜ ⎟ +⎝ ⎠
, then the 

anisotropic mass for each of the three t2g states can be expressed as follows.    For ,yz σ  we 
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have zy
x hm m=  and zy zy

y z tm m m= = , for ,xz σ  xz
y hm m=  and xz xz

x z tm m m= = , and for ,xy σ  

xy
z hm m= ,  and xy xy

y x tm m m= = .   and em  are Planck’s constant and the free electron mass  

We take the spin-orbit interaction, SOΔ , to be significantly larger than the components of 

,kHσ .  That is to say “band edge” in this analysis implies states with energy much smaller than 

SOΔ .  The total Hamiltonian, including spin-orbit coupling, is: 

             ,

,

,
,
,
,
,
,

1 0 0 0 1
1 0 0 0

0 0 0 1 1 0
,

0 0 0 1 1 03
0 0 1 0
1 0 0 0 1

k SO
total

k

yz
zx
xy
yz
zx
xy

i
i i

H i
H

H i
i i

i

↑

↓

↑

↑

↑

↓

↓

↓

⎧ ⎫−⎡ ⎤
⎪ ⎪⎢ ⎥− ⎪ ⎪⎢ ⎥

⎡ ⎤ ⎪ ⎪⎢ ⎥−Δ ⎪ ⎪= +⎢ ⎥ ⎨ ⎬⎢ ⎥−⎢ ⎥ ⎪ ⎪⎢ ⎥⎣ ⎦
⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥

− − ⎪ ⎪⎣ ⎦ ⎩ ⎭

. (2) 

To characterize the lowest lying excitations, we transform the total Hamiltonian (2) by 

forcing the diagonalization of the spin-orbit part.  In this limit, the total Hamiltonian totalH  

describes the dispersion of the spin-orbit split off state and the lower band edge states.  If we 

ignore the off-diagonal terms which couple the lower band edge states and the spin-orbit split off 

part separated by SOΔ , we recover the dispersion of the two fold degenerate, spin-orbit split-off 

states, 21
12SO SOE kγ= Δ + , and a Hamiltonian that describes the dispersion of the remaining 

lowest four conduction band states, which participate in the quantum oscillations: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2 2 2
2 2 3 3

2 2 2 2 2
2 3 2 3

2
1

2 2 2 2 2
3 2 2 3

2 2
3 2 3 2

1 32 3 3 0
2 2
3 13 2 0 31 2 2

2 1 33 0 2 3
2 2
3 10 3 3

2 2

x y z x y x y z x y

x y x y x y z z x y

z x y x y z x y x y

z x y x y x y

k k k be k k i k k k k ik

k k i k k k k k be k k ik
k

k k ik k k k be k k i k k

k k ik k k i k k

γ γ γ γ

γ γ γ γ
γ

γ γ γ γ

γ γ γ γ

+ − − − + +

− − − + − + +
+

− − + − + − − −

− − − + ( )2 2 22x y zk k k be

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ − −⎢ ⎥
⎣ ⎦

 

(3) 
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The eigenvalues of (3) describe two bands, each two fold degenerate, given by the 

following: 

 ( )( ) ( )
1

22 2 4 2 2 2 2 2 2 2 2 2 2 2 21
1 2 2 3 22 3 2 ( )x y x z y z z x yE k k k k k k k k be k k k beγ γ γ γ γ±

⎡ ⎤= ± − − + + + − − +⎣ ⎦    (4) 

This is identical to the expression used by Uwe et al.22 but expressed in terms of the 

Luttinger parameters.  We note that if we restrict our measurements to energies much less than 

the spin-orbit splitting, the results are not influenced by the strength of the spin orbit interaction 

and we determine the parameters for ,kHσ  in Eq. (1). 

As is the case for the valence band of elemental and compound semiconductors, the 

complex dispersion relation will lead to a complex spin-Landau spectrum especially at high 

magnetic fields.  Indeed, at the highest fields the quantum oscillations begin to resolve spin 

dependent Fermi surfaces.   

The extremal areas measured at the prescribed angles for the two samples were 

simultaneously fit, using a non-linear algorithm, to the dispersion relation (4) by adjusting the 

following dimensionless parameters: 2 1γ γ , 3 1γ γ , ,1 1FE γ , ,2 1FE γ , and 1be γ .  These 

parameters, as ratios, determine the size and shape of the measured Fermi surfaces but not the 

energy scale; the size and shape of the various extremal areas are independent of 1γ .  By 

adjusting 1γ , we can fit the mass determined by the temperature dependence of the Shubnikov-de 

Haas oscillations.   The fitting parameters are then expressed in appropriate energy units. 

Table II shows the parameters that were determined from these fits.  Satisfactory 

agreement between the measured and calculated angular dependence using the parameters in 

Table II, is shown in Fig. 8.  Not shown in Fig. 8 is the agreement achieved by the fit for the 

narrow waist of the Fermi surface that originates from strain split off band; the measured 9.55 
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Tesla compares well with a fit value of 9.47 Tesla.  A more complete low energy model that 

includes the spin-orbit split off band may increase the Luttinger parameters by ~ 10%.   

Apart from ~ 10% differences, the results essentially agree with the earlier results of Uwe 

et al.22  The discrepancies may reflect the fact that the earlier work by them was carried out at 

higher electron densities and was extracted by disentangling orbits that suffered magnetic 

breakdown.  The discrepancy between the Shubnikov-de Haas and Hall densities in the two 

samples used in this analysis may be due to the moderate complexity of the Fermi surface in this 

density range.   

