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We have measured temperature (T )- and power-dependent electron spin resonance in bulk single-
wall carbon nanotubes to determine both the spin-lattice and spin-spin relaxation times, T1 and
T2. We observe that T−1

1
increases linearly with T from 4 to 100 K, whereas T−1

2
decreases by

over a factor of two when T is increased from 3 to 300 K. We interpret the T−1

1
∝ T trend as

spin-lattice relaxation via interaction with conduction electrons (Korringa law) and the decreasing
T dependence of T−1

2
as motional narrowing. By analyzing the latter, we find the spin hopping

frequency to be 285 GHz. Last, we show that the Dysonian lineshape asymmetry follows a three-
dimensional variable-range hopping behavior from 3 to 20 K; from this scaling relation, we extract
a localization length of the hopping spins to be ∼100 nm.

PACS numbers: 76.30.-v, 72.20.Ee, 73.63.Fg

Understanding spin dynamics is key to a broad range
of modern problems in condensed matter physics1–6 and
applied sciences.7,8 Spin transport is a sensitive probe
of many-body correlations as well as an indispensable
process in spintronic devices. Confined spins, partic-
ularly those in one dimension (1D), are predicted to
show strong correlations2,4–6,9 and long coherence times.3

Single-wall carbon nanotubes (SWCNTs) are ideal mate-
rials for studying 1D spin physics due to their long mean
free paths and relatively weak spin-orbit coupling.10 Ex-
otic spin properties in metallic SWCNTs at low temper-
atures and high magnetic fields have been predicted, in-
cluding the appearance of a peak splitting in the spin
energy density spectrum, which can be used to probe
spin-charge separation in Luttinger-liquid theory.4–6

One method for studying spin dynamics is electron
spin resonance (ESR), which can provide information on
spin-orbit coupling, phase relaxation time, spin suscep-
tibility, and spin diffusion. Many ESR studies of SWC-
NTs have been performed over the past decade.5,6,11–22

Unfortunately, substantial conflicts have emerged in the
literature, such as the temperature (T ) dependence of
the spin susceptibility12,15,18,22 and whether the ESR is
caused by SWCNT defects11,15,17,21,22 or is intrinsic to
nanotubes12,13,16,18–20. Because of these divergent empir-
ical observations of nanotube ESR, there is only scant ex-
perimental data on electron spin-lattice relaxation times
in SWCNTs, which limits our understanding of nanotube
spin dynamics.

Here, we present a detailed study of the T dependence
of both the spin-lattice (T1) and spin-spin (T2) relaxation
times of paramagnetic electron spins in SWCNTs. From
the T dependence of T1, we find that the spin-lattice re-
laxation rate, T−1

1 , is proportional to T . This trend is
consistent with the notion that the probed spins relax
through interaction with conduction electrons that are
present in metallic SWCNTs in the sample. Additionally,

we find that the dephasing rate, T−1
2 , becomes smaller as

T is increased, which is a hallmark of the phenomenon
of motional narrowing.23,24 This spin mobility accounts
for the Dysonian lineshape25 seen throughout the full T
range examined. The Dysonian lineshape asymmetry pa-
rameter, α, which is proportional to the conductivity of
the probed spins, is shown to follow the 3D variable-range
hopping (VRH) trend at low T .

Our sample consisted of acid-purified laser oven SWC-
NTs in powder form, which we prepared using a compre-
hensive nanotube compaction and annealing procedure.22

After thermal annealing, the 630 µg (0.24 g/cm3)
SWCNT sample was submerged in mineral oil under he-
lium gas in a sealed quartz tube. To precisely know
the value of the perturbing ac magnetic field amplitude,
H1, at a given microwave power, we calibrated the dual-
mode cavity (Bruker ER4116DM resonator) with a α-
γ-bisdiphenylene-β-phenylallyl (BDPA) complex mixed
1:1 with benzene. H1 is related to the microwave power,
P , at a given cavity Q by H1 = αC

√

(Q/Q0)P , where
αC is the cavity conversion factor and Q0 is the loaded-
cavity quality factor during calibration.26 To obtain αC,
we measured the T1 of the BDPA sample using inversion
recovery27 to be T1 = 132 ns. We then performed ESR
power saturation spectroscopy on the BDPA calibration
sample at Q0 = 5100 and observed that the absorption
versus microwave power saturated at 65 mW. Using this
data in conjunction with the T1 and T2 (= 112 ns) values

for our BDPA sample, we established αC = 1.83 G/
√
W.

