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SO (SO) interactions give a spin-dependent correction 7, to the position operator, referred to
as the anomalous position operator. We study the contributions of %5, to the spin-Hall effect
(SHE) in quasi two-dimensional (2D) semiconductor quantum wells with strong band structure SO
interactions that cause spin precession. The skew scattering and side-jump scattering terms in the
SHE vanish, but we identify two additional terms in the SHE, due to #s,, which have not been
considered in the literature so far. One term reflects the modification of spin precession due to
the action of the external electric field (the field drives the current in the quantum well), which
produces, via 7s,, an effective magnetic field perpendicular to the plane of the quantum well. The
other term reflects a similar modification of spin precession due to the action of the electric field
created by random impurities, and appears in a careful formulation of the Born approximation. We
refer to these two effects collectively as anomalous spin precession and we note that they contribute
to the SHE to the first order in the SO coupling constant even though they formally appear to
be of second order. In electron systems with weak momentum scattering, the contribution of the
anomalous spin precession due to the external electric field equals 1/2 the usual side-jump SHE,
while the additional impurity-dependent contribution depends on the form of the band structure SO
coupling. For band structure SO coupling linear in wave vector the two anomalous spin precession
contributions cancel. For band structure SO coupling cubic in wave vector, however, they do not
cancel, and the anomalous spin precession contribution to the SHE can be detected in a high-mobility
2DEG with strong SO coupling. In 2D hole systems both anomalous spin precession contributions

vanish identically.

PACS numbers:

I. INTRODUCTION

In systems with strong spin-orbit (SO) interactions
an electric field generates a transverse spin-current! 12:
this phenomenon is referred to as the spin-Hall effect
(SHE). For the past ten years, the SHE has been a source
of new ideas for magneto-electronic devices'® aimed at
integrating semiconductor and magnetic technologies,
facilitating efficient information processing and quan-
tum computing architectures.!* 7 These visions have
stimulated a large volume of experimental and the-
oretical work.'®33 Experimentally, the SHE was ini-
tially studied in semiconductors,?*3® but has since ex-
panded to novel materials such as HgTe-based quantum
wells,?” topological insulators and graphene, and d-band
metals.20*2 It is often simpler to measure the inverse
spin-Hall effect,*3 where a spin current generates a trans-
verse charge current, which is detected by conventional
means. The inverse SHE has been observed in Al,** Pt
wires at room temperature,*® hybrid FePt/Au devices,*6
Au films with Pt impurities,*” permalloy/normal metal
bilayers,*® GaAs multiple quantum wells,*® and Cu with
Ir impurities.®® For a review of recent experimental work
on the SHE in Pt see Ref. 51. Observation of the in-

verse SHE has recently been reported even in a weakly
SO coupled material such as Si.??

SO coupling may be present in the band structure and
in the impurity potentials. Band-structure SO interac-
tions become important in structures lacking a center of
inversion when SO interactions lift spin degeneracy.”” If
the underlying crystal lattice lacks a center of inversion
the material is said to possess bulk inversion asymme-
try (BIA). In low-dimensionsional systems the confine-
ment potential can be made asymmetric, in which case
one speaks of structure inversion asymmetry (SIA). In
this paper we consider exclusively quasi two-dimensional
semiconductor systems that lack a center of inversion
due to BIA™ and/or SIA giving rise to Rashba SO cou-
pling. In these systems the band structure SO interac-
tion is represented by a Hamiltonian H = (h/2) o -
describing the interaction of the spin with an effective
wave vector-dependent magnetic field €. This can be
QB or QFTA. The spin precesses about this field with
frequency € = |2g|. Different physical regimes are dis-
tinguished by the value of the product of € with the
momentum relaxation time 7,. In the ballistic regime
(clean limit) Qg7, — co. The weak momentum scatter-
ing regime is characterized by 7, > 1, while in the



strong momentum scattering regime 7, < 1.

SO interactions arise, quite generally, from a spin-
dependent correction 74, to the position operator,?35*
whose general form is

Tso = AO X Wi, (1)

where A is a material-specific parameter, o is the vector
of Pauli spin matrices, and wy takes different forms for
different systems, as well as for electrons and holes in the
same system.” We note that € and wy are not inde-
pendent of each other. The wj entering the corrected
position operator is inherently related to QEIA charac-
terizing the Rashba SO coupling through a term of the
form Q3 = Awy x VV. The presence of 7, results
in corrections to the interaction between charge carriers
and electric fields, which include impurities and external
electric fields. Thus, in addition to the band structure
SO interaction, one must take into account SO interac-
tions arising from the external electric field and from the
electron-impurity potential. The interplay between these
interactions in the SHE is quite a complicated subject.
It has received a lot of attention in recent years, yet, as
we will see, it is not yet completely understood.

Perhaps the most intuitive mechanism of SHE is the
one known as skew scattering, i.e., the asymmetric scat-
tering of up and down spins by impurities.?® 57 Next,
we have the so-called side-jump scattering term,>35360
which consists of two equal terms, one reflecting the cor-
rection to the band energy due to the spin-dependent
interaction with the electric field, the other reflecting
the renormalization of the carrier trajectory during colli-
sions. Diagrammatic formulations naturally recover the
two side-jump scattering terms through the vertex renor-
malization of spin and charge currents, as Ref. 56 demon-
strated. An analytical derivation of the side jump from
the Kubo formula was presented in Ref. 61. Further-
more, Ref. 10 identified skew-scattering and side-jump
scattering within a drift-diffusion approach. More re-
cently, side jump scattering was derived starting from the
quantum Liouville equation for the single-particle spin
density-matrix.5?

The analysis of the SHE becomes considerably more
complicated when both band-structure and impurity-
potential induced SO interactions are present. This prob-
lem was first addressed by Tse and Das Sarma,®® who
employed the diagrammatic Kubo formula and consid-
ered band structure SO coupling of the linear Rashba
form. They found that the skew scattering contribution
to the SHE vanished for arbitrarily small value of the
band structure SO coupling, while a term equal to half
the usual side-jump scattering SHE survived.®® This is in
contrast to the result obtained in Ref. 64 that both the
side-jump and the skew scattering contributions vanish
for arbitrarily small values of the band structure SO cou-
pling, as long as impurity-induced (Elliot-Yafet) spin re-
laxation is neglected. These two results are reconciled by
taking into account the SO contribution to the electron-
impurity self-energy diagram,%® which recovers the van-

ishing of the side-jump and skew scattering contributions
found in Ref. 64.

