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A hallmark feature of topologically ordered states of matter is the dependence of ground state
degeneracy (GSD) on the topology of the manifold determined by the global shape of the system.
Although the topology of a physical system is practically hard to manipulate, recently it was shown
that in certain topologically ordered phases, topological defects can introduce extra topological
GSD. Here the topological defects can be viewed as effectively changing the topology of the physical
system. Previous studies have been focusing on two spatial dimensions with point-like topological
defects. In three dimensions, line-like topological defects can appear. They are closed loops in the
bulk that can be linked and knotted, effectively leading to complex three dimensional manifolds
in certain topologically ordered states. This paper studies the properties of such line-defects in
a particular context: the lattice dislocations. We give an analytical construction, together with
support from exact numerical calculations, for the dependence of the GSD on dislocations of certain
doubled versions of the exactly solvable Kitaev’s toric code models in both two and three dimensions.
We find that the GSD of the 3d model depends only on the total number of dislocation loops, no
matter how they are linked or knotted. The results are extended to Zn generalizations of the
model. Additionally, we consider the phases in which the crystalline orders are destroyed through
proliferation of double dislocations. The resulting phases are shown to host topological orders
described by non-Abelian gauge theories.
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I. INTRODUCTION

The introduction of topological order as the underlying
principle of the fractional quantum Hall effect (FQH)1

was central to the development of this new paradigm in
modern condensed matter physics, which parallels the
ubiquitous symmetry breaking mechanism. Topologi-
cally ordered phases, by definition, are quantum states of
matter having long-range quantum entanglement, which
can be characterized via the topological entanglment
entropy2,3. Topologically ordered phases can exist in
both two and three spatial dimensions.

In topologically ordered phases, non-trivial excitations
such as fractional charges may arise and realize any-
onic statistics in two spatial dimensions4. Tunneling of
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virtual pairs of such fractional charges across the sys-
tem can lead to a degenerate ground state, which im-
plies non-trivial ground state degeneracy (GSD) that de-
pends on the topology of the underlying physical sys-
tem5, which is another hallmark of topological order4. A
system with excitations is typically also described by de-
generate states, and spatial manipulations of excitations
correspond to unitary transformations (Abelian or non-
Abelian) of the degenerate states, potentially realizing
quantum computational operations6–8. Recent years saw
experimental implementations of anyonic excitations and
other ingredients of quantum computation in photonic,
superconducting, ultracold atoms, and most promisingly
in non-Abelian FQH systems [for a review, see Refs.9 and
10].

In particular, the specific dependence of the ground
state degeneracy on the real space topology of the phys-
ical model is a crucial signature of topological order,
but is hard to probe directly11. Recently, a novel pro-
posal to circumvent this constraint was made12 for a
FQH system on a (2d) lattice. That proposal is based
on the mapping of a flat band with Chern number N
onto N independent quantum Hall systems (“layers”),
while these layer degrees of freedom are connected by
the two-dimensional lattice translations. Lattice disloca-
tions (translational topological defects) are then shown
to act as ribbons connecting the layers, effectively setting
the quantum Hall system on a higher genus surface, al-
though the physical system shape is unchanged. Further,
the dislocations themselves carry a non-trivial quantum
dimension even in an Abelian FQH system12. In earlier
studies13,14, it was also shown how lattice dislocations in
the 2d Toric Code model can change the anyonic exci-
tations of the model. This series of works demonstrate
qualitatively new features of topological defects (point-
defects) in topologically ordered phases in two spatial
dimensions; namely these defects can carry extra GSD.

However, in three spatial dimensions, topological de-
fects can be either point-like or line-like. In three spatial
dimension, a new ingredient in the problem is that the
line-like defects can be linked or knotted. For example,
crystalline dislocations in a three-dimensional lattice are
line-like defects which form closed loops. Therefore a
dislocation itself can have a complicated topology if it is
knotted or linked with other dislocation loops.

Natural questions emerge: Are there qualitatively new
features associated with line-like topological defects (e.g.,
dislocations) in 3d topologically ordered phases? Can the
line-like defects carry extra GSD? In addition, because
the GSD is a topological property of the system, GSD
can only be a topological invariant of the links and/or
knots of the dislocation loops in 3d. Is the GSD a trivial
or non-trivial topological invariant of the links/knots?

It is interesting to speculate what would happen if
the GSD was indeed a non-trivial topological invari-
ant of the links/knots. In this case, the non-trivial
topological invariant is distinct from the conventional
topological invariants of links/knots (such as the Jones

polynomial15,16): The conventional topological invari-
ants of links/knots are mappings from links/knots to a
complex number. But here, the possible non-trivial topo-
logical invariant of the links/knots is a mapping from
links/knots to a Hilbert space associated with the GSD.
We note that this new type of topological invariants of
links/knots has attracted some interest in mathematics17

and physics18.

At this point, it is worth mentioning that qualita-
tively new features of topological defects in topological
phases without long-range quantum entanglement (and
thus not topologically ordered) were shown quite some
time ago. Examples include Majorana fermions bound
to vortices of p+ip topological superconductors19, and
helical modes bound to dislocations in 3d topological
insulators20. Even general understanding for such phe-
nomena is available in the context of non-interacting
fermion systems21. However, our understanding of topo-
logical defects in topologically ordered phases is probably
far from complete.

Motivated by these questions, in this paper we attempt
to obtain a general understanding, to a certain level, of
the extra GSD induced by dislocation loops in certain
topologically ordered phases in 3d. We mainly focus on
a 3d topologically ordered phase described by Z2 × Z2

gauge group, in which the lattice translation symmetry
interchanges the two Z2 gauge sectors. Generalization to
other topologically ordered phases with Zn × Zn gauge
groups is also presented. To study the effects of disloca-
tion defects in these 3d phases, we use exactly solvable
models as a powerful tool.

In the past, important insights about topological or-
der came from classes of exactly solvable models in
two7,13,22–25 and three22,26–28 dimensions. The paradig-
matic exactly solvable model is the two-dimensional
“toric code”7 (2dTC) defined through interactions of
spin- 1

2 sites on a square lattice. This model was used to
originally introduce the concept of topological quantum
computation using anyons7. Signatures of its Abelian
anyonic excitations have been observed and further ma-
nipulation schemes are developed29–33. Parallel to such
efforts, the toric code has been generalized to three
dimensions26 (3dTC). Both 2dTC and 3dTC are de-
scribed at low energies by a Z2 gauge theory, describ-
ing therefore Z2 topological order. However, the 3dTC
is predicted to stay topologically ordered even at finite
temperatures due to its dimensionality34. The 3dTC is
still a relatively simple model, and therefore we can study
in detail its properties on the three-dimensional lattice.

We calculate the effect of arbitrary dislocation loops
in an exactly solvable three-dimensional doubled Kitaev
toric code26. The model system consists of two copies
(“flavors”) of the 3dTC, displaced by half of lattice con-
stant along one direction (say ŷ), which allows dislocation

lines with the minimal Burgers vector ~b = ŷ/2 to connect
the two flavors (sublattices) and therefore induce non-
trivial topologies of the total (three-dimensional) man-
ifold on which the model exists. We find that our con-
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structive analytical results, which are corroborated by ex-
act numerical calculations, show that this Abelian model
is not sensitive to the knotting and linking of dislocation
lines, but can only distinguish the total number of dislo-
cation loops in the crystal lattice. The topological ground
state degeneracy in a lattice with periodic boundary con-
ditions scales simply with the number of dislocation loops
(k > 1) as |GSD| = 26 · 2k−1 (|GSD| = 26 when disloca-
tions are absent). We generalize this result to the dou-
bled Zn toric code in three dimensional periodic lattice
in the presence of dislocations, where the ground state
degeneracy is |GSD| = n6 · nk−1, again independent of
linking and knotting of the dislocation loops. This im-
plies a zero-temperature entropy contribution which is
extensive in the number of dislocation loops, and we will
show it seems to persist in a realistic system with open
boundaries (i.e. without periodicity).

We find somewhat similar results in the two-
dimensional doubled Kitaev toric code, where a dislo-
cation loop takes the form of a pair of pointlike edge

dislocations (with Burgers vectors ~b and −~b). The GSD
of the lattice with periodic boundary conditions (equals
24 in absence of dislocations) is also not influenced by a
single dislocation pair, but scales with number of pairs
k > 1 as |GSD| = 24 · 4k−1. Further, |GSD| = n4 ·n2k−2

for doubled Zn toric code in periodic system in two di-
mensions.

A further fundamental question arises: What is the
state of matter obtained by making the dislocations dy-
namical excitations? In 2d, we consider a state where

“double dislocations” (|~b| = 1, therefore not mixing fla-
vors) proliferate and melt the lattice. Then, a tunneling

event of a ~b = ŷ/2 dislocation pair introduces a Z2 twist
across which the flavors are exchanged. We show that
the resulting theory is described by a non-Abelian group
Gn ≡ (Zn × Zn) o Z2 by analyzing the ground state de-
generacy on the torus. We further derive the degeneracy
on arbitrary genus oriented surfaces, which reveals the
quasiparticle content of the theory. In the case n = 2, i.e.
the melting of simplest doubled toric code, both the de-
generacy and the quasiparticle content explicitly match
the properties of topological states with (non-Abelian)
dihedral group D4, as is already indicated by the isomor-
phism D4 ' (Z2×Z2)oZ2. In 3d, we focus on the melted
state on a three-torus, i.e. a three-dimensional melted
lattice with periodic boundary conditions. Also, we only
consider the original toric code, i.e. n = 2, and find
the ground state degeneracy of the melted state, which
exactly matches the degeneracy of the D4 topologically
ordered state on the three-torus. Therefore, there is very
strong evidence that the condensation of double dislo-
cations, which carry no flux nor charge in the Abelian
Zn×Zn theory, gives rise to a non-Abelian gauge theory
in both two and three dimensions. The defect conden-
sation promotes a global symmetry (the Z2 flavor) to
a gauge symmetry, and can be seen as a physical way
to connect phases that exhibit different topological or-
der and different global symmetry, i.e. connect different

symmetry enriched topological phases.
This paper is organized as follows. The majority of

the discussion is focused on the doubled Kitaev toric
codes, and we leave the detailed analysis of the gener-
alized doubled Zn toric code for Appendix A. We start
with the complete analysis of the doubled 2dTC model
in Section II. The model description including disloca-
tions, and proof of the ground state degeneracy are pre-
sented in detail, and also serve as a warm-up for the
3d case. The exact numerical results for the 2d model
are presented jointly with the 3d case in Section IV A.
In Section III we introduce the three-dimensional lattice
model and construction of dislocation loops. Some de-
tails of the construction are relegated to Appendix E. We
present the behavior of stabilizer constraints, the string
and membrane operators, and the exact numerical results
for GSD in Sections IV A, IV B. Section IV C introduces
the rules for string operators we found by analyzing the
lattice. This facilitates the presentation of our main ana-
lytical results for arbitrarily linked dislocations with, and
without, knotting in Sections IV D and IV E, respectively.
The detailed analysis from the dual perspective of mem-
branes is presented in Appendix B. Section V presents
the analysis of the theory of melted lattice, with emerg-
ing non-Abelian gauge theory. We close with a discussion
of Zn models (which is studied in detail in Appendix A),
the influence of system boundaries, as well as some im-
plications of our study.

II. THE TWO-DIMENSIONAL DOUBLED
TORIC CODE

The 2dTC is a very well known7 model that has Z2

topological order. We describe our doubled variant in
detail below.

The square lattice of one 2dTC copy has lattice con-
stant a ≡ 1 and spin− 1

2 ’s on lattice links. The second
copy of the 2dTC is displaced by half the lattice constant
along ŷ direction, this direction being vertical in Fig. 1.
The two copies are called “flavors”, having flavor index
f = α, β. When we discuss one copy of the model, i.e.
one fixed flavor, it is understood that we consider the
copy of the square lattice assigned to that copy, having
a = 1. Star operators (circles of the same color in Fig. 1)
are positioned at lattice sites and act only on the four
neighboring spins (Fig. 1):

Afs = σxs+x̂/2σ
x
s+ŷ/2σ

x
s−x̂/2σ

x
s−ŷ/2, (1)

where σiR is the i-th Pauli matrix acting on the spin at po-
sition R, while s is a lattice site position in the f flavored
lattice. Each square plaquette of the lattice centered on
p ≡ s + (x̂/2 + ŷ/2)/2 for some s, carries a plaquette
operator B acting on 4 neighboring spins:

Bfp = σzp+x̂/2σ
z
p+ŷ/2σ

z
p−x̂/2σ

z
p−ŷ/2. (2)

The centers of plaquettes belonging to flavor α(β) are
easily recognized as positioned on spins of flavor β(α),
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FIG. 1. The 2d doubled toric code with a dislocation pair. Red/yellow dots are spins of flavor α/β, two copies displaced
by aŷ/2. Green/blue circles mark centers of α/β star operators. Removing all sites within the shaded area (the Volterra,
“αβ”, line) leaves two dislocations (positioned at blue shaded sites). As is a trivially locally repaired star operator (acting
with σx on neighboring spins labeled by wavy lines). Near the dislocation site, non-trivial local surgery reinstates commuting
stabilizers: Star marked by black triangle now acts on three light blue diamond spins only; Two plaquettes marked by black
triangles are replaced by the merged 9-spin stabilizer (acting on violet square spins). If the dislocation was sitting at a star
operator site (example not shown), the two new stabilizers would look the same, except that the assignment star/plaquette
would be exchanged. Dashed line follows a lattice string loop P, giving operator Σ2d acting through σz on crossed-out spins. P
is constructed locally step-by-step, always hopping between two star lattice sites and acting on the spin site they share. Notice
the flavor change (flavor is also marked by slant of cross-out lines) when crossing the αβ line, leading to the obligatory even
winding around the dislocation. Multiplying Σ2d with the plaquette Bp locally changes the shape of the loop P, but not the
(possible) independence of string loop Σ2d from the set of plaquette stabilizers. The Σ2d is actually trivial, because the loop is
contractible. One must explicitly use the repaired plaquettes near the dislocation site to show this.

when there is no star operator (circle) on that spin al-
ready, see Fig. 1. The displacement of two copies by
ŷ/2 (vertically) creates alternating columns of star and
plaquette operators in the total 2d lattice.