ESR spectra were taken as a function of T from 3.4
to 300 K in the X-band (9.6 GHz) region. ESR data
below 125 K were taken on a Bruker EMX spectrome-
ter using the TE102 mode in a dual-mode cavity (Bruker
ER4116DM); for T ≥ 125 K, we used a single mode res-
onator (Bruker ER4119HS). For the lower T regime, de-
tailed ESR scans were performed with a P of 200 µW
(H1 ∼ 1.62× 10−2 G), while for T ≥ 125 K, P of 1 mW
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FIG. 1: (color online) (a) A raw ESR spectrum taken at 3.4 K
across a 6 kG applied field range. A prominent ESR peak
can be seen on top of a large ferromagnetic resonance (FMR)
background. A Dysonian and two Lorentzian line shapes can
be used to fully fit the data (black line). (b) Background-
subtracted ESR scans with Dysonian lineshape fits for the
highest (300 K) and lowest temperatures (3.4 K). The Dyso-
nian amplitude and linewidth is clearly much smaller at 300 K
than at 3.4 K. (c) Comparison of ESR traces at 20 K for dif-
ferent microwave powers, showing clear absorption saturation
at high powers. The background was subtracted as in (b),
and the spectra are intentionally offset vertically.

(H1 ∼ 7.31× 10−2 G) was used. At certain T values be-
low 125 K, we varied P from 6.3 µW to 200 mW in steps
of 3 dB at an observed Q of 2000 to examine how the
relative spin susceptibility changed with H1, as detailed
by Portis.28

As seen in Fig. 1(a), a broad ferromagnetic resonance

(FMR) dominates the spectrum, which we attribute to
nickel and cobalt catalyst particles remaining in the
sample.18 A careful study of the lineshape was performed
by closely scanning the applied dc magnetic field, H0,
around the ESR peak. Both the linewidth and peak-to-
peak amplitude become larger as T is decreased, while
the line-center position (g-factor, or simply, g0) shows lit-
tle T dependence. The ESR line is asymmetric, as seen
in Fig. 1(b), having what is often referred to as a Dyso-
nian lineshape,25 indicating movement of the electrons in
and out of the H1 perturbing magnetic field. Figure 1(c)
shows five traces at 20 K at different microwave powers,
spanning more than four orders of magnitude. As P is
increased, the relative ESR signal begins to decrease, as
evidenced by the reduction of the signal, normalized for
P , as P is increased from 6.3 µW to 100 mW.
To gain further quantitative understanding, we numer-

ically fit each ESR spectrum. The FMR background was
fit by a combination of two large-linewidth (∼1000 G)
Lorentzians. The ESR feature was fit using the weak
form of the Dysonian lineshape18,29

dχ

dH0
= Aχg

(

cosϕ

∆H2
0

)

−2y + (1− y2) tanϕ

(1 + y2)2
, (1)

where A is a coefficient accounting for experimental fac-
tors, χg is the mass spin susceptibility, y = H0−Hr

∆H0
,

Hr is the resonance field, ∆H0 is the half-width and is
equal to 1

γT2
, with γ = gµB

~
, and µB the Bohr magne-

ton. The weak form of Dysonian can be used here be-
cause the conductivity and diffusion of the electrons in
the SWCNT powder are both low as compared to a tra-
ditional metal. Nevertheless, unlike traditional magnetic
resonance where the signal entirely depends on the imag-
inary part of the ac spin susceptibility, χ′′, the Dysonian
lineshape is also influenced by the real component, χ′.
Taking the ac susceptibility, χ, to be

χ = χ′′cosϕ+ χ′sinϕ, (2)

we define α ≡ tanϕ, which is a dimensionless measure of
the relative contribution of the real part (= 0 for tradi-
tional, fixed spin ESR). This parameter is also a measure
of the asymmetry of the lineshape, andA/B ≈ 1+αwhen
α ≪ 1, where A and B are defined in Fig. 1(b); addition-
ally, it can be related to the electrical conductivity of the
probed spins, σspin, as α ∝ σspin.