The principal question identified in Ref. 63 was the
paradox of the non-analyticity of the spin Hall conduc-
tivity, which appears to change discontinuously as soon as
the band structure SO coupling is turned on. This para-
dox was finally solved in Ref. 66 by the introduction of
an impurity-induced (Elliott-Yafet) spin relaxation rate
1/7ry, which led to a spin Hall conductivity of the form

O'z — [U;a;]ss + [OZLE]Sj
v 1+ ey /P

(2)

where mpp is the Dyakonov-Perel relaxation time asso-
ciated with the band structure SO coupling and given
by Top = (Q2)7,, where 7, is the momentum relaxation
time and the angular bracket denotes an average over
the momentum distribution. The above formula exhibits
a smooth crossover between the sum of skew-scattering
(ss) and side-jump scattering (sj) contributions, when the
band structure spin precession ) is neglected, and zero
when Qp7, > 1, i.e. when the band-structure SO inter-
action is much stronger than the electron-impurity inter-
action (see also Ref. 65).

However, this is not the end of the story. The work
described above was limited to band-structure SO cou-
plings that are linear in wave vector k. The aim of this
work is to provide a consistent framework for treating
band structure and impurity SO effects in quasi two-
dimensional quantum wells for any form of the band
structure SO interaction in the weak momentum scat-
tering regime Qg7, > 1. To this end, we construct a
rigorous theory of the interplay of spin precession due
to band structure SO coupling and SO coupling due to
impurities. We start from the quantum Liouville equa-
tion and derive a kinetic equation for the spin density
matrix, which captures the effects of band-structure spin
precession and 74, on an equal footing. We focus from
the very beginning on the weak momentum scattering
regime Qg7, > 1. Under this assumption, we do not
have to worry about the finite Elliot-Yafet scattering rate
that appears in Eq. (2): we are in the regime gy > Tpp.
But, while Eq. (2) predicts, in this limit, a vanishing spin
Hall conductivity for linear-in-k band-structure SO inter-
action, we will show that a finite spin Hall conductivity
can survive for different forms of that SO interaction.

More precisely, we find that, in the weak momentum
scattering regime, skew scattering and side jump scat-
tering still give zero SHE. At the same time, we identify
two additional contributions to the SHE stemming from
Tso. These contributions have been overlooked in the
literature thus far. One contribution arises from the im-
purity potential, and is found in the Born approximation
when scattering terms of second order in SO are taken
into account. This contribution can be viewed as a mod-
ification of the band structure precession frequency due
to the electron-impurity interaction. The second con-
tribution is scattering-independent. Its origin lies in the
spin-dependent interaction with the external electric field



brought about by 7s,. This has the form of an interac-
tion between each carrier and an effective magnetic field.
The carrier spin precesses in this effective magnetic field
in such a way that an out-of-plane spin component is gen-
erated, which contributes to the SHE. We refer to these
two effects collectively as anomalous spin precession. The
impurity-induced anomalous spin precession term gives
an out-of plane component of the effective magnetic field.
This is precisely what distinguishes anomalous spin pre-
cession from the usual side-jump scattering term, which
vanishes in the presence of spin-precession. Remarkably,
these effects contribute to the SHE in the first order in
the SO coupling constant even though they formally ap-
pear to be of second order. The external electric field
part of the anomalous spin precession term appears to
be universal in electronic systems in the clean limit.

In electron systems with band structure SO linear in
k the sum of the two anomalous spin precession terms
vanishes. In hole systems both additional terms are zero
independently. Nevertheless, the anomalous spin preces-
sion term in the SHE in general survives, and we demon-
strate its existence explicitly in 2D electron systems with
band structure SO described by the cubic Dresselhaus
model. In this model we find the total SHE conductivity
in the clean limit to be [see Eq. (55) below]

e NeeA
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The term o A is linear in the electron number density,
while the band-structure SO contribution in the weak
momentum scattering regime is density-independent.
The cubic Dresselhaus SO interaction term is strong in a
wide electron quantum well at high density n.. Although
the experimental situation is more complicated than the
above formula suggests (see Sec. VIII), and involves the
non-trivial interplay of linear and cubic SO terms, we find
that in a high-mobility 2D electron gas based on InSb,
anomalous spin precession accounts for most of the spin-
Hall conductivity. Our results are therefore relevant to
experiments and help to distinguish different contribu-
tions to the SHE.

Contributions to the SHE purely from band structure
SO are well known.® We do not discuss them explicitly
here, except in the practical case of experimental obser-
vation (Sec. VIII). The focus of this work is on the con-
tributions to the SHE due to 7,,, and the central re-
sult is that, aside from the well-known skew scattering
and side-jump scattering terms, two additional contribu-
tions — the anomalous spin precession terms — are present
when band structure SO is nonzero. To our knowledge,
this is the first work that proves that 7, can give rise
to a spin-Hall current through a mechanism unrelated
to scattering. We work up to third order in the impu-
rity potential, and, in order to recover all contributions,
we consider terms of second order in the SO coupling.
Our results are valid in the weak momentum scattering
limit, yet in the Appendix we prove rigorously that a
non-analyticity in the strong momentum scattering limit

is cured by introducing the Elliott-Yafet spin relaxation
time Tgy, as was done in Ref. 65.

The outline of this paper is as follows. In Sec. II we
present the band Hamiltonian and in Sec. III we dis-
cuss the effective position operator. In Sec. IV we derive
the general form of the kinetic equation starting with the
quantum Liouville equation, and discuss the various scat-
tering terms. In Sec. V we discuss the non-equilibrium
correction to the density matrix, demonstrating that a
new, scattering-independent driving term due to g, is
present. The general solution to the kinetic equation is
presented in Sec. VI, demonstrating that the skew scat-
tering and side-jump scattering terms give zero contribu-
tions to the SHE. All SHE contributions due to 7y, are
listed for commonly employed models of SO coupling.
An explanation of anomalous spin precession is given in
Sec. VII, which is followed by a detailed discussion of the
experimental situation in Sec. VIII, and the summary
and conclusions.

II. BAND HAMILTONIAN

In the crystal-momentum representation, the band
Hamiltonian H in the effective mass approximation has
the general form

h
Hor = Hyin + Hso EHkin+§0"Qk7 (4)
for an arbitrary SO interaction. The kinetic energy term
2.2
Hyn = ol = % 1, where 1 is the identity matrix

in spin space and m* the carrier effective mass. The
spin-dependent term in the Hamiltonian Hy, is treated
as a perturbation with respect to the kinetic energy term.
The eigen-energies are written as gt = o £ (72 /2).