Various band structure calculations predict Luttinger parameters that are substantially 

larger than those measured by Shubnikov-de Haas oscillations shown in Table II 20,34.  In 

particular we compare with a recent ab initio band structure calculation by Janotti et al.34 and 

conclude that the SdH mass is ~ 2 times heavier than predicted.  We can ascribe this discrepancy 

to strong electron phonon coupling35 only if we accept at face value the ab initio band structure 

calculations.  A phonon enhancement of  ~ 2-3 was implied in recent infrared measurements of 

the extended Drude response.36   

We also note that the parameters imply a vanishingly small dispersion, 1 24 0γ γ− ≈ , and 

as a result, a very large heavy mass, hm  .  As pointed out by Janotti et al.34, the spin orbit 

coupling admixes the three t2g states and the dispersion at the band edge (See Fig. 1.) does not 

show the extreme anisotropy displayed in equation (1) and measured here.  However, models of 

electric subbands in SrTiO3 with extremely high electron densities involve large k  vectors due 

to relatively large in plane Fermi energies and tight quantum confinement.  Then, models of 

these quantum confined states are best developed with the extreme anisotropy of equation (1), 

introducing the spin orbit interaction after electric surface quantization.   
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Summary 

Low temperature Shubnikov-de Haas effect measured on high mobility but low density La 

doped SrTiO3 samples was used to determine the tetragonally induced band edge spitting and 

low energy Luttinger band edge parameters.  The work substantially agrees with Uwe et al.22  

The band edge Luttinger parameters differ substantially from those predicted by ab initio 

calculations and require an examination of the calculated band structure and/or mass 

enhancement by electron phonon coupling.  Similar experiments in higher carrier density 

samples could potentially provide an independent measurement of the spin-orbit interaction 

strength.   
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Figure Captions 

  

Figure 1 (color online):  a) Dispersion at the conduction band edge using parameters from Uwe 

et al. 22  in a model that includes relatively strong spin-orbit interaction and an electron density of 

7.5×1017 cm-3;  k is expressed in units of π/a where a is the length of the cubic SrTiO3 unit cell.  

kZ is directed along the tetragonal c-axis. b) Corresponding Fermi surface for the lowest state 

split off by the tetragonal distortion and  c) Corresponding Fermi surface for the higher lying 

state.  

 

Figure 2 (color online):  Shubnikov-de Haas oscillations with the magnetic field aligned along 

[111] for sample 1.  (a) The quantum oscillations are exhausted at the quantum limit, ~ 15 Tesla.  

(b) Features persist down to 2 Tesla. 

 

Figure 3 (color online):  Sample 1.  The relative maxima in Fig. 2, plotted vs. 1/B.  Near the 

quantum limit a splitting appears.  The slope of the line corresponds to an extremal area of 17.5 

Tesla.  

 

Figure 4 (color online): Sample 2. Shubnikov-de Haas oscillations with the magnetic field 

aligned along [001].  (a) Spin splitting is apparent at the highest field.  At low fields a weak, low 

frequency oscillation is observed (arrows) and assigned to the strain induced split-off band. 

 

Figure 5 (color online): Sample 2.  Indexed relative maxima for two sets of quantum 

oscillations in Fig. 4, corresponding to extremal cross sections of 55.2 and 9.55 Tesla. 
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Figure 6 (color online): Sample 2. Angle dependence of measured extremal area, solid squares. 

A comparison with parameters from Uwe et al.22  is also shown (open and closed circles, 

respectively).  Open circles assume that the tetragonal c-axis is normal to the surface, closed 

circles assume the tetragonal c-axis is in the plane of the sample.   

 

Figure 7 (color online): Temperature dependence of the Shubnikov-de Haas oscillations for 

sample 2.  (a) Measured with the magnetic field along the [110] direction.  (b) Model calculation 

with an effective mass of 1.41 me. 

 

Figure 8 (color online):  Fermi surface area versus angle, measured (solid) and fit (open), using 

the parameters in the text. 
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Table I: Samples investigated in this study. 

Sample 

number 

Internal sample 

reference no.  

Layer 

thickness 

(nm) 

1.8 K Hall  

electron density 

(cm-3) 

1.8 K Hall 

mobility 

(cm2V-1s-1) 

SdH electron 

density  

(cm-3) 

1   STO-216  1280 3.6×1017  37,000 4.2×1017 

2   STO-181        800 12×1017 33,000 18.2×1017 

 

 

 

Table II: Conduction band parameters determined in this study and comparison with the 

literature. 

Parameter Experiment (this study) Experiment (Uwe et 
al.22,23) 

Band structure 
calculation (Janotti 

et al. 34) 

1γ  4.0 (±0.04) eV 3.5 eV 8.81 eV 

2γ  0.98 (±0.02) eV 0.88 eV 1.92 eV 

1 22γ γ+  6.0 eV 5.26 eV 12.65 eV 

1 24γ γ−  0.0 (±0.1) 0.0 1.15 eV 

3γ  0.0 (±0.02) eV 0.13 eV 0.78 eV 

2 be  -2.2 meV -1.5 meV -2.268 meV 
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Fig. 5. 

 



24 
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Fig. 7 
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Fig. 8. 

 

 

 

 