29

From the numerical fitting, we extracted T2, α, g0, and
Aχg for each curve as a function of P and T . Since we
are in the homogeneous broadening regime, as indicated
by the Lorentzian-like lineshape fitting for all curves, we
can use the two-level model of χ′′:

χ′′(P ) = χg
ωrT2

1 + (ω0 − ωr)
2
T 2
2 + γ2H2

1T1T2

, (3)

where H1 = αC

√

(Q/Q0)P , ~ω0 = gµBH0 and ωr is
the center of the resonance. At small values of P , we
can ignore the last term in the denominator, since it will



3

200

160

120

80

1/
T

2 
(M

H
z)

3 4 5 6
10

2 3 4 5 6
100

2 3

Temperature (K)

12

10

8

7

6

5

T
2  (ns)

(c)

400

300

200

100

0

1/
T

1 
(k

H
z)

4 5 6 7 8 9
10

2 3 4 5 6 7 8 9
100

Temperature (K)

100

20

10

5

3

T
1  (µs)

(b)
12

10

8

ln
(1

/T
 1)

54321
ln(T )

slope:1.35 ± 0.07

1.0

0.5

0.0

χ'
'(P

)/
χ'

'(0
)

10
-5

10
-4

10
-3

10
-2

10
-1

Power (W)

20 K

(a)

FIG. 2: (color online) (a) Normalized spin susceptibility ver-
sus the microwave power, P , at 20 K. The black line shows
the fit of Eq. (4) to the data. (b) The T dependence of the
spin-lattice relaxation rate, 1/T1. The fit of 1/T1 = CT is
shown by the black line. Inset: A plot of ln (1/T1) versus
ln (T ) shows that data follows a linear relation over the entire
measured T range. (c) The T -dependent spin-spin relaxation
rate, 1/T2, and the fit of Eq. (6) to the data (black line).

contribute negligibly to the lineshape. However, as P be-
comes larger, this saturation term becomes increasingly
important, leading to a decrease in χ′′. By taking the ra-
tio of χ′′ (P ) to χ′′ (P → 0) the effect of this saturation

term can be clearly delineated:28,30

χ′′ (P )

χ′′ (0)
=

1

1 + γ2H2
1T1T2

. (4)

To reduce the experimental errors for the weak sig-
nals when P is on the order of 10−5 W, we averaged
the values of Aχg (after normalizing for P ), T2, and
γ for spectra taken when P was in the linear regime.
The ratio of χ′′ (P ) /χ′′ (0) is equivalent to the ratio of
Aχg (P ) /Aχg (0), as long as the ESR is not inhomoge-
neous broadened with increasing P .
A typical plot of χ′′ (P ) /χ′′ (0) versus P at 20 K is

given in Fig. 2(a). For other T ’s, Eq. (4) also fits well, al-
though minor sample heating effects at the highest pow-
ers are seen when T < 10 K. From the power saturation
fitting, along with the knowledge of T2 and γ, we can
extract T1 for each T . T1 is found to monotonically in-
crease as T decreases [Fig. 2(b)]: when T is lowered from
100 to 4 K, T1 rises from 3.3 to 172 µs, in agreement with
written claims by Clewett et al.31 and the measurements
done below 30 K by Musso and co-workers.17

To better understand the spin-lattice relaxation mech-
anism, we plotted ln (1/T1) against ln (T ) [inset of
Fig. 2(b)] and observe a nearly linear scaling: T−1

1 ∝
T 1.35±0.07. This T -dependence closely matches both the
Korringa law and direct one-phonon relaxation mecha-
nisms, which go as T−1