For quasi-2D systems we may have different contri-
butions to SO coupling that are relevant in different
regimes.%” For 2D spin-1/2 electron systems with SIA,
the band structure contains the linear Rashba Hamilto-
nian

Hpy = a1 (04ky — oyky) = ari(k_op —kyo_), (5)

where ky = k; + ik, and oy = (0, £ i0y)/2. For the
most common case of a (001) surface BIA has two con-
tributions, the linear Dresselhaus term

Hpi = pi(oyky — o0zks) = —fi(kyoyr +k_o_), (6)
and the cubic Dresselhaus term
HD3 = 53(Uzkmk§ — O'ykyka%)

= Balk_ (k% — k%)oy + ky (k2 —k2)o_].  (7)

In a quantum well with well width w we have approxi-

mately 31 = B3(m/w)? (Ref. 67). This implies that the

linear Dresselhaus term often dominates in more narrow

electron systems with smaller density (i.e., small Fermi
wave vector), whereas the cubic Dresselhaus term may



dominate in wider quantum wells with a larger density.
Experiments can be designed to focus on these differ-
ent regimes. Even in the latter case we typically remain
in the electric quantum limit, where only the lowest sub-
band of the quantized motion in z direction is occupied.3¢
In the following we will focus on this regime.

For 2D heavy-hole systems SO coupling due to STA is
dominated by the cubic Rashba Hamiltonian,

Hprs = a3 [ky(kg - 3/6?;)030 + kl’(k:% - k;)gy]
= ai(ko_ — ko). (8)

BIA in 2D heavy-hole systems on a (001) surface contains
the k-linear term

Hpi = y(ozks +oyky) = ni(kro- +k_oy), (9)
and the cubic Dresselhaus term
Hpz = v3(k2 + ki)(amkz +oyky)
=y3(kik_o_ +k2kioy). (10)

For the terms cubic in k, we restricted ourselves to the
dominant contributions due to SIA and BIA. Hpy and
Hps are often comparable in magnitude.

III. EFFECTIVE POSITION OPERATOR

The SO interaction appears when transforming from
the Dirac to the Pauli equation by means of the Foldy-
Wouthuysen transformation.’® Under this transforma-
tion, the position operator in spin-1/2 systems becomes

'f'phys =7+ ’f’so, (11)

where the SO part 7, is expressed in terms of the vector
o of Pauli spin matrices. We refer to #5, as the anoma-
lous position operator.

The general form for the anomalous position operator,
valid for both 2D electron and 2D hole systems, is

Tso = \O X Wi, (12)

where A and wy, are different for electrons and holes. For
2D electrons wy = k, and

’Igso = )\1 o X k, (13)

assuming A1 k% < 1. For 2D hole systems the correction
to the position operator has the form

1A“SO = )\3 O X Wg3, (14)
where wgs = k2 (cos 36, 5in 30,0), assuming A3kS < 1.
Consider a general scalar potential V(#). Under

the Foldy-Wouthuysen transformation it transforms to
V(Fphys), which, to first order in #,, takes the form

V(Pphys) = V(#) + % [VV(F) - Fs0 + P50 - VV(7)]. (15)

Therefore, as a result of this transformation, both the
potential due to an applied electric field and the impurity
scattering potential acquire spin-dependent terms.

Let U(r) denote the scattering potential, which repre-
sents elastic scattering off charged impurities and static
defects (but not phonons or electrons)

U(r)=>_U(r - Ry), (16)
I

where R; indexes the random locations of the impurities
and the scattering potential due to a single impurity is
denoted by U(r). In Fourier space, the matrix elements
of U(r) are

Ukk/ _ Ukkz’ Z ei(k—k/).RI. (17)
I

and the potential due to a single impurity is written as
Ukt = Upetr 1+ Vierr, (18)

where Uy represents the matrix element of the poten-
tial due to a single impurity between plane waves, while
Vi is the spin-dependent part arising from 7,. Both
have units of energy x volume. The strength of the dis-
order potential is characterized by the impurity density
n;. The matrix elements of the spin-dependent part of
the impurity potential in reciprocal space are

iA
Vi = Y o (wg X K —wy x k) Uy - (19)
In 2D the spin dependent term in Vgxs points out of the
plane for both electron and hole systems.
Interaction with a static, uniform external electric field
FE is contained in

Hpge = (eE - 7)1+ e (E - F0) kkOkkr
) 1 (20)
=ieE - —0(k—Kk)1+ -0 Apdup -
ek - o ( )1+ 5 O Aklkk
with 1 the identity matrix in spin space, and Ay arises
from the anomalous position operator.%® From Eq. (12),

Ak = 26)\wk x FE. (21)

It follows from the preceding discussion that Ay has dif-
ferent forms in electron and hole systems.

The anomalous position operator accounts for impu-
rity SO coupling and for band structure SO coupling due
to SIA. To see the latter, consider the SO coupling due
to the full potential V;,; acting on the system. In a 2D
system we can divide Vit = Vezr + Vow + U, where Vz4
is the applied electric field, Vg the z-direction confine-
ment, and U the impurity potential introduced above.
The total potential Vi, gives rise to SO coupling, which
in reciprocal space is contained in

z

(22)



In the second term we can incorporate the average
(0Vow /0z) over the quantum well into an effective SO
constant «, giving the Rashba SO coupling.8! This clar-
ifies the relationship between a and A and shows that,
knowing the form of the Rashba Hamiltonian in a certain
system, one can deduce the form of 7, in that system.

The full Hamiltonian is HltcOt = Hor + Hegrr + Uk .
The spin current operator j; corresponding to spin com-
ponent ¢ flowing in the direction j is

(23)

In addition to the contribution from the band Hamil-
tonian, the velocity operator has two additional terms,
discussed in detail in Ref. 62. The first stems from the
spin-dependent interaction with the external electric field
Hggy, while the second arises from the spin-dependent
term Vg in the impurity potential. These two cancel,
as they represent the net force acting on the system.%?
They will not be explicitly considered in what follows.