The Hamiltonian

H = −
∑

f∈{α,β}

(∑
s

Afs +
∑
p

Bfp

)
(3)

is formed by the star and plaquette operators (“stabiliz-
ers”), defined on a lattice with periodic boundary con-
ditions. Since all stabilizers commute, the ground state
degeneracy follows from counting the number of indepen-
dent stabilizers.35,36 In a lattice of N squares (per flavor),
there are 2N spins, N plaquettes, and N stars, so that
the number of locally unconstrained spin− 1

2 degrees of
freedom is

Nspin −Nstab = 0 (4)

The non-trivial GSD follows from (spatially) global con-
straints obeyed by the stabilizers. For each flavor, there

are 2 global constraints: the product of all stars is the
identity operator, as well as the product of all plaquettes,∏

s

Afs = 11 (5)∏
p

Bfp = 11, (6)

because Pauli matrices act twice on each spin. The two
unconstrained spin− 1

2 give

|GSDideal2d| = 22 · 22. (7)

Importantly for our purpose, the GS manifold can be
explicitly labeled using additional operators. There are
two types (per flavor) of string operators7. Consider a
path (“string”) Pf along the f -flavored lattice edges, con-
necting two star positions: all spins i on the links within
the path are i ∈ Pf . Similarly, a dual path (string) P̄f
connects plaquette centers in the dual lattice of flavor f .
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The string operators are then:

Σf2d(Pf ) =
∏
i∈Pf

σzi (8)

Ξf2d(P̄f ) =
∏
i∈P̄f

σxi . (9)

If a string forms a closed loop, the string operator com-
mutes with all stabilizers, and therefore with H, because
a string without endpoints must share an even number of
spins with any stabilizer. Further, a string shape P/P̄ on
the lattice can be deformed by multiplying the string op-
erator Σ2d/Ξ2d by B/A stabilizers (see Fig. 1). Such an
operation preserves the dependence or independence of
the string operator from the stabilizers. Then, Σ2d/Ξ2d

is the trivial operator if P/P̄ is contractible on the lat-
tice in that way. The only non-contractible closed strings
(loops) span the periodic system. These string loops are
therefore independent from the set of stabilizers, and can

be used to label the degenerate GS. A Σf2d loop spanning
the X (Y ) direction has an odd number of intersections

with a Ξf2d string spanning Y (X), which causes their an-
ticommutation. Due to their smooth deformations (using
stabilizers), independent string loops are exhausted by
topologically inequivalent ones. Any loop with multiple
windings along the system can be deformed into a prod-
uct of the elementary X and Y spanning ones. Therefore,
a single flavor has two pairs of anticommuting Σ2d,Ξ2d

(the X,Y and Y,X spanning pairs), giving the expected
total GSD from Eq. (7).

We can now move on to a lattice with dislocations.
Generally speaking, dislocations in 2d are pointlike, only
of edge type, and are operationally obtained by remov-
ing a finite line (the Volterra line) of lattice sites and
repairing the lattice between the line’s endpoints (see
Fig. 1). The endpoints mark two dislocations, transla-
tional topological defects37. We only consider disloca-

tions with Burgers vector ~b = ŷ/2, and therefore only
remove single lines of sites lying along the x̂ direction in
Fig. 1. The lattice is locally repaired seamlessly across
the Volterra line away from its endpoints, and so the line
itself is unphysical37, and only its endpoints matter. The
Burgers vector topology says that any loop encircling a
single dislocation will experience the “jump” due to the
removed sites, even though it is impossible to say where
the removed sites were.

In the case of the 2dTC, our choice of ~b leads to the
mixing of the two copies of the model (the two flavors
f) explicitly through the local repair of stabilizers near
the removed line (example of As in Fig. 1). However,
strictly speaking, the global assignment of flavor becomes
impossible due to the topological obstruction. We can
however always assign flavors locally (starting from a de-
sired point), and use it to build up arbitrary operators
of fixed flavor step-by-step from the selected point, using
the repaired local lattice links. The switch of flavors in-
duced by a dislocation will always appear when we follow
a string back to its starting point. Equivalently, and con-

veniently, we instead retain the global flavor assignment
of the original lattice together with an explicit choice of
the removed site (Volterra) line.

We can now repeat the counting of degrees of freedom
from Eqs.(4), (5). Around the dislocation positions the
lattice is heavily distorted, and so the stabilizers there
have to be carefully and explicitly reconstructed such
that they commute with all others, as shown in Fig. 1.
Along the Volterra line (shaded region of Fig.1), each re-
moved spin is also labeling a removed stabilizer. At a
dislocation point however one stabilizer is lost (two orig-
inal α, β stabilizers next to it merge into one). However,
also two global stabilizer constraints are lost. Namely,
the new stabilizers near the defects are still local but act
on spins of both flavor, because of which now the flavor
separated global constraints of Eq. (5) are merged∏

f,s∈S

Afs
∏
s′∈Ds

Ãs′ = 11 (10)

∏
f,p∈P

Bfp
∏
p′∈Dp

B̃p′ = 11, (11)

where the sets S, P , Ds and Dp exhaust all stabilizers
in the dislocated lattice: original stabilizers and ones re-
paired along the Volterra line are in the sets S and P
(having well defined local flavor), while Ds, Dp are the
sets of heavily modified stabilizers near the dislocation
cores. In a lattice with single dislocation pair therefore
the changes in counting unconstrained degrees of freedom
cancel, leaving the GSD intact. For k dislocation pairs,
compared to ideal lattice, we get additional 2k degrees
of freedom, but still only lose 2 global constraints. We
therefore get additional 2k − 2 unconstrained degrees of
freedom, predicting

|GSD2d| = |GSDideal2d| · 22k−2 = 24 · 4k−1, (12)

for k ≥ 1. Exact numerical lattice calculation as intro-
duced in Sections IV A, IV B shows that

|GSD2dnum| = 24 · 4k−1, k > 1, (13)

at least for k 6 3, and it also corroborates the inde-
pendent string operators we will present in Fig. 2. The
following discussion is based on a nice geometric inter-
pretation in Ref.12.

The neat feature of the 2dTC is that we can visualize
the topology of the model manifold entirely. The 2dTC
starts as two separate copies of the two-torus T 2, one per
flavor. The π1(T 2) = Z2 gives the X and Y spanning
non-contractible loops per flavored torus.

Next we introduce a single dislocation pair. Because
of the local flavor change upon crossing the Volterra line
of removed sites (as explained above), we call this line
the “αβ line”. As an example, Fig. 1 shows an explicit
string loop which winds around a dislocation. The string
operator is constructed by definition, in a step-by-step
manner: Starting from a star location and hopping to a
neighboring star with which it shares a link, the spin site
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on this link is acted on by σz and becomes a step in the
path P of the string Eq. (8). The string is forced to wind
(at least) twice around the defect, and in general an even
number of times, because it must change flavor an even
number of times to be able to close into a loop.

Generally, knowing how strings change flavor upon
crossing the αβ line between dislocations, we see that
the αβ line represents a connection between the two fla-
vored tori. This connection is a smooth tube, because
we can show from the lattice model (e.g. using Fig. 1)
that a loop encircling the αβ line (therefore both de-
fects) can use the αβ line to switch flavors, but cannot
contract through it. Therefore the loop switches flavored
tori by sliding along the a tube that connects them, see
also Fig. 2c.

Furthermore, the string loop winding twice around a
single dislocation, shown as a string example in Fig. 1, is
contractible (so giving the identity operator). This is a
non-trivial fact which follows from the definition of heav-
ily edited stabilizers near the dislocation site. Going to
the continuum description, this loop can be contracted on
the “connection tube” between the tori (this geometric
interpretation was first introduced in Ref.38 as “worm-
hole”), because it does not wind around the tube (and is
therefore not a new type of non-contractible string loop).
Summarily, the k = 1 system can be topologically accu-
rately described by a torus with two holes (the original
holes of the two flavored tori), a manifold whose funda-
mental group also has four generators and therefore the
same GSD as the ideal system.

Adding another pair of dislocations creates another
tube connection between the two flavored tori, essentially
adding another hole to the manifold, Fig. 2b. This adds
two anticommuting non-contractible string pairs, giving
a GSD enhancement by factor 22. One pair has Σ2d en-
circling the new dislocation pair and Ξ2d piercing both
αβ lines (therefore changing flavor twice); the other pair
has Σ2d and Ξ2d exchanged. Obviously the two strings
of such pairs intersect once due to their flavor structures,
see Fig. 2a.

For k > 1 dislocation pairs (Fig. 2d), the model lives
on a manifold with 2 + (k − 1) holes, thus having genus
g = k + 1. We name this two-manifold T 2

g . Since

π1(T 2
g ) = Z2g, there are 2g independent, say Σ2d, strings.

Another useful property of T 2
g is that one can always

choose the non-contractible paths in it such that they, in
pairs, intersect exactly once. This ensures pairwise an-
ticommutation with Ξ2d strings (which as a set do not
topologically differ from the Σ2d strings), and leads to a

|GSD2d| = 22g = 22k+2, k > 1 (14)

degeneracy, exactly in accord with Eqs.(13) and (12).

a) b)

α

β

α

β
...

1 k-1 k

c) d)

FIG. 2. The GSD resolving non-contractible Σ2d strings in
the 2dTC (the Ξ2d strings are topologically the same). The
Volterra αβ line is dashed blue, α/β flavored strings are
straight/wavy black lines, dislocations are blue dots. a) Two
dislocation pairs and the relevant strings, periodic boundary
conditions are used. b) Another, equivalent, set of GSD re-
solving strings. c) The underlying manifold of the model.
Two tori are the two flavor copies of the system, and the
dislocation induced σz strings from (a) are shown. d) The
2 + (k − 1) genus manifold on which the k dislocation pair
model lives, with the 2 new Σ2d strings (of the type as in (b))
added per each new pair after the first.

III. THE THREE-DIMENSIONAL DOUBLED
TORIC CODE

The 3dTC has been studied in detail26,34, but for com-
pleteness we introduce all its necessary ingredients here
(see Fig. 3) as we describe its doubled variant.

Spin− 1
2 degrees of freedom belonging to one flavor (say

α) occupy the midpoints of edges in a cubic lattice, where
the lattice sites s ≡ (i, j, k) are labeled by integers, and
lattice constant a ≡ 1. Each lattice site s carries a sta-
bilizer As called a star operator (Fig. 3), which acts on 6
spins neighboring s, i.e. on 6 spins positioned on lattice
edges which share the site s:

Aαs = σxs+x̂/2σ
x
s+ŷ/2σ

x
s+ẑ/2σ

x
s−x̂/2σ

x
s−ŷ/2σ

x
s−ẑ/2, (15)

where σiR is the i-th Pauli matrix acting on the spin at
position R. Each square face of a cube is centered on

p(âb̂) ≡ s + (â+ b̂)/2, for some s, and for â, b̂ some pair
from {x̂, ŷ, ẑ}; such a face lies in the ab plane and carries
a plaquette operator Babp acting on 4 neighboring spins of

p(âb̂), i.e. acting on 4 spins on the lattice edges forming
the square face (Fig. 3):

Bab,αp = σz
p(âb̂)+â/2

σz
p(âb̂)+b̂/2

σz
p(âb̂)−â/2σ

z
p(âb̂)−b̂/2. (16)

In the following, it will mostly suffice to use the shorter
label Bfp for the plaquette operator, where it is under-

stood that the position p determines the plane âb̂ in
which the plaquette is lying.

The β flavor of the model is created as a copy of the
lattice translated by ŷ/2 (Fig. 3); β spin sites are then
always at a position where there is an α stabilizer site,
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∑α

FIG. 3. Three-dimensional doubled toric code (compare to 2d
system in Fig. 1). Red/yellow dots are positions of spin− 1

2
of flavor α/β, and they differ by a translation by ŷ/2. For
convenience, we draw the cubic lattice having lattice spacing
1/2 in all directions, so that spins, stars, plaquettes and local
constraints, of both flavor, are all positioned on the sites of
this “dense lattice”. Flavor α/β star operators (green/blue
circles) are positioned on α/β lattice sites and act through
σx operators on their six neighboring spins (blue wavy lines
from Aβs ). Flavor f = α, β plaquette operator Bab,fp acts by

σz on four spins of a f square lying in âb̂ plane, centered on
p. On the shown “dense lattice”, a center p of α/β flavored
square face is always positioned either: at an un-circled β/α
spin (example Bxy,αp shown), or at an empty position (center
of β/α cube, having no spin, nor star), example Bzx,αp . A
closed string operator (example Σα), forms the dashed loop
P (example lying in Y Z and ZX planes of α lattice) and
acts by σz on spins in P (crossed-out). Multiplying Σα with
shown Bαp operators deforms the P loop. A center of a cube in
the f flavored lattice is an empty position (no spin, nor star)
in the shown “dense lattice”, and it labels a local constraint∏
Bab,fp = 11 for the 6 plaquettes p(âb̂) on the 6 sides of the

given f flavored cube.

and vice versa. Notice that every second XY layer of the
3dTC model is reminiscent of a 2dTC lattice.