1 = CT , where C is a proportion-
ality constant. As Fig. 2(b) shows, the one-variable linear
fit follows the general trend of the data well; from this fit,
we extract the value of C to be (2.8±0.4)×103 sec−1K−1.
This T -linear behavior of T−1

1 is consistent with spin-
lattice relaxation via interaction with either conduction
electrons (Korringa law) or phonons.32 Since the g-factor
difference from the free electron value (∆g = g− 2.0023)
suggests small spin-orbit coupling in our system,22 di-
rect spin-phonon interactions are minimal. In addition,
we used a non-enriched SWCNT system, where metallic
nanotubes are present. Thus, we believe that a Korringa
law spin-lattice relaxation process is the most likely ex-
planation of the T−1

1 ∝ T trend. In this scenario, the
probed spins are exchange-coupled to delocalized con-
duction electrons within kBT of the Fermi level. Simi-
lar conclusions about the spin relaxation were reached in
C59N-C60 heterodimers in an ensemble of non-enriched
SWCNTs.33,34 However, Musso et al. also saw a linear
relationship between T−1

1 and T in non-enriched SWC-
NTs over a limited range (4 to 30 K) but interpreted it
in terms of direct phonon relaxation.17

We also obtained T−1
2 from the fitting of the ESR spec-

tra in the linear regime of H1. Unlike previous studies of
ESR in nanotubes, T−1

2 changes substantially with T . As
Fig. 2(c) shows, as T is increased from 3.4 K, T−1

2 rapidly
decreases until ∼25 K, whereupon the dephasing rate be-
gins to decrease more slowly up to 300 K. This decrease of
the ESR linewidth with increasing T is consistent with
the phenomenon of motional narrowing,23,24 which oc-
curs because the dephasing time of the spins can change
as their translational energy is altered. At high T , the
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spins move rapidly, allowing for less time around dephas-
ing centers, thus reducing the interaction between the
probed spins and the dephasing centers. This decreased
interaction gives a longer spin dephasing time (T2), which
in turn narrows the lineshape; conversely, at low T , the
spins are moving more slowly, which broadens the line.
To understand the observation of motional narrowing

more quantitatively, we start with a generalized narrow-
ing model35,36

T−1
2 ≃

γ∆H2
p

∆He
, (5)

where ∆Hp is the amplitude of the perturbations and
∆He describes the rate of spin motion. Equation (5)
was originally derived to describe exchange narrowing or
motional narrowing from spin diffusion. However, spin
diffusion can be described in terms of phonon-activated
hopping with a probability, phop, that is proportional to
exp (−2R/ξ −∆E/kBT ).

37–39 Here, R is the hopping dis-
tance, ξ is the localization length, ∆E is the average spac-
ing between energy levels, and kB is the Boltzmann con-
stant. Combining this hopping conduction with Eq. (5)

and adding an offset,
(

T 0
2

)−1
, gives40,41

T−1
2 =

(

T 0
2

)−1
+ γ

A

∆E ×
[

1 + coth
(

∆E
2kBT

)] (6)

where T 0
2 is the high-T (“metallic”) asymptotic limit of

the spin dephasing time and A is independent of T . As
Fig. 2(c) shows, Eq. (6) fits very well to the observed
linewidth. We find A to be 11.6±0.8 meV-G and a T 0

2

spin dephasing time of 11.1 ns. The activation energy,
∆E, is 1.18±0.09 meV (13.7 K or 285 GHz). From the
value of ∆E, we estimate how much time (on average)
each spin spends at each hopping location, τ = ~

∆E =

558 fs.42 If we phenomenologically take T2 = nτ , where
n is the number of jumps before phase coherence is lost,
then we can estimate n to be on the order of 104 hops,
where we have taken T2 to be ∼10 ns.
To gain deeper insight into the spin hopping mecha-

nism, we examined the asymmetry Dysonian lineshape
parameter, α, which is proportional to the conductance
of the probed spins. In particular, we were interested
to see if α followed a VRH behavior at low T , which is
mathematically given as38,39

α = α0 × exp

[

−
(

T0

T

)
1

1+d

]