IV. KINETIC EQUATION

The formalism presented here parallels that originally
formulated in Refs. 8,9. The Liouville equation for the

J

density operator p is projected onto the basis {|k)}, with
Pk’ = [ Okk’ + Grk', Wwhere g is off-diagonal in k, and
all quantities are matrices in spin space. These satisfy

d v an
Ve 2, flse = 1 10,5 (240)
diiljtkl + % [Ho, dlkw = ﬁ i (0 flies 771 7 0 dlia (240)

We focus on variations which are slow on the scale of
the momentum relaxation time, and solve for grg as an
expansion in the impurity potential, which can be per-
formed to any desired order. Very generally fy satisfies

%+%[ﬁo,f]kk+j(fk):0~ (25)

The total scattering term j(fk) = jgom(fk) + jss(fk),
where in the first Born approximation

jBorn(fk) - ;2< /Ooodtl [U
(26)

and (...) represents averaging over impurity configura-
tions. In the second Born approximation we obtain the
additional skew scattering term

’e—iﬁot’/h[U,f-] eiHOt’/h]> ’
kk

3 o0 o0 (] ’ A 1" A, 1" e ’
Jss(fk) _ _hzg</0 dt//o dt”[U,e_iHot /h[U —iHot /h[ f] iHot /h] eifot /h]> - (27)

kk

We expand jBom(fk) in Q and A\. We retain the leading term plus terms to first order in ), first order in A, and
the second-order term in QgA. Thus Jgom(fr) can be written as a perturbation expansion in Q and A in the form

Jorn(f) = Jo(f) + Ja(fi) + J(fr) + Jax(fu)- (28)

The leading term in j}gom( fx) is the scalar jo( fx), which is the customary Born-approximation scattering term
appearing in the Boltzmann equation. It is found by taking Eq. (26) and considering only the scalar parts of Hy (i.e.
Hyi,) and U (ie. Ugr), and in 2D takes the form

Jo(fx) = nZTT;L* /% Userer |* (fre = frer)- (29)

Next, we have the term in jBom( fx) to first order in Qf (i.e. due to band-structure SO coupling), which is found by

considering the spin-dependent part of Hy and the scalar part of U. It gives rise to a well-known scattering term,
referred to here as Jo(fr).5? We only require its action on the scalar part of the density matrix, ng, given by

- T [ d*K 5 0
JQ (nk) = ﬁ W |ukk" (nk - nk/) o - (Qk — Qk:’) 8750 (5(€Ok - 50]@’)' (30)

This term is relevant only in determining the band-structure SO contribution to the spin current, which has been
studied previously, and is not pertinent to the discussion presented in this work and will not be given. Following
on, in the side-jump scattering term JS] (fr) we take the scalar part of Hy and the spin-dependent part of U. The

electric field F is also finite in this term: without it Jsj (fx) would vanish.®? Because E is nonzero, JSJ (fr) acts on
the equilibrium density matrix for. It has two parts, which have been determined in Ref. 62. We use the notation of



6

Ref. 62. We write jsj (ng) = j;j (ng) + jfj (ng). The first part of the side-jump scattering term, referred to as jb‘j (ng),
arises from the change in the band energy due to the spin-dependent energy of interaction with E

N 2mn; 2k 1 0
iy () = 2 [ W P = ) 3 (A = Aw) 5

h (2m)?

The second part, jbbj (ng), reflects the spin-dependent change in the carrier position during collisions

N ;e a2k Vi
JG (i) = 7 '/(%)QUkk'( +

ok’

Both parts of the side jump scattering term are o< 0.
The scattering term Jqy(ng) reads

. mn,; [ dOF
Jox(nk) = W / [0 Qu , Vi | Urk (nie — 1)

()

The physical meaning of this term is as follows. During
a scattering process, an incoming spin has a well-defined
spin direction, given by €2, which represents the band-
structure SO coupling at wave vector k. Because the
scattering potential is also spin dependent, the incom-
ing spin is rotated during scattering by an amount that
is proportional to Vg, the impurity SO coupling. This
scattering term therefore represents spin rotations dur-
ing collisions induced by the impurity SO coupling, the
rotation being evident from its commutator structure.
Even though we are doing perturbation theory to first
order in the SO interaction terms A and g, spin preces-

J

(g0 — o) (31)
€0k
OV 0
al;:k> (nk - nk/) Dz 5(50k — EOkf) + h.c. (32)
0
ﬁé(cfok — €0k/). (33)

sion makes it necessary to include driving terms to order
A, since these terms also yield contributions to the spin
current < A only, i.e. to first order in the impurity SO
coupling. The necessity of including terms o< A2 will
become apparent when we discuss explicitly the solution
for Sgg introduced below, during which it will emerge
that spin precession introduces a factor of 1/Q.

Beyond the first Born approximation we retain the
leading term Jgs(fx), in which A is finite but the elec-
tric field E = 0, which is customarily responsible for
skew scattering.%® To first order in )\, the real part of
this term reduces to

. 3m2n,\ 2K K"
Jss(nk) = / / 3 U U i U1y, o - (wk x k' — Wi X k) (nk/ — nku)(S(EOk — EOk”)(s(EOk — 50k’)-

h (2m)2 J (2m)

(34)

In 2D systems, in which both k and wy are in the zy-plane, the skew scattering term is x o .

V. NON-EQUILIBRIUM DENSITY MATRIX

In a constant uniform electric field E the density matrix is fx = for + fer. The equilibrium density matrix is given

by

for = % [frp(ent) + frp(er—)] +

L fep(ekt) — frplen—)] o - Q,

(35)

with frpp the Fermi-Dirac distribution function, while fg is due to E. To first order in E the correction fgj satisfies

Ofer . i
ot T h

The term (eE/h) - (0 for/0k) corresponds to the usual
streaming term in the Boltzmann equation. The second
term on the RHS of Eq. (36) appears due to the anoma-
lous position operator and is oc A.

[Hy, fex] + J (fer) =

eE Ofor i
W ok _%[U'Akafok]-

(36)

We write fr = ngl + Sk, where Sg is a 2 x 2 Her-
mitian matrix, and correspondingly frx = ngrl + Sk
and for = nokll + Sok. The expectation values of the
spin current operator is found from Sgg. The term



(eE/h)-(0for/Ok) may be decomposed into a scalar part
(eE/h) - (Onor/0k) and a spin-dependent part (eE/h) -
(0Sor/0k). The spin-dependent part has been studied
previously,®® and is responsible for current-induced spin
polarizations and spin currents arising from the band-
structure SO coupling. It will not be discussed in this
work.

The non-equilibrium correction to the scalar part of
the density matrix, ngg, is determined from

a’n,Ek o _ eE 8n0k
5 T Jo(nek) == (37)
|
0SEkx | 1 -
ot h

We specialize to short-range impurities henceforth, with-
out loss of generality. The potential of a single impurity
in Fourier space is written as

Ukk’ = UL + Virr (398.)
ka/ = —% o - (Wk X kl — Wg X k)7 (39b)

where the Fourier tgansform Uk has become the con-
stant 4. We write Jo(fx) = (fx — fr)/7, with the over-
line denoting an angular average over the directions of k,
which in 2D indicates an average over the polar angle 6,

Yz/de X, (40)

2
and the momentum relaxation time 7, = 7, given by

k7 f2
%:%_ (41)

We discuss the driving terms in more detail. Firstly,

. 3 z>\ *2 u 3
_Jss(nEk) = %O’ . (wk X k! — wpr X k) NEkK ,
(42)

where the overline denotes averaging over ' and the in-
tegration over k' forces k' = k. We have established that

J

A imAn; U2 [ d2K'
—Jox(nek) = | |/

h (2m)? [

For 2D hole systems,

i U2
2h

—jm(nEk) =

(2m)?