The Hamiltonian of the 3dTC is simply given by the
negative sum of all stabilizers in the lattice:

H = −
∑

f∈{α,β}

∑
s

Afs +
∑
p(âb̂)

Bâb̂,fp

 . (17)

Setting H on a three-dimensional lattice with peri-
odic boundary conditions, all stabilizers commute. The

ground state degeneracy therefore follows from counting
the number of independent stabilizers.35,36 Each center of
cube in the f flavored lattice marks a local “cubic” con-
straint, because the action of six f plaquette operators
on the sides of that cube is the identity operator:∏

p∈Ci

Bfp = 11, (18)

with Ci being one of the i = 1, . . . , N cubes in the f
lattice, and p ∈ Ci being the six centers of squares on
the surface of cube Ci. Per flavor, in a lattice of N cubes
there are 3N spins, 3N plaquettes, and N stars, so that
the number of locally unconstrained spin− 1

2 degrees of
freedom is

Nspin − (Nstab −Nindep.loc.constraints) =

3N − (4N −N) = 0, (19)

balancing as in the 2d case of previous section. However,
only N − 1 local cubic constraints from Eq. (18) are in-

dependent, since due to Bfp
2

= 11 the product of N − 1
local constraints gives exactly the N -th constraint in the
system with periodic boundary conditions. This removes
one stabilizer constraint. On the other hand, the product
of all stars in the lattice gives identity:∏

s

Afs = 11, (20)

adding one global constraint (per flavor). The counting
balance of Eq. (19) therefore still seems to remain valid.

However, there are additional global constraints
obeyed by the stabilizers, from which the non-trivial GSD
follows. The stars are “volume-like”, since multiplying
many adjacent stars leaves only a surface of spins acted
on by σx. The plaquettes are “surface-like”, since mul-
tiplying many adjacent plaquettes leaves only a closed
loop of lattice edges on the boundary, on which σz oper-
ators act (e.g. the loop operator in Fig. 3 is equal to the
product of several adjacent plaquette operators). We al-
ready counted the global star constraint obtained by fill-
ing the system volume by multiplying all stars (thereby
shrinking its surface acted on by σx operators to noth-
ing). The periodic system has a shape of the three-torus,
and we can multiply plaquettes so as to create three sur-
faces spanning the system’s XY , Y Z or ZX planes, such
that they have no edges and so no σz action. This gives
three global constraints. Each surface can be arbitrarily
deformed by putting additional plaquettes into the prod-
uct. But, demanding that the surface stays boundary-less
(and therefore equal to 11 operator), the elementary defor-
mation must contain the product of plaquettes forming
the surface of an entire cube. The product of plaque-
ttes on a cube surface is locally constrained (Eq. (18)),
so the global constraint given by the deformed surface
is, up to local constraints, equivalent to the global con-
straint given by the undeformed surface. The three non-
contractible (and boundary-less) surfaces spanning the
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three-torus therefore give the only inequivalent global
constraints which are independent from the local con-
straints. The existence of three spanning surfaces follows
from π1(T 3) = Z3. Adding up two flavors, one gets

|GSDideal3d| = 26 (21)

on the three-torus, i.e. on a lattice with periodic bound-
ary conditions.

The operators which resolve the ground state manifold
are represented by non-contractible string loops (Fig. 3)
and non-contractible closed membranes26,34. A string

Σf (Pf ) =
∏
i∈Pf

σzi (22)

is a product of operators on spins positioned along a path
Pf that follows the edges of f ∈ {α, β} flavored cubic
lattice, starting and ending on a lattice site s, on which
there is a star Afs (Fig. 3). The string can obviously
be deformed by multiplication with plaquettes, and is a
straightforward generalization of 2d strings Σ2d. If the
string is closed, it commutes with all the stars too, as
every star acting on an edge belonging to the string will
also act on another of string’s edges due to the string’s
continuity. A membrane

Γf (Sf ) =
∏
i∈Sf

σxi (23)

is defined on the dual lattice, and is built from opera-
tors acting on a single spin per dual cube face (see il-
lustration in Ref.34). The membranes can be deformed
when multiplied by stars, which are in the centers of dual
cubes. (This deformation is geometrically the same as
when the global surface constraints on plaquettes are de-
formed by multiplication with local cubic constraints.)
Since the membranes are closed (boundary-less), they
commute with all plaquettes, and are generalizations of
the 2d Ξ2d strings hopping on the dual square lattice.

By construction, a string shares exactly one spin with
a membrane at their intersection point, which leads to
their anticommutation in case the string pierces the mem-
brane odd number of times. All closed membranes must
be pierced even number of times by any string loop, ex-
cept in the case of non-contractible objects which exploit
the three-torus topology. On the dual cubic lattice, one
can construct only the three independent closed mem-
branes Γf (XY ),Γf (Y Z),Γf (ZX). Each is pierced ex-
actly once by Σf (Z),Σf (X),Σf (Y ) (strings spanning the
three-torus), respectively, giving 3 anticommuting pairs
per flavor. These strings and membranes commute with
stabilizers and the Hamiltonian, so each anticommuting
pair gives a two-valued quantum number labeling the de-
generate ground states. Due to flavor f there are in total
6 anticommuting pairs, giving the |GSDideal3d| = 26.

z

x

y

As
β

FIG. 4. Edge dislocation of an ZX loop (compare to Fig. 1).
Black dots are removed sites, forming the αβ surface shaded
grey. The dislocation line is represented by the outmost array
of black sites, marked by the blue line. The shown star opera-
tor As is repaired by just gluing the neighboring sites together
in the local neighbor network, and that is how the flavor jump
occurs as a string operator which pierces the αβ plane is con-
structed step-by-step (compare to Fig. 1). The exception to
the seamless repair are stabilizers that contain spins on the
dislocation lines, for which the explicit repair “surgery”, such
that all stabilizers commute, is needed, as shown in Fig. 16.

A. Dislocation loops

In this subsection we present the details of creating dis-
locations in the 3dTC model, which is a generalization of
the 2d case from previous section. Due to our choice of
displacement of flavored lattices along ŷ, we only consider

the nontrivial dislocations with ~b = ŷ/2. The dislocation
loops in ZX plane are therefore purely edge (we will call
them “edge dislocation loops”), while the XY and Y Z
dislocation loops are of screw type along segments par-
allel to ŷ segments, and edge otherwise (these we simply
call “screw dislocation loops”).

To create an edge dislocation loop37, we remove a sur-
face of sites in a ZX plane, as in example of Fig. 4 (see
Figs. 16,17 for details). Locally, the lattice, as well as
the stabilizers, depend on the nearest neighbor network,
which can be repaired by connecting two sites on either
side, along ŷ direction, of a removed site. This reparation
is locally indistinguishable from the original lattice, but
fails at the dislocation line formed by the outermost ar-
ray of removed sites, as dictated by the defect topology.
The non-trivial reparation of stabilizers around the dis-
location line is presented explicitly in Appendix E. Once
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“repaired”, all stabilizers in the lattice commute, and we
use their negative sum for the Hamiltonian as in Eq. (17).

The removal of a single layer of sites introduces a
“skip” in the usual alternation of flavors along ŷ, thereby
inducing the flavor mixing. To be precise, the plane sur-
face of removed sites is the Volterra surface, which is un-
physical, i.e. could be arbitrarily placed in the lattice as
long as it is bounded by the fixed dislocation line37. This
also means that the global assignment of flavor is impos-
sible in presence of dislocations. However, we can always
locally assign flavors in the lattice. Most importantly,
following a string that starts out locally as flavor α, fol-
lowing the local neighbor network, if it winds around a
dislocation line and comes back near the start position,
the “skip” will be felt (although impossible to say where
it happened) and the string will not close on itself as it
will locally be of β flavor. (We need to perform one more
wind around a dislocation line to be able to close the
string.)

We can alternatively keep the original global flavor as-
signment, but then also keep the surface of removed sites
as a fixed Volterra choice, for the simplest way for book-
keeping. Because of this, we will also call the chosen
Volterra surface “the αβ surface” as the flavor change
will occur upon crossing it. This procedure only makes
sense when considering closed strings and membranes
which conserve the parity of number of times they cross
the αβ surface that spans a dislocation loop. Since our
goal is analysis of GSD, the open strings and membranes
carrying excitations on their endpoints/boundaries26 will
never be involved.

For the creation of screw dislocation loops, we need to
perform a ŷ/2 translation which is parallel to the chosen
“screw surface” that spans the dislocation loop (no sites
are removed), Figs. 18,19. This translation in the local
neighbor network also introduces the “skip” between fla-
vors (along ŷ), just as for the edge loops. All remarks
concerning the αβ surface remain as in the edge disloca-
tion case.

The preservation of the local neighbor network pre-
serves the commutation of stabilizers involved in the dis-
location surface. However, the stabilizers involving spins
on the dislocation line need to be repaired, removed or
replaced in a non-trivial way. We explicitly construct the
new stars and plaquettes for all types of dislocation lines
and their corners. We leave the presentation of details
for the Appendix, Figs. 16-20. The main outcome is that
the recipe for lattice “surgery” produces the new local
stars and plaquettes as well as local cubic constraints in
such a way that the local counting of unconstrained de-
grees of freedom remains just as in Eq. (19). This is true
also for linked dislocation loops (when two αβ surfaces
intersect). However, the dislocations change the global
properties of the model. In our exact numerical calcu-
lations (Section IV A) we corroborate the local balance
of Eq. (19) by showing that the GSD in particular does
not depend on the sizes and shapes of simple dislocation
loops in the lattice. We further corroborate the predic-

tion for the dislocation influence on global constraints
(see Section IV C).

IV. RESULTS

This section has three parts: We start by present-
ing our exact numerical calculation, which includes the
GSD for various dislocation configurations, as well as
the demonstration of independence of relevant string and
membrane operators; next we present the analytical ar-
guments that lead us to the particular choice of the
strings and membranes to analyze, and we also give the
prediction of the GSD; and finally we close with all re-
sults for the much simpler two-dimensional model.

A. Exact numerical results

We analyze 3dTC on lattices with various dislocation
configurations, as introduced above and in detail in the
Appendix (especially captions of Figs. 16-20). The lat-
tices have variable sizes, typically about 250, and up to
720 cubes, which are sufficient to study all presented sce-
narios.

Our numerical calculation of GSD is based on the fol-
lowing quantum information theorem35,36: Counting the
number of spins in the (possibly dislocated) lattice, and
subtracting the number of independent stabilizers in that
lattice gives the number of “unconstrained” spins; the
GSD then equals the size of the spin (which is 2 for
spin−1/2) raised to the number of unconstrained spins.
The term ’independent stabilizers’ here, as before, means
the largest set of stabilizers such that each member sta-
bilizer cannot be written as some product of other mem-
bers.

The main objective is therefore the counting of to-
tal number of independent stabilizers within the lattice
model. As will become clear in the following paragraphs,
by mapping products of stabilizers onto sums of vectors,
we were able to exactly map the question of independence
of stabilizers onto a simple question of linear algebra, i.e.
finding the rank of a certain matrix whose size scales with
the size of lattice. Finding the rank of a large matrix is
achieved by standard numerical methods, but the result
is exact since the matrix rank is an integer.

Let us briefly contrast this exact method to the an-
alytical arguments starting in Section IV C. There we
count GSD through the number of operators which are
independent of, and commute with, the set of all sta-
bilizers, i.e. through the “non-contractible strings and
membranes” described in previous section. That GSD
result must equal the one obtained from the quantum in-
formation theorem quoted above. The approach through
strings and membranes has the advantage of being physi-
cally transparent, however its disadvantage is that a pri-
ori there is a huge number of candidate strings and mem-
branes that can be formed in the given lattice; once we
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go to a continuum description of the model, there is in
principle a danger of overlooking some pathological mi-
croscopic candidates or effects, e.g. very jagged lattice
loops. We assume absence of such pathology and then
proceed to analytically find all non-contractible strings
and membranes in the continuum model. On the other
hand, the exact GSD results as obtained from the lat-
tice model in this section are guaranteed to be the true
results, but as we consider larger and more complicated
lattices, e.g. complicated dislocation knots in 3d, it be-
comes technically tedious to enumerate all the spins and
stabilizers in such a lattice.