, (7)

where T0 is the characteristic temperature and d is the
dimensionality of the system. As Fig. 3 shows, ln(α)

follows a linear trend with T−
1
4 , indicating that the spins

follow a 3D VRH from 3.4 to 20 K. From our fit, T0

is 17.9±5.5 K and α0 is 1.20. The asymptotic limit of
the α parameter, α0, approaches 1 as T → 0, since the
asymmetry of the ESR signal is caused by thermally-
activated hopping: as the phonon density decreases, so
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FIG. 3: (Color online) The natural log of the asymmetry
Dysonian parameter, α, plotted against the fourth root of
inverse temperature. The trend of ln(α) follows a 3D VRH
behavior, as given by the best fit line in black.

does the line shape asymmetry. The localization length,
ξ, of the electronic wavefunction can be found from T0

39

ξ =

[

18.1

kBT0D(EF)

]1/3

, (8)

whereD(EF) is the density of states around the Fermi en-
ergy, EF. We can estimate D(EF) by treating the defect
density of states as having an energy separation that can

be roughly estimated by ∆E. Thus, D(EF) ≈ N(EF)
∆E ∼

1019 states/cm3-eV, where we are utilizing the spin den-
sity extracted from the Curie constant, N(EF) = 1.14
× 1016 spins/cm3 obtained in our earlier work.22 From
Eq. (8), we estimate ξ to be ∼100 nm, similar to previ-
ous measurements of defect-induced localization lengths
in SWCNTs.43 The spacing of defects, Rd, can be esti-

mated by
(

4π
3 N

)−1/3
, or ∼28 nm. A d = 3 VRH behav-

ior is expected in this wavefunction-overlap regime, since
Rd < ξ.38 Exchange effects may also be important, but
a thorough defect concentration dependence is needed to
investigate this avenue more fully.
It is important to note that given the difficulty in ex-

tracting α, the T−1/4 trend that we are observing can be
considered robust. We also performed traditional con-
ductance measurements on a similarly prepared sample,
and although the conductance clearly showed 3D VRH
behavior, we believe that our ESR and four-point probe
conductivity measurements are probing different species,
since the hopping parameters do not agree and the high-
T trends are different.
Although it is clear that the ESR signal arises from

nanotubes, its microscopic origin is not certain. Previ-
ously, we advocated that n-type defects are essential for
the SWCNT ESR, a conclusion based on the observa-
tion that ESR signal strongly depends on the presence of
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molecular oxygen (a p-type acceptor), which we attribute
to a compensation mechanism.22 This hypothesis is con-
sistent with the data we present here. Localized spins
that couple via the exchange interaction to conduction
electrons would show a T−1

1 ∝ T scaling behavior. ESR-
active defect states would explain the localized, phonon-
assisted hopping of the spins and the motional narrowing
of T2; this type of line narrowing was observed in doped
semiconductors. Furthermore, if we take the spin sus-
ceptibility value, χg = 1.11 ± 0.04 × 10−7 emu-K/g and
calculate the number of spins per unit cell, assuming a
idealized 1 µm long, (10,10) nanotube (similar to our av-
erage diameter), we find that there are 1.4×10−4 ESR-
active spins per unit cell, a substantial deviation from
the ≈1 spin/unit cell expected for an intrinsic SWCNT
response. If this ESR-active defect hypothesis is correct,
the wide variety of prior SWCNT ESR results may be
due to the different defect concentrations, which would
change the T dependences of T1, T2, α, and χg.
In summary, we have performed temperature- and

power-dependent ESR on an ensemble of SWCNTs. We
find T−1

1 ∝ T from 4 to 100 K, which we interpret as Ko-
rringa spin-lattice relaxation. Furthermore, we observe

that T2 undergoes motional narrowing as T is increased
from 3.4 to 300 K. The Dysonian asymmetry parameter,
α, follows a T−1/4 trend at T ≤ 20 K, which strongly
suggests a 3D VRH spin transport at low T . From the
extracted parameters, we estimate the spin localization
length to be ∼100 nm. These results provide significant
new insights into spin relaxation dynamics in SWCNTs.
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