VI. SOLUTION OF THE KINETIC EQUATION

We summarize first the general solution to the kinetic
equation for short range impurities and weak momentum

+ — [Hi, Sgia] + Jo (Sgir) = —Jss(nmr) — Jsj(new) — Jox(npk)

o -Qp,o-kxk](npx —nek)

2K
/ (o Qa0 (Wi x K — wirs % K)] (s — nwr)

The solution to this equation is well known, and reads
ngr = (eET,/h) - (Onok/0k), with 7, the momentum
relaxation time. Once this solution is found, the spin-
dependent scattering terms Jg, Jg; and Joy act on ngy
and produce additional effective driving terms for Sg.
(The method used is the same as in Ref. 69.)

We seek the solution for Sgg to first order in A which
we denote by Sggy. Specifically, including the contribu-
tion due to A from Eq. (36), it is found from

- 1

W [HEkx, Sok)- (38)

(

this term is « o, and inspection of Eq. (42) reveals that
this term is an odd function of k.

The anomalous interaction with E gives rise to two
driving terms. The first arises from the side-jump scat-
tering term, which was determined in Ref. 62. For both
electrons and holes this takes the form

1
—Jsj(nEk):—;0'~Ak5(€0k—5p). (43)

This term is also odd in k.83 An additional driving term
comes from the commutator of %0‘ - A with the den-
sity matrix. Given that Ay is already first-order in E
we require only the equilibrium density matrix for. We
expand for = frp(ex)l + (h/2) o - Qg 6]0%’(5’“), where
the first term is a scalar, and at temperature T = 0 we
can write

T oogi 1
_ﬁ[HE?k7f0k]255(5()]@—6]7)0"9;3 X Ap. (44)

Notice that this term is zero in the absence of spin preces-
sion, when fo is a scalar and the commutator vanishes.

The remaining driving term is —jQ)\(nEk). For 2D
electron systems,

0
850k 5(50k — E()k,/). (45)

0
ﬁd(EOk — EOk’)- (46)

(

scattering. We denote the driving terms generically by



Dgry in this section. Let the component i of the spin
operator be denoted by §; = (h/2) o;. The spin density
is Tr ps; = Tr ps;, where the overbar denotes an angu-
lar average as above, thus p is the isotropic part of the
density matrix. Similarly, the spin current operator ];
has been defined in Eq. (23). Because it is odd in k
its expectation value yields Tr pj; =Tr(p— ﬁ)j; Con-
sequently, the isotropic part of the spin density matrix
determines the spin density, while the anisotropic part
of the density matrix determines the spin current. It is
therefore convenient to divide the spin density matrix
into Sgrx = Sk + TEk), the isotropic part being Sgga
(which gives the spin density) and the anisotropic part
Trrx (which gives the spin current). From the quantum
Liouville equation, we obtain a set of coupled equations
for Sgrx and Ty for short-range impurities, which are
solved rigorously in Appendix A. Here we just quote the

solution. Letting Dgry = 3 o-dggy, we find for Q7 > 1

1 Q e
Ty = -0 - (k) X [deggxr + A (dprr — Adgry)],

2 Qg

(47)
where the (dimensionless) matrix A is given by A;; =
(04 —Qiflj), and Tggy as found in Eq. (47) gives the spin
current in the weak momentum scattering limit. Finally,
we take the electric field E || @, the spin-Hall conduc-
tivity is defined by j; = oy, E., and we abbreviate the
spin-Hall conductivity due to Tgg) simply by oy.

The appearance of the €2 in the denominator of Eq.
(47) is a crucial feature of this solution. It demonstrates
the need to retain scattering terms o< AQ)g that are for-
mally of second order in the SO coupling.

A. Skew scattering and side-jump scattering

We recall that, as shown in Eqs. (42) and (43), both
Jus (ngk) and jsj (ngk) are odd in k. Therefore the driv-

ing terms due to Jss (npg) and jsj (ngk) yield correc-
tions to SEkA that are even in k. Since the spin current
operator j; is odd in k, simple power counting in Eq.
(47) reveals that Jus (ngk) and jsj (ngk) do not give a
spin current in the weak momentum scattering regime.
We can develop a physical understanding of this fact.
In the absence of spin precession, skew scattering and
side-jump scattering separate up-spins from down-spins.
When band structure SO interactions are present, each
spin precesses about an effective magnetic field which de-
pends on k, thus it is not conserved. Electrons are driven
by the external field and collide with impurities, with
up-spins scattering predominantly in one direction and
down-spins predominantly in the other direction. The
spins then travel towards the edges of the sample, yet
they are subjected to the action of the band structure
SO effective field, which causes them to precess. Upon
arriving at the edge the spins are completely random-
ized. Therefore, very generally, side-jump scattering and

Table I: 75, contributions to the SHE in units of n.eX for
Qr > 1. Here e~ (k") stands for electrons (holes), while
“band SO” abbreviates “band-structure SO”.

system band SO Ay oy o3t
e R1 k 1/2 —1/2
e~ D1 k 1/2 —1/2
e~ D3 k 1/2 —1/4
ht R3 k3 0 0
ht D1’ K3 0 0
Rt D3 k3 0 0

skew scattering do not give rise to a spin current in 2D
systems.

B. Anomalous spin precession from electric field

Using Eq. 47, we have a term in the density matrix
prec 1

Q% 72
SE‘I)\ = —*O'-Ak

2 1—‘,—7(2’26725(60’6 —€F). (48)

In the weak momentum scattering limit 2,7 > 1 this
result is independent of the form of the band structure
SO interaction, and can be easily obtained from the driv-
ing term in Eq. (44). We have given (in this subsection
alone) a result valid beyond the weak momentum scatter-
ing limit so as to emphasize this apparent independence
is only an artifact of this limit. For electron systems in
this limit, the spin-Hall conductivity due to this term is,

prec __ Te eA
A - 9

(49)

where n. is the electron density. In the weak momentum
scattering limit this term is also independent of 7. In
2D electron systems it recovers the nonzero contribution
to the SHE originally found by Tse and Das Sarma®
and subsequently by Raimondi and Schwab.%® In 2D hole
systems it is easy to check that o} = 0.

The origin of this contribution to the SHE will be elu-
cidated in Sec. VII, but one remark is in order here. The
spin-Hall conductivity o}"** found in Eq. (49) has the op-
posite sign to that found in Refs. 62,63,66 for the same
orientation of the electric field. One should therefore not
think of 01" as a surviving side-jump term, but a quali-
tatively new term due to 7, altogether, which we identify
with a spin precession mechanism with no counterpart in
systems without band structure SO coupling.