We now continue with the description of the numerical
procedure for finding the number of independent stabi-
lizers in the lattice models. The stabilizers are divided
into two independent groups according to whether they
act by σx or σz on the spins, i.e. stars and plaquettes
of both flavors. For concreteness, consider first the stars,
with Nstar being their total number. Since a star oper-
ator acts as just σx or 11 on any particular spin site, we
just need to assign to the star the number 1 or 0, respec-
tively, for any given spin (the spins have to be uniquely

enumerated in the given lattice). Since (σx)
2

= 11, we
have the binary (Z2) algebra 1+1 = 0. According to this,
a product of n stabilizers which all act as σx on a given
spin simply maps to the sum

∑n
1 1 = n, but modulo 2, on

that spin. Therefore, on each spin, the algebra formed by
products of stabilizers is represented by the additive Z2

algebra. There is a total of Ns spins in the lattice, and we
next form an NstarxNs matrix. The i-th row represents
the action of the i-th star. This row has length Ns, and
is filled with 1 for the spins on which the i-th star acts
by σx, and filled with 0 on all other spins (where it acts
as 11). The number of independent stars then equals the
number of linearly independent rows in the matrix un-
der the Z2 algebra, which is just the rank of the matrix.
Using standard numerical methods, the NstarxNs matrix
can be transformed into its row reduced echelon form un-
der the Z2 algebra, which reveals its rank as Nstar minus
the number of zero rows in the transformed matrix. The
same procedure is used for the plaquettes.

We numerically studied up to four dislocation loops of
varying sizes and shapes each. The linking did not influ-
ence the outcome, which only depends on the number of
loops; among up to four loops, we could check: no link-
ing; one linked pair; two separated linked pairs; three
linked loops; two parallel screw loops, each linked with
the two parallel edge loops.

We get |GSDideal3d| = 26 in the ideal lattice, as ex-
pected from Eq. (21), and |GSD| = 26 · 2k−1 for k dislo-
cation loops in the cases k ∈ {1, 2, 3, 4}.

A special case occurs when a dislocation line closes
into a loop by spanning the periodic system (these lines
need to occur in pairs). For one pair we get |GSD| = 25,
less than in the ideal lattice. The GSD does not change
further by introducing spanning dislocation pairs in an
orthogonal direction. However, we checked that upon in-
troducing k ∈ {2, 3, 4} parallel spanning pairs, the count-

ing follows a trend similar to the 2dTC case |GSD| =
2 ·22k+2 = 2|GSD2d| (see ends of Sections IV D, IV C for
details).

We performed the same numerical analysis on the
2dTC model, where we considered up to three disloca-
tion pairs.

Finally, we constructed a 3dTC lattice with a dislo-
cation line knotted into the Trefoil knot, as shown in
Fig. 8a. As our analytical arguments in the next section
show, this knotted dislocation behaves as a simple dislo-
cation loop, and indeed in the exact numerical calculation
it gives the corresponding |GSD| = 26.

The summary is presented in Table I.

Configuration GSD

3dTC

Ideal 26

k > 1 loops (independent of linking, knotting) 26 · 2k−1

1 loop 26

1 spanning loop 25

2 orthogonal spanning loops 25

k > 2 parallel spanning loops 2 · 22k+2

Trefoil knot dislocation 26

2dTC

Ideal 24

k > 1 dislocation pairs 24 · 4k−1

TABLE I. GSD for k 6 4 dislocation loops in the 3dTC, and
k 6 3 dislocation pairs in the 2dTC, found in exact numerical
calculations.

B. Exact numerical analysis of stabilizers

Using the above method, we could also check directly
the independence of various strings Σf , membranes Ξf ,
and global plaquette constraints. Namely the strings can
be deformed by multiplication with plaquette operators,
and therefore two equivalent strings will not appear as
independent additions to the set of all plaquettes. The
same applies for the set of Ξf and Af . In particular,
any contractible Σ (Ξ) will also not appear independent
when added to the set of B (A).

Using the analytical predictions (Section IV C), we
could indeed check numerically, in lattices with up to
k = 4 loops, that all the predicted anticommuting non-
contractible strings and membranes are indeed indepen-
dent within the set of plaquettes and stars, respectively.

We delay the detailed presentation of practical con-
struction of membranes on the lattice with dislocations
to Appendix B, because the analytical proof that follows
is presented through the string perspective.
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C. Continuum strings

In this subsection we analyze the behavior of GSD by
counting non-contractible strings, and give the prediction
for GSD of unknotted dislocation loops with allowed link-
ing.

Our present goal is to find the set of independent
non-contractible string operators. Such strings neces-
sarily pairwise anticommute with a set of independent
non-contractible membranes (string piercing membrane
odd number of times), thereby enumerating the GSD. To
streamline the presentation, we therefore only count the
strings, and delay the (in itself illuminating) analysis of
membranes to Appendix B.

To this end, we have derived, by direct analysis of all
situations on the 3dTC lattice (Figs. 16-20), a set of gen-
eral rules that the strings obey as they are deformed and
moved through the dislocated lattice by the action of pla-
quettes. We of course use the plaquettes obtained by the
proper “surgery” in the dislocated lattice (Appendix E).
Having in mind the detailed discussion in Section III A,
we fix the Volterra αβ surface of each dislocation loop,
and retain the global flavor assignment from the original
ideal lattice.

The fundamental set of lattice rules we derived for the
behavior of strings is shown in Fig. 5. Intuitively, the
string is an elastic reconnectable “rubber band” which
switches flavor only upon crossing through an αβ surface.
The string cannot pass through a dislocation line, but can
be contracted if it winds an even number (w ∈ 2Z) of
times around the same dislocation line. The last property
is crucial, but not intuitive. Deriving it demands the
precise use of the stabilizers obtained by “surgery” on
the lattice at the dislocation line. (A similar property
holds in the 2dTC case, see Fig. 1.)

We analyze the consequences of these derived rules on
two simple but insightful examples, obtaining outcomes
that match exact numerical lattice results:

• A single dislocation loop does not change the GSD.
First, we note that the standard strings which span
the system in 3d are still independent, and free
to roam through space avoiding the finite dislo-
cation loop. However, every new candidate non-
contractible string loop must pierce the αβ sur-
face at least twice (or generally an even number of
times): the string has to change flavor even num-
ber of times along its length to be able to close
into a loop. But then it also winds an even num-
ber of times around the dislocation loop line, so
it is contractible according to the special derived
rule in Fig. 5d. Imagine an alternative candidate
string that spans the system twice in one direction,
piercing the αβ surface twice along the way. We
can combine it with both flavored (and purportedly
independent) standard system-spanning strings in
the same direction, to reconnect them into non-
system-spanning loops, of which one of either fla-

a)

=

=

b)

=

= =

c)

= =

d)

e)

= =

==

FIG. 5. Elementary allowed operations on string operators in
presence of dislocation loops, derived from their properties on
the lattice. Straight and wavy black lines represent strings of
two flavors, f = α, β, blue lines are dislocation lines, and the
dotted surface is the Volterra αβ surface (see Section III A).
Dots mark the piercing of string through αβ surface. (a) Re-
connection of two string segments. (b) Local string flavor
change using dislocation; a top view detailing the process is
also shown. (c) Local passage of string through dislocation
line. (d) String winding w = 2 times around dislocation line
is contractible; only even w is possible due to flavor continu-
ity, all contractible. (e) An example of contracting a string,
using rules (a) and (d), for a string (black line, but its fla-
vor marked only after second subfigure) which is non-trivially
linked with two dislocation loops (blue and red) in a Bor-
romean ring configuration. Green symbols mark the points of
reconnection (rule (a)). The string is therefore not indepen-
dent from plaquette operators, i.e. can be written as some
product of those.

vor will be far from the dislocation and trivially
contractible; the leftover candidate is just the type
we considered (winding locally around the disloca-
tion). Other combined possibilities can also clearly
be reduced to these cases.

• Two separate dislocation loops add one non-
contractible string (and therefore one anticommut-
ing operator pair when an appropriate membrane is
considered, leading to GSD enhancement by factor
of 2). The new candidate non-contractible string
can now exist because there are two separate αβ
surfaces. The candidate pierces both of them once,
therefore winding only once around each disloca-
tion loop line. This string is not contractible, as we
cannot change the parity of times it pierces any αβ
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surface, neither by deformation, nor by attempted
(but forbidden) passage of the string across a dis-
location line.

In the two dislocation loop case, it is amusing to con-
sider a loop that does not wind around either dislocation
line, yet seems “stuck” because it is linked with them.
We consider such a Borromean ring configuration of two
dislocation loops and one string loop, Fig. 5e. Because
the string pierces through each αβ surface an even num-
ber of times, the string is contractible. We also check
this numerically on the lattice by showing that such a
string is not independent from the set of plaquettes on
this lattice.

D. Proof of GSD and non-contractible strings for k
unknotted dislocation loops

One can now generalize to k separate dislocation loops.
Here we consider simple dislocation loops, having ori-
ented, non-self-intersecting αβ surfaces. It is simple to
see that the addition of a new separate dislocation to the
system adds one independent string, increasing the GSD
by factor 2. Focus on a candidate for a new independent
string; it must pierce the new αβ surface an odd num-
ber of times, since we will now show that otherwise it
could be deformed until completely separated from the
new dislocation loop, becoming therefore equivalent to
some string in the old set of strings. The odd num-
ber 2n + 1 (n > 0) of piercings of the new αβ surface
is consequently equivalent to a single piercing. To show
this, consider a candidate string with an even number 2n,
n > 1, of piercing points through the new dislocation’s
αβ surface. Each of 2n piercing points has two string
segments of opposite flavor emanating to the two sides of
αβ surface. We can deform the string in the vicinity of
the new dislocation loop to reconnect the even number
2n of emanating segments of either color until we obtain
a collection of n disconnected loops, each containing ex-
actly two piercing points. These loops with two piercing
points are contractible either trivially, or by the nontriv-
ial rule if they wind w = 2 times around the dislocation
line (see also Fig. 8). All the 2n piercing points are thus
removed, and the string remains completely separated
from the new dislocation loop.

So the set of candidates for new non-contractible
strings boils down to strings which pierce the new dis-
location loop once. These are however all equivalent.
Imagine there are two which are independent. They both
pierce the new loop once, and we can deform them to
coincide in the region around the piercing point. By re-
connecting them at the points where they deviate from
each other, they just cancel on the piece containing the
piercing point (where they coincided), while the remain-
ing piece is a string that is completely separate from the
new dislocation loop. It therefore must be dependent
(a combination of) the old strings. The two new can-
didates differ only by an old string, and are therefore

not independent of each other in the enlarged set of all
non-contractible strings.

The linking of dislocation line loops surprisingly leaves
the situation unchanged. Consider two linked dislocation
loops: their αβ surfaces intersect along some finite line
(see Fig. 14b for illustration). However, a string pierc-
ing each of the intersecting αβ surfaces once cannot be
contracted. Namely, the line of intersection of the αβ
surfaces does not allow the passing of the piercing points
from one surface to the other. Therefore, the linked loops
behave as separated loops, at least in terms of the topol-
ogy of strings, membranes, and the GSD.

Adding the extra factor 2 to the GSD for each dislo-
cation loop after the second one, gives the numerically
corroborated

|GSD| = 26 · 2k−1 for k > 1 (possibly linked) loops.
(24)

Finally, a dislocation line pair which spans the system
along some direction (say Z) warrants a note. The GSD
is lowered — there are no new independent string candi-
dates, but instead one non-contractible string spanning
the system along Z is lost. Namely, a string spanning
Z direction can switch flavors by passing in its entirety
through the αβ surface which also spans the Z direc-
tion. Therefore the two flavors for the Z spanning string
are not independent anymore. The system-spanning XY
membranes of two flavors also merge into one when such
dislocations are present. For an array of such disloca-
tions, one can make a mapping to the 2dTC, as also
discussed from the membrane viewpoint in Appendix B.

E. Dislocation knotting

This subsection analyzes the case of knotted disloca-
tion loops. Since we dealt with linking previously, it is
enough to study a single knotted dislocation line loop.

Before we show why dislocation knotting in general
does not influence the GSD value, we need to focus on
the nature of the Volterra αβ surface, which becomes
non-trivial for a dislocation line twisted into a knot.

There are several ways of setting a general Volterra
αβ surface which spans a knotted loop. By the phys-
ical nature of the Burgers vector, the αβ surface must
be orientable, so we disregard the nonorientable option
(for the Trefoil knot which is not carrying a Burgers vec-
tor charge, the triple twisted Möbius strip could be an
option39, see Fig. 7b). However, the surface can still be
self-intersecting, and we discuss such cases at the end of
this subsection.

We first consider the non-self-intersecting option for
the αβ surface. Remarkably, such an orientable, con-
nected, non-self-intersecting surface spanning an arbi-
trary knot can always be constructed39,40, and is called
the Seifert surface. The explicit construction is based on
a 2d projection of the knot, which is cut into discs, that
are finally connected by twisted strips (see Fig. 7a for
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FIG. 6. Contracting a string that is tangled with a dislocation which forms a Trefoil knot, where the string does not pierce
the αβ surface. This is an example of contracting a w = 0 string loop, needed for the proof in Section IV E. a) 1. A w = 0
string, to be reconnected at the red symbols. 2. It reconnects into four elementary string loops, cycles which pass through
neighboring holes in the αβ surface (and do not pierce it). 3. Focusing on one (marked in previous step) of those cycles, one
uses the single dislocation line to reconnect it into two non-piercing string loops. 4. A string loop changes flavor when pushed
through the surface. 5. The doubled loops can again be reconnected into elementary string loops (in this example no need, as
it is already such). 6. Every elementary loop is doubled, and these can be contracted locally using the local αβ surface. b)
Zoom-in on typical operations needed for steps 3,4 and 5.

the Trefoil knot example). The resulting surface is non-
unique and even has a non-unique genus (bounded from
below), but it still satisfies the important criteria from
above. Its (single) edge is topologically equivalent to the
knot one started from. One can in principle construct
such an αβ surface even on the lattice, because it is pos-
sible to gradually twist the orientation (say in the XY
plane) of a strip of selected lattice sites, as one follows
the strip along its length (say Z axis).