C. Anomalous spin precession from impurities

_The last piece in the puzzle is the driving term
Jax(ngk), which needs to be studied independently for
each model. We denote the contribution of this term to
ox by 03, Once found, this term is added to o} to

give o), which yields the total SHE due to 74,.



1. Linear Rashba and Dresselhaus SO

For linear Rashba band structure SO coupling H g

2ea mk

= E ko -06(k—kp). (50)

jQA(nEk) =

The spin-Hall conductivity due to this driving term is

TNe€A
2

O'f\Ct —

(51)

This term exactly cancels o} °“. The same holds for the
linear Dresselhaus SO interaction Hpj.

2. Cubic Dresselhaus SO

In general ¢} and 05°" do not cancel. We consider
next a 2DEG in which the band structure SO coupling
is described by the cubic Dresselhaus Hamiltonian Hps.
In this case, the scattering term JE2(ngg) is given by

3 ~ ~ A
Jorx(ngk) = _mehﬂ E - k(o-0sin20 — o - kcos26)
x 6(k —kp). (52)

This gives a significant contribution to the spin-Hall cur-
rent,

NeeA
4

sct __
oy =

(53)
The remaining term due to 7, is o} °, and thus in the
weak momentum scattering limit

Ne€A

4

The magnitude of the SHE conductivity due to the band
structure SO coupling (the band-structure SHE) in the
2D cubic Dresselhaus model has been calculated to be
—e/167 in the clean limit.”® Therefore the total SHE
conductivity, including that due to band structure SO, is

(54)

o)\ =

. . € Ne€A 55
N T (55)

The term due to band-structure SO is density-
independent, whereas the anomalous spin precession
term in the SHE is linear in n.. These are the only
two terms in the clean limit when the band structure SO
coupling is described by the cubic Dresselhaus model.

The cubic Dresselhaus term Hpg is strong in a wide
quantum well at high electron density n.. However,
the full Hamiltonian for such a system in general in-
volves both linear and cubic Dresselhaus SO terms, Hp
and Hps, whose interplay is nontrivial. We discuss
the full conditions required for experimental observa-
tion of anomalous spin precession in this complex case
in Sec. VIII.

3. Hole systems

It is easily seen that in 2D hole systems both o} and

o5t are zero. For holes, Ay can be found from Eqs. (14)
and (20). Substituting this into Eq. 48, we find that the
spin-Hall current averages to zero over directions in mo-
mentum space. In Jox(ngg), in all cases studied, terms
x et3% cause the angular integral to vanish. Therefore,

in 2D hole systems
ox*t =0, (56)

There is thus no contribution to the SHE due to anoma-
lous spin precession in 2D hole systems.

VII. DISCUSSION

To summarize, oy = 0 in 2D hole systems, while in
2D electron systems in the weak momentum scattering
regime it can be written as

TNe€A
2

o) = + o3, (57)
The results for the total SHE due to 74, are summarized
in Table I. Interestingly, oy can be nonzero, even though
that is only true in one out of the several situations stud-
ied explicitly in this work.

We have argued previously that o} should be
thought of not as a surviving side-jump term, but a qual-
itatively new term, which is not present in systems with-
out band structure SO. We demonstrate that this term
is related to spin precession induced by both band struc-
ture SO and 74,. The electric field E gives rise to an
additional SO effective field Ay || 2-direction. The band
structure SO effective field € is in the plane. We ex-
amine spin precession in the total effective magnetic field
Q. and Ag, redefining Qp — Qg, with

Qk = Q + Ag. (58)

Let Q = (9,,0,0) and turn on E adiabatically, gener-
ating a small Q. < Q. We study the Heisenberg equa-
tion of motion for the spin (Bloch) vector s, which reads
ds/dt = Q x s, in a clean system. The spin is taken
initially to be parallel to €. In component form

ds ~

d—; = —(;sy, (59a)
d - -

% = O.sy — Qus., (59b)
ds, ~

e Qg sy. (59¢)

One can take the time derivative one more time and solve
the equations exactly, yet the physics is evident from Eq.
(59b). Since s(t = 0) = (s4,0,0) and s, is initially zero,



sy should remain zero at all times. Setting ds, /dt in the
steady state we obtain

= (5) (60)

The explanation is as follows: s, is initially 0 and must
remain 0. When F is turned on an additional component
Q. is generated, which makes s, precess and gives a small
contribution to s,. To cancel this, s, must develop a
small out-of-plane component, which precesses around
2, and gives the exact opposite contribution to s,. The
extra s, density has opposite signs for the two halves of
the Fermi surface, giving rise to a net spin-Hall current.
The argument presented here shows that 7, gives rise to
a spin-Hall current even in a clean system. We refer to
this process as anomalous spin precession.

This argument can be generalized to explain anoma-
lous spin precession in a disordered system as well. This
can be done by replacing E — E + VU(r), and un-
derstanding this to represent the total local electric field.
We thus reproduce both anomalous spin precession terms
— the one due to the external electric field and the one
due to the impurity potential. Both terms give an effec-
tive magnetic field out of the plane of the quantum well,
modifying the intrinsic SO spin precession.

Equation (47) is valid for weak momentum scattering.
Appendix A shows that in the strong momentum scatter-
ing regime Sgg) diverges. Physically, this is because we
are using 2 as our reference, and projections parallel
and perpendicular to it become ill-defined as Q2 — 0.
In this limit Dyakonov-Perel spin relaxation is no longer
active, and there is no spin relaxation at all. We demon-
strate in Appendix A that the divergence in the strong
momentum scattering regime is cured by the introduc-
tion of the Elliott-Yafet spin relaxation time 7gy, which
is also related to Vggs. Nevertheless, in order to be con-
sistent one would have to formulate the entire theory up
to order A2, which is beyond the scope of this paper.

In deriving o) we have assumed for simplicity that the
scattering potential is short ranged. We do not expect
the results to change qualitatively for long-range impu-
rities. Firstly, we have shown that o}'** is independent
of scattering in weak momentum scattering limit and is
traced to a mechanism unrelated to disorder. Secondly,
although for a general potential the anisotropic terms in

Upry will depend on the form of the potential, as will o5°*,

we do not expect cancellation between o5 and o},
even though o5 may have a different numerical value
from that determlned. Finally, past experience with the
SHE shows that important cancellations, such as that
of the SHE due to Rashba band structure SO coupling,
tend to have a fundamental origin”* and are indepen-
dent of whether the scattering potential is short-range or
long-range.®?°
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VIII. EXPERIMENTAL OBSERVATION

We have argued that the anomalous spin precession
contribution to the SHE in general is finite. For example
it survives in 2D electron gases in which the SO interac-
tion is described by the cubic Dresselhaus term (Hpgs). In
Sec. VIC2 we calculated the anomalous spin precession
contribution to the SHE conductivity using purely the cu-
bic Dresselhaus model. We now discuss the experimental
conditions required for the observation of anomalous spin
precession in a realistic sample.

For the anomalous spin precession contribution to the
SHE to be observable it must ideally overwhelm the band
structure contribution. Here we focus on two common
semiconductor materials with strong SO coupling in the
conduction band, InAs and InSb, and estimate the mag-
nitude of the anomalous spin precession as well as the
band structure contributions to the SHE in these mate-
rials. The constant A for InAs and InSb can be found in
Table 6.6 in Ref. 67 (in the notation used in this paper,

— .6cbe

=ryic/e).

The situation is complicated by the fact that in realis-
tic 2D samples both the linear and the cubic Dresselhaus
terms, Hp; and Hps, are present. Having noted in Sec.

IT that 31 ~ B3(7/w)?, the total SO Hamiltonian is
Bam? ) ,
H= “w? (oyky — ouks) + Bs(oskaky — oykyky) (61)

The ratio 7/(kpw) determines the relative magnitudes
of Hp; and Hps. However, in order to have only one
subband occupied it is necessary that 7/(kpw) > 1.

We showed in Sec. VIB that ¢§"““ is the same in the
clean limit independently of the form of the band struc-
ture spin-orbit coupling. On the other hand, the contri-
butions of the linear and cubic Dresselhaus terms, Hpq
and Hps, to o3¢ are not simply additive, and their in-
terplay is nontrivial. Therefore, the calculation of o5
presented in Sec. VI C 2 needs to be repeated for the com-
plicated case of H = Hpy, + Hps. This is done here an-
alytically, except that the final results require a series of
lengthy numerical integrations which can be performed
using a symbolic algebra package. The results for o§"
and o3¢ are summarized in Table II, as well as Fig. 1.

The band structure contribution to the SHE for the
case H = Hpi + Hps has been evaluated in Ref. 70. In
Fig. 1 of that reference it was shown that the band struc-
ture SHE is a non-monotonic function of the parameter
7 /(kpw), where 7 /w in our paper corresponds to the pa-
rameter a in Ref. 70. In fact, the band structure SHE
conductivity varies strongly as a function of this param-
eter and it changes sign at a critical value. It is however
independent of B3 in the clean limit, as is customary in
2D electron gases.

We consider a high-mobility quantum well with a num-
ber density n. = 5x 102 cm ™2 for concreteness, a density
commonly encountered in transport experiments. We fo-
cus on values of w for which n/(kpw) is comprised be-
tween 1.0 (the widest well) and 1.4.



Table II: Anomalous spin precession contributions to the spin-
Hall conductivity in a 2D electron gas in a cubic crystal, with
band-structure spin-orbit described by H = Hpi + Hps, all

in units of nce. In the last column oy = 0} + o5
w/(krw) ofree o3ct oA
1.00 0.5 —0.315 0.185
1.05 0.5 —0.338 0.162
1.10 0.5 —0.357 0.143
1.15 0.5 —-0.374 0.126
1.20 0.5 —0.386 0.114
1.25 0.5 —0.398 0.102
1.30 0.5 —0.407 0.093
1.35 0.5 —0.416 0.084
1.40 0.5 —0.423 0.077

The band structure contribution including both linear
and cubic terms is read off from Fig. 1 of Ref. 70 and is
the same for InAs and InSb. Our Eq. (55) (the pure cubic
case) corresponds to a = 0 in Eq. (16) of Ref. 70. Note
also that, in the notation of Ref. 70, e denotes the elec-
tron charge, whereas in our notation the electron charge
is —e: hence the seemingly opposite sign of the first term
of our Eq. (55) compared to the corresponding formula of
Ref. 70. When 7/(krpw) = 1.0, the band structure con-
tribution is ~ 0.8 X ¢/(167) =~ 0.016 e and, referring to
Table II, we find the anomalous spin precession contribu-
tion to be ~ 0.185 n.eA. When n/(kpw) = 1.4, the band
structure contribution decreases to = 0.2 x e/(167) =
0.004 e, and the anomalous spin precession contribution
to &~ 0.077 nee.

We consider first InAs, for which A\ = 117 A2, At
7 /(kpw) = 1.0, with the value of n. specified above, we
find the anomalous spin precession term to be =~ 0.01 e,
which is just over half the size of the band structure term.
At w/(kpw) = 1.4, the anomalous spin precession term is
0.0045 e, marginally larger than the band structure term.
In InAs therefore the band structure term is dominant in
this parameter range.

In InSh, on the other hand, A = 523 A2, At 7/(kpw) =
1.0, with the value of n. given above, we find the anoma-
lous spin precession term to be ~ 0.05 e, three times
larger than the band structure term. At 7/(kpw) = 1.4,
the anomalous spin precession term is 0.02 e, five times
larger than the band structure term. Thus, in InSb the
anomalous spin precession is dominant in this parameter
range.

We conclude that the most promising system for the
observation of anomalous spin precession is the 2D elec-
tron gas in InSb. In the range 1.0 < n/(kpw) < 1.4 the
anomalous spin precession provides the dominant contri-
bution to the spin-Hall effect. At the lower end of this
range, the overall SHE signal is stronger, and anomalous
spin precession accounts for approximately three quarters
of the SHE conductivity. At the upper end, although the
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Figure 1: Anomalous spin precession contributions in a 2D
electron gas with band structure spin-orbit coupling described
by H = Hp1 + Hps as a function of the parameter 7/(krpw).
On the vertical axis o is measured in units of nee\.

1.4

overall signal is weaker, anomalous spin precession ac-
counts for approximately 5/6 of the SHE conductivity.

IX. SUMMARY AND CONCLUSIONS

We have determined all the contributions to the SHE
due to the anomalous position operator 7, in 2D elec-
tron and hole systems. The SHE due to skew scatter-
ing and side-jump scattering vanishes in the presence of
spin precession caused by the band structure SO cou-
pling. Two additional contributions to the SHE exist due
to 7., one of which is scattering-dependent and one of
which is due to anomalous spin precession under the ac-
tion of 7, and the electric field. These two contributions
cancel out in systems with band structure SO linear in
k, and are independently zero in 2D hole systems. How-
ever, the contribution due to anomalous spin precession
survives in 2D electron systems with a significant cubic
Dresselhaus term, i.e., for wide quantum wells with high
electron densities, and is dominant under certain circum-
stances in InSb. Anomalous spin precession can therefore
be detected in such a system.