Certainly, we can use the Seifert αβ surface to prove
the absence of non-contractible string candidates. The
proof is straightforward, as all the elements have already

been introduced in Section IV D. The key properties are
that:

P1: There is a single, orientable and connected αβ sur-
face.

P2: There is a single dislocation line (the edge of the αβ
surface).

The main steps of this proof are presented in Fig. 6 for
the example of a dislocaiton making a Trefoil knot.

We start from a candidate string that pierces the sur-
face, necessarily even number of times, say m = 2n times,



14

a) b)

FIG. 7. The Volterra (“αβ”) surface of a dislocation line
twisted into a Trefoil knot. a) A non-self-intersecting and
orientable αβ surface always exists, e.g. the Seifert surface
(left and center, two colors for two sides of the surface). b)
A non-orientable surface spanning a knot can also sometimes
be found, and here it is the triple twisted Möbius strip. See
Fig. 8a for an implementation of the Trefoil knot through a
self-intersecting αβ surface.

due to string continuity and flavor changes. Using prop-
erty P1, one can deform the string to bring all 2n piercing
points next to each other on the αβ surface, and close
to some chosen point R on the dislocation line, by us-
ing only smooth string deformations. (The deformation
might make the string even more tangled-up, but this
does not matter.) One then locally (near the point R on
dislocation line) reconnects the bundle of string segments
emanating from the piercing points (2n points, giving 2n
segments per flavor). The reconnection, in the sense of
Fig. 5a, breaks up the string loop into a set of discon-
nected string loops. Only three kinds of strings loops
can appear: 1) Small string loops that wind around the
dislocation line near the point R; 2) Small string loops
that pierce the αβ surface near point R, but do not wind
around the dislocation line; and 3) Potentially long and
tangled-up string loops that have no contact with the
αβ surface. The strings of type (1) and (2) are immedi-
ately contractible, the former using the special rule from
Fig. 5d, and the latter trivially. The strings of type (3) we
call “w = 0 string loops”, since they do not pierce the αβ
surface, and therefore do not wind around a dislocation
line in the sense of Fig. 5d.

Our goal is to show that an arbitrary w = 0 string
loop is also contractible, which we do using a procedure
demonstrated in Fig. 6. Focusing on one such string, it
can either be completely detached from the knot, and
therefore trivially contractible, or it can be entangled
with the dislocation line knot by winding through the
holes in the Seifert surface. The string is of single flavor
because it does not pierce the αβ surface. This makes it
simple to reconnect the string loop until we obtain a set of
“elementary” string loops, namely the string loops that
are elementary cycles which enter and exit the Seifert sur-
face through a pair of neighboring holes in the surface.
This is always possible to do according to the properties
of Seifert surface in P1. An example of an elementary
loop would be a string winding around one of the three
twisted strips in the canonical Seifert surface of the Tre-
foil knot, and such a string example is marked in Fig. 6a2.
Fig. 6a1,2 show the entire operation.

Let us therefore focus on a single elementary string
loop, and show that it is contractible. The elementary
loop is tightened close to the Seifert αβ surface, and by
its definition, it can be seen to wind around two short
segments of dislocation line which span a short piece of
Seifert surface between them. These two dislocation line
segments are centered on points A and B of the disloca-
tion line, respectively. Since we will use these objects in
the vicinity of points A and B, the two short segments of
the dislocation line can be considered straight and paral-
lel, and the piece of Seifert surface they span locally flat,
as shown in Fig. 6b1,6a2.

We next manipulate two halves of the elementary
string loop as shown in Fig. 6a3,6b1-4: one half stays
hovering around the surface at point A; the other half
of elementary string loop we drag all the way along the
dislocation line starting from point B until we reach the
point A, which is always possible due to property P2.
What is created by the dragging is two parallel string
segments connecting the half at A to the dragged half
(now also at A). The locally parallel string segments are
positioned tightly below and above the surface (which is
orientable!). This is illustrated in Fig. 6a3,b2,b3. These
two segments we call d and u, respectively, and by con-
struction there must be a piece of Seifert surface between
them all the way along their length. At point A we can
now reconnect the string loop, so that the “stay-at-A
half” and the “drag-from-B half” cancel, while each u
and d connect into a complete loop, see Fig. 6b3,4. The u
and d are geometrically almost identical: they are offset
by a short distance having the Seifert surface between
them. Since the surface is orientable, we can push d
through it, and according to standard rules end up with
two copies of the u string loop, carrying opposite flavors.
These twin strings are again just w = 0 string loops and
we can decompose them into elementary cycles, just as
we did with the original w = 0 string loop. The ele-
mentary string loops that we obtain now consist of two
copies each, having different flavors. The earlier situa-
tion in Fig. 6b1 now becomes the one in Fig. 6b6. The
elementary loops can make use of the flavor flip property
(Fig. 5b), and therefore we end up with two copies of
the string having the same flavor, which just cancel each
other.

This completes the argument that any string loop con-
structed in presence of a knotted dislocation line loop is
contractible, and therefore can be written as some prod-
uct of plaquette operators.

So far in this subsection we focused on non-self-
intersecting αβ surfaces. However, for the efficient imple-
mentation in the lattice code (Section IV A), as sketched
in Fig. 8a, we made the opposite choice. The outcome
is that the Trefoil knot constructed on the lattice using
a self-intersecting Volterra surface does not change the
GSD: |GSDTrefoil| = |GSDideal3d| = |GSDk=1disl.loops|.

It seems therefore that the self-intersecting case be-
haves just as we expect from the non-self-intersecting
case. Recall from discussion in Section IV C and Fig. 14
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a)

b)

FIG. 8. Self-intersecting αβ surface and string contraction. a)
Self-intersection (along green line) of the αβ surface (dashed
area) in the Trefoil knot configuration we used on the lattice in
Section IV A. Some parts of the surface are shaded for better
visibility. b) Contracting a string tangled with an αβ surface
that has a self-intersection (along green line). This case arises
in the knot implementation from (a). The two shown surface
pieces (shaded green and violet) could also be disconnected,
since the string contraction is done locally. Piercing points
of the string are marked with dots of corresponding color.
The procedure hinges on moving piercing points close to each
other and close to dislocation lines, but without passing the
piercing point from one surface to the other, which is a for-
bidden deformation. The string is then reconnected until it
gives disconnected pieces that wind w = 2 times around a
single dislocation line.

that from the lattice model we derived the rule saying
that a string is not allowed to move freely across an in-
tersection line of two pieces of αβ surface. This situation
seems to invalidate the first step of our proof, where we
demanded free movement of the piercing point of string
on the αβ surface. In particular, this raises the ques-
tion about the seemingly non-trivial candidate for a non-
contractible string, which we construct such that: 1) It
is entangled with the dislocation line; 2) Does not pierce
the αβ surface; and 3) Seems “stuck” (non-contractible)
because the intersection line of two pieces of αβ surface
is in its the way. An example relevant for the Trefoil knot
on the lattice we used is shown in Fig. 8. However, such a
string loop can be easily locally contracted irrespective of
the αβ self-intersection line, as demonstrated in Fig. 8b
using the above general recipes.

c) d)

a) b)

. . .

FIG. 9. Dynamic dislocations introduce Z2 twist in the dou-
bled toric code. In unmelted lattice (red and yellow dots
schematically depict the two vertically displaced flavors of
spins in the doubled model) dislocations can (a) nucleate and
(b) glide until annihilation, to create a “twist loop” (dashed
blue line) across which all quasiparticles (strings) switch fla-
vor. (c) In the continuum description of periodic system,
string loops (i.e. quasiparticle tuneling operators) of both
flavor (solid and wavy line) are shown. The “twist” replaces
two copies of a torus by a single torus copy with Lx → 2Lx.
The two strings along y are actually equivalent due to the
twist. (d) When the lattice melts, distinct topological ground
state sectors are labeled by the twists they contain. In a genus
g surface all sectors containing any twists topologically map
to the shown case. Since dislocations delocalize in the melted
phase, physical ground states labeled by strings tied to any
of g− 1 holes have to be symmetrized in flavor. The physical
states labeled by strings tied to the g-th hole are automati-
cally symmetrized in flavor since the twist replaces the two
flavor copies by a single one, as in (c).

V. EMERGENT NON-ABELIAN GAUGE
THEORY IN DISLOCATION MELTED DOUBLED

TORIC CODE IN 2D

In this section we consider the situation in which dislo-
cations of the doubled Zn toric code become dynamical,
and show that the resulting phase of matter is expected
to be governed by a non-Abelian gauge theory. (The Zn
toric code lattice model and its GSD, without melting,
are described in Appendix A.) The physical mechanism
behind the transition is melting of the lattice through
proliferation of “double dislocations” (lattice dislocations

of length |~b| = a). We do not seek to combine our topo-
logically ordered model with a model of lattice melting
based on proliferation (or in quantum context, condensa-
tion) of topological defects,37,41–43 but instead we iden-
tify the basic physical consequence of melting, namely
that the Z2 sublattice symmetry becomes gauged. Ac-
cepting this physical argument, the topological order in
the melted phase follows naturally, and turns out to be
non-Abelian.

Condensation of point-like electric and/or magnetic
charges can lead to states with different topological
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order44, however in the present context the double dislo-
cation (point-like in 2d and loop-like in 3d) itself is not
carrying any charge or flux in the theory.45

Our first step is to describe how the dislocations |~b| =
a/2 obtain dynamics by lattice melting, leading to gaug-
ing of sublattice symmetry, and therefore to the natu-
ral conjecture that the resulting state is described by a
Gn ≡ (Zn × Zn) o Z2 gauge theory. We give a physical
derivation, which is based on gauging the sublattice sym-
metry, for the melted state GSD on a surface with arbi-
trary genus g, considering first the case of torus. We next
check that the exact same GSD values are obtained rigor-
ously for states described by gauge group Gn on genus g
surfaces. This implies that the quasiparticle contents also
match, giving strong evidence for the natural conjecture
that the gauging of Z2 sublattice symmetry promotes the
topological order from doubled toric code (Zn × Zn) to
a non-Abelian one (Gn ≡ (Zn × Zn) o Z2). As a special
case, this implies that the melted phase of the doubled Z2

toric code is expected to be described by the non-Abelian
group D4.

A. Dynamic dislocations and physical argument for
torus GSD

Before considering the melted phase, we need to de-
scribe the “twist” effect introduced by dislocations. Con-
sider first a periodic 2d lattice, which is topologically
equivalent to a torus. Before any melting, a single
dislocation—anti-dislocation pair can be created, moved
around the periodic system, and annihilated, as shown
in Fig. 9a,b, specifically using the glide motion along
~b ∼ ŷ. This operation leaves a “Z2 twist loop” (blue
dashed line in Fig. 9b,c) spanning the ŷ direction of the
system, along which all x̂ rows are shifted by a/2 along
ŷ, and across which a flavor change is imposed. This im-
plies that strings winding around x direction are forced
to change flavor twice before being able to close, while
strings winding along y change flavor when crossing the
twist (Fig. 9c). The two flavors have merged, and the
system is described by a single copy of the toric code on
a torus of size 2Lx × Ly.

Next we consider the effect of melting the lattice
through double-dislocations. Before melting, the fla-
vor exchange symmetry is realized through aŷ/2 lattice

translations. The double-dislocation (|~b| = a) melted
phase restores full translational symmetry, so that also
flavors become locally indistinguishable. Since we are
not interested in liquid crystal phases, a lattice with dis-
locations is analogous to a U(1) superfluid with vortices.
Proliferation of double-vortices leads to an insulator de-
scribed by Z2 gauge theory, where the original single vor-
tex becomes the deconfined gauge charge (and vortices in
the double-vortex condensate are deconfined fluxes). By

analogy, the original |~b| = a/2 dislocations are deconfined
gauge excitations in the melted phase. In such a state,
we can say that the flavor-changing Volterra lines con-

necting |~b| = a/2 dislocation—anti-dislocation pairs also
permeate the system, again concluding that it is unphys-
ical to locally distinguish the two flavors. Physical states
are only the ones symmetric in flavor, i.e. the flavor Z2

symmetry is gauged.
The physical states can still be distinguished according

to the Z2 twist loops they contain. Namely, a state with
a twist loop created by a non-contractible tunneling of a
dislocation—anti-dislocation pair is topologically distinct
from a state without that twist. In the ground state sec-
tor without twists the states just have to be symmetrized
in flavor; on the other hand, in sectors having twist loops
the strings (quasiparticle tunneling loops) are altered, as
demonstrated in the example of Fig. 9c.

Let us now give a physical derivation of the ground
state degeneracy of the melted doubled Z2 model on a
torus. Before melting there were 42 ground states, la-
beled by tunneling loops (non-contractible strings) of the
quasiparticles: The 42 quasiparticles were just the un-
constrained pairs (qpα, qpβ) of Z2 quasiparticles qp ∈
{1, e,m, em} of the two flavors α, β. In the melted
phase there is a single ground state sector containing no
twists. In this sector the quasiparticles must be sym-
metrized in flavor, which gives us a total of 10 sym-
metrized states: 4 states (qpα, qpα) and 6 distinct states
(qpα, qpβ 6=α) + (qpβ 6=α, qpα). Next we consider a ground
state sector containing one twist loop, say around the
y direction. According to the argument depicted by
Fig. 9c, the twist effectively merges the two flavors,
leaving us 4 ground states labeled by 4 Z2 quasiparti-
cles {1, e,m, em}. Finally, there are exactly 3 different
twisted sectors, because the twist loop can wind around
x, y, or both x and y (because there are only two fla-
vors, higher winding numbers are irrelevant). All three
twist sectors have the same degeneracy, because they are
physically equivalent: The torus can be geometrically de-
formed, without changing its topology, to map different
twist loops onto each other (these transformations are
Dehn twists, see Appendix C). The torus GSD is there-
fore 10 + 3 · 4 = 22.