A full account of the SHE in 2D systems must include
the lengthy calculation of the electric field contribution
to the skew scattering term, plus the band structure SO
correction to that term. Moreover, in this work we have
only considered heterostructures grown along the main
crystal axes. Finally, the full answer will be known when
the definition of the conserved spin current is taken into
account, as has been done for the band-structure SHE.”
We reserve these studies for a future publication.
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Appendix A: Decomposition of the spin density matrix into Sgryx and Tgkx

(From the quantum Liouville equation, we obtain for Sggy and Tggy for short-range impurities

OSEkx | 1 B
It + % [H, TEk)\] = DEgrx (Ala)
oT 7 T [ 7 7
;;k/\ + 7 [H, Tera] + ETk)\ = (Dgkx — DEwr) — 7 [H, SEra] + 7 [H, Tgrx]- (Alb)
On the RHS of Eq. (Alb) we substitute for % [H, Trg)] from Eq. (Ala). We rewrite Egs. (A1) as
OSEkA | 1 B
5 + 7 [Hk, Terr] = DErk (A2a)
OTprx | i Trrx OSEkx | 1 —
En + 7 [Hi, Tera] + = DEgrx ( 5 + 7 [H, SEk:/\])~ (A2b)

Defining Trry = e~ Het/MTgy  etHet/h and Sy = e*iH’“t/hSENk)\ eHrt/h e can easily solve Eq. (A2b)

57?615:,\ + Tb;k/\ = ¢iHkt/hp . o—iHkt/h _ %? (A3a)
Torr = —Smn + /t dt’ e = [eth//hDEk,\e_th//h + Sb;k’\] (A3b)
—o0
where the last line was obtained by integration by parts. We can write Ty (without the tilde) as
Terx = —Sgrx + /°° dt'e’%eﬂ'Ht//h <DEk)\ + Si“)eth//h. (A4)
0

Using Sgrx = %a -SEkr, DER) = %0' -dgry and Tgpy = %0' -tgkx, and carrying out the time integral

tery = QX (dEk)\ + sh;“) 1 flg;_z fiE;Z%Z)Q + additional terms. (A5)

The physical interpretation of the terms appearing in Eq. A5 is as follows. The first term [containing Qe x (..))]
gives the full spin current when there is spin precession (2, # 0). The second term (containing dggaT) recovers
the spin current due to impurity SO coupling when there is no spin precession (€ = 0). It vanishes in the weak
momentum scattering limit Qg7 > 1. Finally, the additional terms ensure that tgg) averages to zero over directions
in momentum space, but these terms give no spin current.

Let A;; = (8;; — Qkifdij), abbreviate ASgpy = AijSek);, and substitue Eq. (A5) into Eq.(A2a). In the steady

state

1 QiTQ _ QQTQ (ﬂk X dEk,\)T

1 s = dorr— (7 4q (82 X dpkr) T A6

- [(1_’_9272)«4} SEk) EkA <1+Qi72)A Bl + T2 (A6)

) J— 1
using % [Hi, SErr] = —50" Q. X Sgga. For Q7 > 1 we obtain simply
A -
(7’) SEkx = dpkx — Adgg (ATa)

Q —
tppy = <Qk) X (dEkA + SEM) + additional terms. (A7b)
k T
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Appendix B: Elliott-Yafet spin relaxation time

This derivation is for a general Sy. Consider the scattering term in the Born approximation Eq. (26) up to second
order in A, and focus on its action on Sk. In this term we may ignore the part of the time evolution operator oc .
This scattering term is referred to as Jgy(Sk), and takes the form

. ™y k'
Jev(Sk) = — / (2m)? Vi VirieSke — Sk Vi) 8 (e — exr) + hec. (Bla)
nim 27 de/
- 2h3 % (|ka/|25k; - ka/ Sk’vk’k) + h.c. (Blb)
0

Bearing in mind that \ka/|2 is a scalar, and in 2D systems Vggr x 0., the term Vg Sk Vik has two possible forms:

‘kar|2sk/7 for Sk/ X Oy
Vik' Sk Viek = (B2)
—Vik|? Skr,  for Spr o< 04,0
so that
- nim (> do’ 5
Jey (Sk) = e o [Viek|* (S — m 2 Sk ), (B3)
where m, = —1 before 0,0, and m, = 1 before 0. If Si o o, the spin is out of the plane and is conserved during

scattering, thus jEy(Sk) gives just a correction to the momentum relaxation time. The change of sign for Si o 0, 0y
is crucial. For short-range impurities, with |Vgs |2 = A\2k*(U|? sin® v,

R AN2L4 27 4o’
Jey (Sk) = 5 / — (Sg — m.Skr) (1 — cos2). (B4)
T 0 21

If we now write Sy = Sk + Tk, and define (1/7gy) = A%k*/7, then Jry (Sk) simplifies to

5 Sk —mSk I
Jay(Sp) = BTk T / —— T cos2y. (B5)
2TEy 21y Jo 2w

Appendix C: gy cures divergence in Sgia

Equations (AT7a) are correct as long as Q7 > 1, otherwise Sggx found from Eq. (A6) diverges at small Q7. The
way out of this dilemma is provided by the Elliott-Yafet spin relaxation time. Consider adding jEy(Sk) to Egs. (Al)

OSEkA | b | OBkA — M2SERA

H,T —F—— =D 1
5t T 5 U Teral + pr— e (Cla)
oT; { T - N i
o 3 L Tow] + =7 4 Jey (Tewa) = (Dk — D) — 3 [H, Spwal + 7 [H, T, (C1b)
tot

where 1/740t = 1/7+1/7my. Since /\k% < 1, the Elliott-Yafet spin relaxation time gy > 7, and the term containing
the angular integral over 6’ is a very small correction to Eq. (C1b), which may be neglected. The only change to the
above formalism is an extra term in the equation for Sggy, which is nonzero for Sggy in plane. The spin generated

by an electric field is in-plane, so we can focus on this component, for which m, = —1, and Eq. (A6) becomes
Qi Tine ) SEk)N | SEkx _ ——— Q212
A + = dprr — Adpey | — 2% ). (C2)
(1 +Q272, Teot TEY 1+ Q272,

This cures the unphysical divergence at small ;7. To see this, consider the simplest case, that of isotropic Q,

2dEk:)\7'tot(1 + QiTEot) —2AdEgk QiTtgot
[ Ti0e + (2720t /TEY) (1 + Q37|

SEkN = (03)
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Clearly sgrx — 0 as Q — 0. Physically, the Elliott-Yafet spin relaxation time is needed to cure this divergence
because projections parallel and perpendicular to €2 are ill-defined as €3 — 0.
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