This result is easily generalized to the doubled Zn the-
ory on a torus. Namely, there are n2 quasiparticles in a
single copy of the model. The symmetrization in the un-

twisted sector leads to n2+ n2(n2−1)
2 ground states. There

are still 3 twisted sectors on the torus, each contributing
n2 degenerate states. The total for the torus is therefore:

|GSDmelt2d,torus| = n2n
2 + 7

2
, (25)

confirming that for doubled Z2 theory
|GSDmelt2d,torus(n = 2)| = 22.

B. Physical argument for higher genus GSD

Generalizing arguments of the previous subsection to
an arbitrary surface of genus g is straightforward. Before
melting, each of the g holes contributes non-contractible
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strings, leading to a total of (n2)g degenerate ground
states of a single copy of Zn toric code.

Each copy in the doubled model has n2g degenerate
states, which have to be symmetrized in the untwisted

sector of the melted phase. This contributes n2g(n2g+1)
2

degenerate states.
Next, we consider the sector having a single twist loop,

along the y direction of the g-th hole (see Fig. 9d). Fo-
cusing first on the states described by strings winding
around and through the g-th hole only, we can apply
the reasoning from the previous subsection. Namely, the
twist merges the two copies of n2 such states into only
n2 states which are automatically symmetric in flavor.
The g-th hole therefore contributes a factor n2 to the
degeneracy of this sector. The strings tied to the other
g − 1 holes contribute n2(g−1) states per flavor, which
have to be symmetrized. This gives a contribution of
n2(g−1)(n2(g−1)+1)

2 states from these holes. Combining all
the holes, the total degeneracy in the sector with a single

twist loop is n2g(n2(g−1)+1)
2 .

Again, because there are only two flavors, the twist
loops that matter wind at most once. Each hole has two
winding directions, giving the total of 22g possibilities for
the winding of the twist loop. Exactly one of these pos-
sibilities is when all the winding numbers are zero, i.e.
the untwisted sector. There are therefore 22g − 1 twisted
sectors, all of them physically equivalent, as argued pre-
viously.

Adding the untwisted and twisted sectors, the total
GSD of the melted doubled Zn toric code on a 2d mani-
fold with genus g is:

|GSDmelt2d| =
n2g(n2g + 1)

2
+(22g−1)

n2g(n2(g−1) + 1)

2
,

(26)
which reduces to the torus result in Eq. (25) when g = 1.

C. The Gn ≡ (Zn × Zn) o Z2 gauge theory: group
structure, quasiparticle number and GSD

We now consider the gauge theory which serves as
the continuum description of the melted lattice system.
The physical effect of “gauging sublattice symmetry”
by double-dislocation melting, as considered in previous
subsections, will allow us to identify the natural candi-
date for that gauge theory.

To start with, the doubled toric code is represented
by the Abelian gauge group Zn × Zn, a direct product
of two flavor copies. As we argued in the previous sub-

sections, the melting makes (|~b| = a/2) dislocations dy-
namic, which means that also flavor-switching Volterra
lines of all lengths occur in the system. This makes
the two flavors physically locally indistinguishable. The
flavor-mixing operation therefore becomes a local sym-
metry operation, i.e. a gauge transformation.

According to these physical arguments, the conjec-
tured gauge (structure) group of the melted doubled Zn

toric code system is formed by

g(jα, jβ) =

(
ei

2π
n jα 0

0 ei
2π
n jβ

)
, jα, jβ = 0 . . . n− 1

g2 =

(
0 1

1 0

)
, (27)

where jα and jβ label gauge transformations in the α
and β flavored copy of Zn gauge group, respectively; on
the other hand, the melting introduces the off-diagonal
element g2 which obviously exchanges the gauge fields of
different flavors. The element g2 generates a Z2 subgroup
responsible for exchanging flavors, introducing a “twist”
into the doubled Zn gauge group we started from before
melting. This twist in the gauge group is the mathemat-
ical reason for appearance of “twist loops” we considered
earlier (see Appendix C). The gauge group of the melted
theory can be written as Gn ≡ (Zn × Zn) o Z2, where
the final Z2 acts by exchanging the first two factors and
is generated by g2. Specializing to the n = 2 case, the al-
gebra of above matrices explicitly gives the non-Abelian
dihedral group D4 of order 8.

The properties of the twisted theory in the present
problem can be directly studied using the structure of
discrete group Gn. Importantly, the discrete gauge the-
ory description also applies to higher dimensions, and we
use that in Sec.VI. In the rest of this subsection we ob-
tain the GSD in 2+1d directly from the group structure
of Gn; as expected, it matches the GSD results obtained
from the physical picture in previous subsections, giv-
ing strong evidence that the above arguments correctly
identify Gn as the gauge theory of the melted phase.

We note that the structure and physical properties of
multi-component U(1) Chern—Simons gauge theory con-
taining a Z2 twist have been studied in Ref. 46 through
the example of U(1) × U(1) o Z2. In the present case,
because the Zn × Zn gauge theory can also be described
by a multi-component U(1) Chern—Simons theory, one
can apply the methods of Ref. 46 to study the properties
of our Z2 twisted theory. (The Chern—Simons theory
can only describe topological orders in 2+1d.) Although
the Chern—Simons results for GSD and other proper-
ties automatically agree with the ones obtained directly
from the gauge group structure, in Appendix C we in-
clude the Chern—Simons calculation to provide a formal
gauge theory description of the physically motivated “Z2

twists” introduced in previous subsections.
The GSD of a topologically ordered state on arbitrary

genus g surface, Sg, can be determined directly from its
quasiparticle content (for instance, see Ref.47):

Sg =

(∑
γ

d2
γ

)g−1∑
γ

d−2(g−1)
γ , (28)

where γ labels the quasiparticles species, while dγ is the
quantum dimension of the γ quasiparticle. On the other
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hand, when the topological order is described by a dis-
crete gauge group G, such quasiparticle information fol-
lows directly from the group structure of G. Namely,
a quasiparticle is a dyon labeled by the pair γ ≡ (C, µ),
where C is a conjugacy class in G, physically representing
the flux, and µ, representing the charge, labels an irre-
ducible representation (IRREP) of the normalizer NC of
a representative element in C.48 The quantum dimension
of a dyon equals the product of class size (i.e. number
of elements in C) and the dimension of the IRREP µ of
NC .

Table II summarizes the relevant information about
the group Gn, which is easy to obtain using induction
of representations from an Abelian subgroup. One can
immediately establish from the table that there are in
total: (a) 2n2 quasiparticle species γ having quantum di-

mension dγ = 1; (b) n2(n2−1)
2 species having dimension

dγ = 2; and (c) 2n2 species of dimension dγ = n. Plug-
ging into Eq. (28), after trivial algebra it follows that the
resulting expression precisely matches the GSD result,
Eq. (26), obtained from simpler physical reasoning:

Sg(Gn) = |GSDmelt2d|. (29)

Since the genus g is arbitrary, it also follows that the
quasiparticle content of the melted doubled Zn theory
matches the quasiparticle content of the Gn topologically
ordered theory. This is convincing proof of emergence
of a non-Abelian Gn topological order from a doubled
Abelian Zn order upon giving dynamics to Z2 “flavor-
mixing defects” (dislocations) as a general mechanism.
In particular, the simplest melted doubled Z2 toric code
is described by the non-Abelian D4 topological order.

VI. EMERGENT NON-ABELIAN GAUGE
THEORY IN DISLOCATION MELTED DOUBLED

TORIC CODE IN 3D

Even though the systematic study of three dimensional
manifolds is an open problem, we can obtain some results
by focusing on the simple case of a lattice with periodic
boundary conditions, i.e. a model defined on the three-
torus T 3.

Dislocation melting in 3d is a much subtler subject
than in the 2d case, as we briefly touch upon in the Dis-
cussion section. However, based on the simple physical
insight that melting gauges the flavor symmetry in 2d,
as described in the previous section, we conjecture that
the melted phase of the doubled Zn toric code in 3d has
topological order described by the Gn ≡ (Zn × Zn) oZ2

gauge group.
We test this conjecture only in the simplest case of

n = 2, and as already mentioned, only on the three-torus.
In this case, the melted phase of the Abelian doubled Z2

toric code is assumed to realize the non-Abelian G2 =
D4 topological order. Using physical arguments as in
Section V A we will derive the GSD of the melted phase

to be

|GSDmelt3d(n = 2, T 3)| = 92. (30)

On the other hand, in Appendix D we will prove that a
D4 topologically ordered state on a three-torus T 3 has
GSD also equal to:

ST 3(D4) = 92, (31)

thereby providing some evidence for the conjecture and
the fact that in three spatial dimensions dislocation melt-
ing of an Abelian phase can realize a non-Abelian phase.

Let us now consider the doubled Z2 toric code in
three dimensions with periodic boundary conditions, and
find its GSD, which is |GSDmelt3d(n = 2, T 3)|. Before
melting, each flavor has GSD equal to 23, due to non-
contractible strings.

The melting enforces symmetrization of flavors, and
also introduces “twists”. In 3d, the twist occurs across
a plane that spans the system. The twist plane can be
imagined as created by a dislocation loop which is nucle-
ated and stretched until it annihilates using the periodic-
ity of the system. A non-contractible string on the three-
torus has to switch flavors as it pierces the twist plane and
spans the periodic system (see the horizontal string in
Fig. 9c for a 2d analogy). Since there are only two flavors,
only strings which span three-torus directions X,Y, Z up
to once are relevant. There are therefore 7 twisted sec-
tors, each having a flavor-switching string which spans
X, Y , Z, XY , Y Z, XZ, or XY Z. The twisted sectors
are physically equivalent. Analogously to the 2d case, a
twisted sector has the two flavors replaced by a single
Z2 copy, which is automatically flavor-symmetric, and
therefore has a 23 degeneracy. The twisted sectors there-
fore contribute 7 · 8 = 56 states. The untwisted sector
has to be flavor-symmetrized, therefore 23 × 23 leads to

23+ 23(23−1)
2 = 36 states. The total GSD is 92, as claimed

in Eq. (30).

VII. DISCUSSION AND CONCLUSIONS

In this paper we explore the dependence of ground
state degeneracy in simple exactly solvable topological
models (in both 2d and 3d) on the complicated topology
of the underlying space manifold, where that topology
is provided by dislocation points (in 2d) and arbitrarily
linked and knotted dislocation lines (in 3d) with Burg-
ers vector connecting two translated copies of the model.
Because we are studying topological properties, our re-
sults are valid for the entire phases to which the exactly
solvable models belong.

The main new physics in this paper is about the 3d
models. In 3d, if the ground state degenearcy(GSD) de-
pends on the knotting/linking of dislocation loops, the
GSD can only be a topological invariant of the links or
knots of the dislocation loops. However, we find that the
doubled Kitaev’s toric code shows no dependence of the
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No. of Cg Cg labeled by g Class size, |Cg| Centralizer Ng No. of IRREP in Ng × IRREP dim No. of qp’s

n {xaya}, a = 0 . . . n− 1 1 Gn 2n× 1d+ n(n−1)
2
× 2d n2(n+3)

2
n(n−1)

2
{xayb 6=a}, a, b = 0 . . . n− 1 2 Zn × Zn n2 × 1d n3(n−1)

2

n {uxayb}, a+ b = c; c = 0 . . . n− 1 n Zn o Z2 2n × 1d 2n2

Total number of quasiparticles in Gn
n2(n2+7)

2

TABLE II. Properties of (non-Abelian) gauge group Gn = (Zn × Zn) o Z2 (n > 1), which describes the double-dislocation
lattice melted phase of the doubled Zn toric code in 2d. An element g ∈ Gn is written as g = usxayb, where x, y generate the
α, β flavored Zn, respectively, so that xn = yn = e and [x, y] = 0; the element u generates the flavor-mixing Z2, so ux = yu,
u2 = e; therefore, s = 0, 1, and a, b = 0 . . . n − 1. Cg is the conjugacy class labeled by a representative g ∈ Gn. The first
column shows the total number of conjugacy classes of given type (3 types in total), and each class is labeled using parameters
in second column. Centralizer Ng is the subgroup of elements that commute with g. Every conjugacy class labels a magnetic
flux. Quasiparticles are dyons, carrying a flux and a charge, where the charge is an irreducible representation (IRREP) of Ng,
with Cg labeling the flux. Hence, column six shows the total number of dyons carrying flux of the type labeled by the table
row; it equals the product of the first column and the first factors in fifth column. The quantum dimension of a dyon equals
the product of Cg class size (third column) and the dimension of the IRREP of Ng (second factors in fifth column).
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b) c)

e) f)

FIG. 10. Three-dimensional toric code in a system with open
boundary conditions. Dislocation lines (blue) and flux strings
(black solid/wavy for two copies) can end at the surface.
(a) The string loop between two dislocations would be non-
contractible if it were not for (b) the surface and the fact that
(c) string endpoints on the surface can avoid dislocation line
endpoints. Any number of open dislocation lines beyond the
first cannot contribute to topological GSD. (e) String loop be-
tween dislocation loop (in bulk) and open dislocation line is
a non-contractible string. The open string can never be con-
tracted because it (f) intersects the dislocation loop Volterra
surface an odd number of times.

GSD on the knotting properties of dislocation loops. In
this 3d topologically ordered phase, GSD only depends
on the total number of (possibly linked) dislocation loops.

In fact, it turns out that in the limit of large number
k of dislocation loops (pairs in 2d), the GSD scales as
2k in 3d. As a dislocation loop can always be allowed to
be added into the lattice, the extra GSD introduced by
one dislocation loop should be an integer. In this context
therefore the doubled Kitaev toric code is reasonably the
minimal theory in 3d in which dislocations introduce ex-
tra GSD. In 2d however the scaling is 4k, indicating that
there might be a more fundamental 2d theory, a “square
root” of the doubled 2d Kitaev toric code, in which the
GSD scales as 2k. Such a “square root” theory is indeed
realized in the plaquette model version of the 2d toric
code14, and 2k scaling of the GSD was found.

The Kitaev toric code can be generalized to Zn toric
code49,50, whose low energy effective theory is described

by the Zn gauge theory, and when n = 2 the Kitaev toric
code is restored. Our results can be generalized without
too much difficulty to doubled Zn toric code in both 2d
and 3d. Here we present the main results and sketch the
strategy of proof. The detailed analysis and proof can be
found in Appendix A.

Obviously, in 2d in a doubled Zn toric code with pe-
riodic boundary conditions with k pairs of dislocations,
|GSD| = n4 · n2k−2 which is a direct result of the ge-
ometrical interpretation of dislocations in 2D (see Fig.2
or Ref.12). A “square root” of such a theory has been
recently studied in Ref.51, where GSD scales as nk when
k is large.

In 3d, we find that the GSD in a doubled Zn toric
code with periodic boundary conditions in the presence
of k dislocation loops is |GSD| = n6 · nk−1, independent
of linking and/or knotting of the dislocation loops. The
proof of this result is a slightly non-trivial generalization
of our proof for the doubled 3d Kitaev toric code. Fol-
lowing our strategy of using string/membrane operators
to resolve the ground state degeneracy, one still can con-
struct the string operators which can be interpreted as
“electric flux lines“ in a 3d Zn gauge theory. But in a Zn
gauge theory with n > 2, the flux line has a Zn valued
strength. If we focus on the flux line with the fundamen-
tal unit of strength (strength=1), then the flux line has
a well-defined orientation. Some essential steps in our
proof for the doubled Kitaev toric code now need to be
reconsidered carefully. For instance the step 6 illustrated
in Fig.6 requires annhilation of two string operators. But
in a Zn theory two string operators both with strength=1
cannot annihilate if n > 2. In Appendix A we carefully
reconsider the rules of surgeries involving the string oper-
ators and the proof still goes through (basically because
dislocations allow a string of strength s to be converted
to strength n− s, which is its inverse).

Can the ground state degeneracy depend on linking or
knotting of the dislocation loops in a 3D theory then?
Our study of the Zn Abelian gauge models strongly sug-
gests that at least for Abelian gauge theories this may
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be impossible. However for non-Abelian gauge models,
for instance the discrete non-Abelian gauge theories with
deconfined phases in 3D, our proof based on string op-
erators may be invalidated and a knotting or linking de-
pendent GSD may occur. We leave this interesting pos-
sibility as a subject of future investigation.

What happens in a system with open boundaries? It is
well known that the 2d Z2 toric code can have two types
of edges: An open electric(magnetic) flux line ending on
first(second) type of edge commutes with the Hamilto-
nian, while the open magnetic(electric) can not commute.
The types of edges in the system therefore control the
number of non-contractible electric and magnetic lines
(strings). (These edge types are realized by different ter-
mination of the lattice.) However, it does not make sense
to put dislocations at the edge of the 2d system, and it
is easy to see that the dislocations add the same extra
GSD in open as in periodic 2d systems.

In 3d, one can similarly terminate the lattice model
at the surface of the system in two ways: One allows
open strings to end at the surface while still commuting
with the Hamiltonian, while membranes terminating at
the surface cost energy. The opposite is true for the other
surface type. Let us focus on the first type, for simplicity.
Firstly, any non-contractible string piercing a Volterra
surface of a dislocation loop in the bulk will stay non-
contractible even when the system has a surface, since the
number of piercings of that Volterra surface will remain
odd (and the string therefore non-contractible) no matter
how we manipulate the string using the surface of the
system (see example in Fig. 10e,f).

The situation is different for an open dislocation line
that ends at the surface of the system (it has two end-
points on the surface). As Fig. 10a demonstrates, the
string loop that pierces Volterra surfaces of two such
open dislocation lines becomes contractible. Namely, the
string loop can break into two open strings by reaching
the surface, and the string endpoints can avoid the dislo-
cation lines’ endpoints on the surface, allowing the open
strings to contract (Fig. 10a-d). This immediately shows
that any (non-zero) number of open dislocation lines is
equivalent to a single one, as far as extra topological GSD
is concerned. However, as Fig. 10e,f clearly demonstrates,
the argument in the previous paragraph ensures that a
single open dislocation line still behaves as a closed dis-
location loop in the bulk, because a string that pierces
through Volterra surfaces of a dislocation loop and an
open dislocation is still non-contractible.

Therefore, in a 3d system with a boundary allowing
commuting open strings, the extra GSD due to k dislo-
cation loops in the bulk (i.e. 2k−1) is multiplied by a
factor 2 if there is any (however many) open dislocation
lines that terminate on the surface.

The extra topological GSD due to dislocations leads
to additional zero-temperature entropy. This entropy is
obviously extensive in the number of dislocation loops
in the bulk, and therefore could be of experimental rel-
evance. Let us emphasize that the GSD properties hold

for the entire topologically ordered quantum phase, be-
yond the exactly solvable doubled model. As sketched
above, the extra entropy should stay extensive in num-
ber of bulk dislocations even for realistic samples with
surface.

Recently, topologically ordered phases which also have
global symmetries, i.e. symmetry enriched topological
(SET) phases have been studied intensively. The topo-
logical order is usually described by gauge symmetry and
understanding its interplay with the global symmetry is
the central issue in studying SET phases. In this work,
non-Abelian topological order arises due to the promo-
tion of the global Z2 symmetry (the flavor symmetry) to
a gauge symmetry. Thus defect condensation seemingly
provides a physical way to make the connection between
global and local symmetry, and therefore between differ-
ent SET phases.
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Appendix A: Generalization to Zn toric code

Here we present the generalization of our GSD proof
based on string operators of the 3dTC (a Z2 theory) to
a Zn version of the toric code. The Zn generalized toric
code was introduced in Ref.49, and we use a description
of it similar to the 2d case from Ref. 50. In this way
the lattice and stabilizer definitions are similar to the
3d Z2 toric code of the main text. We first introduce
the building blocks and then identify the strategy for
extending our GSD proof using string operators.

At each spin site i of the cubic lattice (see Fig. 3) of
the Zn model we introduce n-state degrees of freedom
|qi〉, which are acted upon by generalizations of the Pauli
matrices of the Z2 model. These unitary operators Xi, Zi
at site i form a quantum rotor algebra:

Zi |qi〉 = ωqi |qi〉 ,
Xi |qi〉 = |qi − 1 mod n〉 ,

X†iXi = Z†i Zi = 11,

XiZi = ωZiXi ⇒ XiZ
†
i = ω∗Z†iXi,

ω = ei2π/n,

(A1)

with ω∗ the complex conjugate. These relations general-
ize the anticommutation of Pauli matrices.

The stabilizers of the model of flavor α are presented
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FIG. 11. Three-dimensional doubled Zn generalization of
toric code. See caption of 3 for the basic ingredients shared
with Z2 toric code. Three β flavored plaquette operators are
shown, acting with Z (blue wavy lines) and Z† (green wavy
lines) operators. The operators are chosen so that the lo-
cal cubic constraint for the plaquettes holds. Star operators
on the “odd” cubic sublattice act with X operators (blue zag
lines), and with X† if on the “even” sublattice (only four stars
of β flavor, positioned in one plane of the lattice, are shown).

in Fig. 11, and are defined similar to Eqs. (15,16):

Aαs∈{o} ≡ A
o,α
s = Xs+x̂/2Xs+ŷ/2Xs+ẑ/2Xs−x̂/2Xs−ŷ/2Xs−ẑ/2,

(A2)

Aαs∈{e} ≡ A
e,α
s = Ao,αs

†, (A3)

Bab,αp = Z†
p(âb̂)+â/2

Zp(âb̂)+b̂/2Z
†
p(âb̂)−â/2

Zp(âb̂)−b̂/2,

(A4)

with the key difference being the necessary bipartite de-
composition of the cubic lattice such that even (“e”) and
odd (“o”) cubic sites have star operators Ae,αs and Ao,αs ,
respectively, positioned on them. This property also oc-
curs in the 2d Zn model50. Since the even and odd star
stabilizers act with inverse operators on the spins they
share (Xi are unitary), the global constraint∏

s∈{e,o}

Afs = 11 (A5)

remains as in Eq. (5). A plaquette stabilizer consists of
operators Zi which alternate between daggered and nor-
mal as one goes around the face of a cube which defines
the plaquette, so that opposite sides of the plaquette both
carry either Z or Z†. This ensures that any plaquette
shares two spin sites with a neighboring star such that

both Zi and Z†j appear, while the star contains all X

or all X† operators, leading to the commutation of the
plaquette and star according to Eq. (A1). The choice of
which sides of a plaquette carry the daggered operators
is made in Eq. (A4) such that local cubic constraints are
satisfied as before (see text after Eq. (16)).

The β flavor of the model is created by superimposing
a copy of the lattice translated by ŷ/2 (Fig. 3), as before,
and the Hamiltonian becomes

Hn = −
∑
f,s

(
Afs +Afs

†)−∑
f,p

(
Bfp +Bfp

†)
. (A6)

Because of the commutation and unitarity, it is enough
to count the stabilizers A,B and fix their eigenvalues in
the Zn theory. Since the constraints carry through as
for the Z2 toric code in the main text, the GSD counting
remains the same, except that each unconstrained “spin”
degree of freedom now carries n-fold degeneracy. This

gives |GSD(n)
3d,ideal| = n6.

Our next step is to introduce string operators consis-
tently in the Zn theory with dislocations. A string oper-
ator is non-trivially different from the Z2 case, since its
eigenvalue, i.e. the flux it carries, can be any of n values
eis2π/n, s ∈ {0, . . . , n−1}. The string must be defined us-
ing both daggered and normal operators: given a closed
path (loop) Pf which stepwise connects neighboring star
sites of flavor f , the Z operator acting on the spin be-
tween two stars has to alternate between daggered and
normal with each step:

Σf (Pf ) =
∏
i∈Pf

{
Zi, i odd,

Z†i , i even,
(A7)

compare to Eq. (22). This way, a star operator crossed
by the path Pf will share exactly a Z and a Z† operator
with the string, therefore commuting with it.

The crucial quality of the Zn theory is that al-
though the string Σf (Pf ) carries some flux eis2π/n, s ∈
{0, . . . , n − 1}, i.e. it has strength s, it is easy to define
its inverse:

Σ̄f (Pf ) = Σf (Pf )†, (A8)

which of course carries flux n− s while having the exact
same geometrical shape. The string is canceled by its
inverse, but not necessarily by itself, in contrast to the
case of Z2 theory (see Fig. 13(a)).

Our main proof for the GSD in presence of dislocations
crucially depends on canceling two copies of a string of
a given flavor (see step 6 of Fig. 6). In the Zn theory,
starting from a string of strength s, the two copies of the
string would not necessarily cancel.

However, the proof is rescued by a remarkable fact: the
αβ surface of the dislocation allows inversion of a string,
as well as its flavor change (Fig. 13c). As we will next
show, this remarkable fact hinges on the dislocation dis-
rupting the even/odd division of the cubic lattice, which
itself is directly related to mapping a string to its inverse.
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FIG. 12. String operators in Zn doubled toric code with dislocations. Only a single plane of 3d lattice is shown for clarity. The
stabilizers are naturally repaired, because the dislocation cannot directly mix the even/odd sublattices; example shown: even
and odd star. Even/odd sublattice is mixed after encircling the dislocation twice: the string constructed step-by-step clockwise
on the right of the figure, starting from the star labeled by magenta is geometrically closed (flavor labeled by full/dashed line is
switched twice), but does not commute with all stabilizers! Namely, the string has alternating Z/Z† operators (slanted black
lines of different angle) to ensure commuting with stars, but this fails for the star at the start point. On the left of the figure
is an example of a valid (commuting) string loop which changes flavor and also gets inverted, as demonstrated by its arrows
(see paragraphs after Eq. (A8)). This loop is contractible. There is no inversion when the flavors on the top/bottom half of
the loop are chosen oppositely, as depicted in Fig. 13b(left).

It is important to notice that the considered disloca-

tions with |~b| = a/2 directly couple the flavors, but do
not simply couple the even/odd sublattices which are ac-
tually connected by an a translation. The fact that the
dislocation can not directly exchange even and odd sites
also ensures that the stabilizers can be smoothly and con-
sistently “surgically” repaired in a natural way across the
αβ surface (see next paragraph and Fig. 12).

Let us now show the crucial properties of a string
and its inverse in relation to dislocations (Figs. 12,13).
For readability, figure 12 shows only a single layer of
the 3d lattice (which is similar to a 2d model), but the
conclusions hold generally in 3d. As is obvious from
Eqs. (A7),(A8), the inverse of a string is obtained by
switching the odd and even steps in the string opera-
tor. The removal of star sites by the dislocation’s αβ
surface can play exactly this role, as is explicitly shown
in Fig. 12. Given a spin site i on the step between an
odd and even star site (which are always well defined, as
the spins they act on must be X xor X† even after lo-
cal surgery due to dislocation), the string and anti-string

differ by having Zi or Z†i . Therefore, we are able to con-
struct a simple pictorial way to locally distinguish the
string and inverse string, exemplified in Fig. 12. We can
assign an arrow at each spin site along the geometrical
line following the string, i.e.: following the path of the
string loop in a fixed orientation (call it “clockwise”), if
on the step between odd and even star site the string acts
with Z operator, assign an arrow pointing along the path
(so in the “clockwise” direction). Otherwise assign the
opposite direction. One can easily see (e.g. using Fig. 12)

that the even/odd definition of stars and strings will pre-
serve the arrow direction all along the string, at least in
absence of dislocations. Also, deformations of the string
by the action of plaquettes (and/or anti-plaquettes B†p)
must preserve the arrows due to plaquettes’ alternating
Z/Z† geometry. By this construction, two loop segments
sharing a geometrical path but having opposite arrow
directions on them cancel each other, and therefore rep-
resent the string and anti-string on that path segment.

Intuitively, encircling the dislocation line twice adds

up to a translation by |2~b| = a, which is a jump from
even to odd and vice versa in the division of the cubic
lattice (for both flavors). One expects that it is required
therefore to encircle the single dislocation line four times
to obtain a valid string loop. This is indeed true. Fig-
ure 12 explicitly shows how encircling a dislocation line
twice, and therefore piercing the αβ surface twice in the
same direction, produces a geometrically closed loop (by
switching flavor twice), but also gives a non-commuting
string! Namely, the star stabilizer (being all X or all
X†) at the start/end point of the path shares two sites
with the string, both on which the string is Z (or Z†).
(See commutation relations in Eq. (A1).) The successful
generalization of the double-winding string loop to the
Zn theory gives the 4-winding version; this kind of loop
is also naturally expected to be contractible using the
locally surgically repaired stabilizers at the dislocation
line, and is shown in Fig. 13b.

Using only the properties of string loops explained
above, one can find the remarkable (and useful) gener-
alization of rules from Fig. 5. The crucial rule is that a
string encircling locally parallel dislocation line segments
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FIG. 13. Continuum rules for strings in the 3d Zn dou-
bled toric code. (a) A string carries a flux value labeled
by s ∈ {0, . . . , n − 1}. In presence of dislocations, an ar-
row is a useful local representation of the flux carried by the
string, because the string can get inverted (s → n − s). In-
verse strings cancel, while doubling a string only doubles its
strength (s→ 2s). (b) Top view shown for clarity, see Fig. 12
for explicit lattice demonstration. (Left) Dislocation αβ sur-
face changes flavor, but also can invert the string (s→ n−s).
(Right) Only winding w = 4k strings commute with stabi-

lizers (here k = 1 is shown), since a |4~b| = 2a translation is
needed to avoid a jump between even/odd sublattices. These
winding loops are the generalization of w = 2k ones from the
Z2 model, and are also naturally locally contractible. (c) Us-
ing rules from part (b), it is easy to show that dislocations can
locally independently invert or change flavor of string loops.
This suffices to ensure the possibility of step 6 of the GSD
proof (see Fig. 6) within the Zn theory, upholding the entire
construction.

with an αβ surface stretched between them can, by using
only local operations, change its arrow direction, as well
as its flavor. This rule, in the continuum representation,
is depicted in Fig. 13c, and is the generalization of rule
in Fig. 5b. Concerning other rules, a proof of the one in
Fig. 13b(left) is shown explicitly on the lattice in Fig. 12.

These rules allow one to use all the constructive steps
in our proof (Fig. 6), with slight modifications. Firstly,
the flux s has to be assigned to the string loop. Once
the phase between steps 3 and 4 is reached, one must
also explicitly state the arrow direction for the loop, that
accompanies its strength s. It is easy to see that the two
copies of the string in step 5 are not only geometrical
copies, but they also have the same arrow direction, as
well as the same strength s. It is simple then to use
the new string rules to achieve the inversion of one of the
copies (i.e. switching it to strength n−s). The two copies
then cancel, just as is required by the original proof.

Appendix B: The membrane operator in presence of
dislocations

Here we complete our analysis based on string oper-
ators. Strictly, a non-contractible string has to be ac-
companied by a non-contractible membrane it pierces an
odd number of times, for our claims about the GSD in
subsection IV D to be true.

We first consider the practical construction of mem-
branes on the lattice, and introduce the useful concept of
“minimal membrane”. Then we present the analysis in
the continuum.

A particularly important membrane is one that con-
tains the entire chosen dislocation loop. As we check
directly on the lattice (see Appendix E) using star oper-
ators, and discuss further later, such a membrane cannot
be contracted locally, i.e. through the dislocation loop
it contains. (In absence of other dislocations, the mem-
brane can be expanded until it is contracted to nothing
due to the periodicity of the lattice — this is a “global”
operation, as performing it depends on whether there are
other dislocations in the lattice.) Using the properties of
the enclosed αβ surface, we show that the membrane in
fact can be locally transformed to the opposite flavor.
It is numerically favorable to have a simple prescription
for such a membrane (whether actually it is contractible
or not in given circumstances) such that it is locally of
the smallest possible volume. Remarkably, such “mini-
mal membranes” are easily constructed even in the case
of linked dislocation loops (when two αβ surfaces inter-
sect, Fig. 20). The prescription for constructing minimal
membranes in presence of various dislocation loops fol-
lows:

(Edge loop): Apply all star operators that are going to
be removed in creation of the αβ surface; after site
removal, the leftover σx operators form the mini-
mal membrane; these are actually acting on nearest
neighbor (opposite flavor) spins on the two sides of
the αβ surface. Summarily,

Γedgemin =
∏
s∈V

As, (B1)

where V is the set of star operators that are re-
moved by the Volterra (αβ) surface.

(Screw loop): Apply all star operators that act on spins
in screw plane, then apply the new, repaired ver-
sion of same stars after screw operation; all these
σx operators form the minimal membrane; these
are actually acting on all spins in the screw plane
(both flavors), except along the dislocation edge-
B (Fig. 19) where the new stars are more heavily
changed by local surgery (Fig. 19). The procedure
can be summarized by the formula:

Γscrewmin =
∏
s∈V

AsÃs, (B2)
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FIG. 14. Elementary operations on membrane operators in presence of dislocation loops, derived from their behavior on lattice.
Blue lines are dislocation lines, and orange straight/wavy surface is a membrane operator of α/β flavor. (a) The minimal,
locally non-contractible membrane (red line shading) has two halves of opposite flavor, tightly spanning a dislocation loop. It
can expand into membrane of either flavor. (b) Linking dislocation loops preserves minimal membranes; local redefinition of
two minimal membranes is only needed where two αβ surfaces intersect (green line), see text. (c) Local passage of a piece of
membrane through dislocation loop. (d) Relevant minimal membranes do not have to coincide with αβ surfaces. An example
of two dislocation loops is shown, with different choices for the αβ surfaces. The non-contractible strings that anticommute
with the chosen minimal membranes are also shown.

where the set V contains all star operators that act
on spins in the Volterra surface, and As are stars
in the original lattice, while Ãs are the same stars
after “surgery”.

(Linked edge and screw loops): Apply screw loop
surgery of lattice; construct the screw minimal
membrane (will be edited in last step); construct
edge loop minimal membrane (note that in this step
the stars on the intersection of the two αβ surfaces
have already been edited by screw loop); finally,
apply edge loop surgery on lattice (which removes
some operators from the screw membrane), Fig. 20.

The last case constructs two minimal membranes, for
each of the linked dislocation loops. These two mem-
branes are actually independent, i.e. they cannot cancel
each other. In other words, however we modify the prod-
uct of these membranes by multiplying it with stars in
the final dislocated lattice, there will always remain σx
operators acting on some spins, and thus the two mem-
branes cannot cancel each other.

To analyze the membranes as we did the strings, we
have directly inspected all situations on the 3dTC lat-
tice (Figs. 16-20) to derive a set of general rules that
the membranes obey as they are deformed and moved
through the lattice by the action of stars which have un-
dergone proper “surgery” due to the dislocated lattice
(Appendix E). Having in mind the detailed discussion
in Section III A, we fix the Volterra αβ surface of each
dislocation loop, and retain the global flavor assignment
from the original ideal lattice.

The basic set of rules for the behavior of membranes
is presented in Fig. 14, which also shows their relation to
non-contractible strings. Intuitively, a membrane is an
elastic closed surface which can pass through dislocation
loops. However, if it is created such that it encompasses
an entire dislocation loop (and its αβ surface), it cannot
locally be contracted, but instead can just locally (using
the αβ surface) change flavor. Such a membrane we will
call “minimal” (for the given dislocation loop).

Following our analysis for strings above, we again con-
sider the two simple examples:

• A single dislocation loop does not change the GSD:
The minimal membrane is trivial, as it can be ex-
panded and, using system periodicity, contracted
far away from the dislocation loop, as no other dis-
location loop is in the way.

• Two separate dislocation loops add one non-trivial
membrane. Here the minimal membrane of one
loop can be expanded in the periodic system un-
til it engulfs the other loop tightly. So, the two
separate minimal membranes of the two disloca-
tion loops are actually equivalent. Further, due to
the flavor inversion rule the two flavors of the mini-
mal membrane are also equivalent. We are thus left
with only one independent non-contractible mem-
brane candidate. The standard system-spanning
strings must pierce this closed membrane an even
number of times (possibly 0 times). The new non-
contractible string (which pierces both αβ surfaces
once) is topologically forced to anticommute with
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the minimal membrane, because the membrane can
be considered as of single flavor (either one), while
the string has a flavor change on the αβ surface
which is inside the membrane. Notice that using
system periodicity to change the meaning of word
“inside” to “outside” gets us nowhere, as this oper-
ation topologically only maps one dislocation loop
onto the other.

Moving on to k dislocation loops, one needs to consider
an addition of one new dislocation loop. The appropri-
ate candidate for the new membrane must be the mini-
mal membrane of the new loop. Notice how the situation
here is different than for strings. Namely, it is immedi-
ately obvious that by expanding in the periodic system,
the new membrane just encompasses all old loops, and
is therefore just the combination (product) of all the old
minimal membranes. However, this does not mean it is
dependent! Consider the old system, before adding the
new dislocation loop. A product of all minimal mem-
branes there is globally contractible, by expansion away
from the dislocation loops, and using the periodicity of
the 3d system. With the new loop however, expanding
the product of all old minimal membranes does not con-
tract it, because the new loop is in the way. We just
establish that the new minimal membrane is equivalent
to the product of the old ones, but this is not a triv-
ial membrane anymore. Therefore the product of all the
old minimal membranes is now a non-contractible oper-
ator that anticommutes with the new string, due to the
string’s single piercing of the new dislocation loop.

From the membrane perspective it is even more re-
markable how dislocation line linking does not alter the
GSD. The minimal membranes of two dislocation loops
stay well defined and distinguishable operators, even as
the two dislocation loops are pushed into each other, and
their αβ surfaces intersect (see Fig. 14b, and the ex-
plicit lattice construction further in this section, as well
as Fig. 20). The two linked minimal membranes stay
separate in the following sense: If we start from minimal
membrane of the first αβ surface, expand it using al-
lowed deformations by stars, then once it grows through
the periodic system, it will shrink back precisely into the
form of the minimal membrane for the second αβ sur-
face, which belongs to the other linked dislocation loop
(assuming no other dislocation loops in the system).

Finally, let us clarify the 3dTC with parallel disloca-
tion pairs spanning the system in one periodic dimen-
sion (say Z). In this case the membranes orthogonal
to the XY plane take the role of the 2dTC σx strings,
due to translational invariance along ẑ. The counting in
the 2dTC therefore matches the 3dTC when we consider
any XY cut through the 3d system. Additionally, the
3dTC still has a single Z spanning string (two flavors are
equivalent) and a single XY membrane (the two flavors
are equivalent), so that there is one extra anticommuting
pair in the 3dTC, leading to the

|GSD3d,spanning| = 2|GSD2d|. (B3)

See Table I for exact numerical results that corroborate
this, and Section IV D for additional details about the
strings.

Appendix C: Computing the ground state
degeneracy of Gn gauge theory using

multi-component U(1) Chern—Simons theory with a
twist

The Gn ≡ (Zn × Zn) o Z2 gauge theory can be de-
scribed by the multi-component U(1) Chern—Simons
theory with the following K-matrix:

K =

(
Kα 0

0 Kβ

)
, (C1)

Kα = Kβ =

(
0 n

n 0

)
, (C2)

with two blocks for two flavors (copies). The Chern—
Simons theory on the space manifold M has the La-
grangian

L =
n

4π

∫
M

∑
f=α,β

(
afdãf + ãfdaf

)
= (C3)

≡ 1

4π

∫
M

KIJA
IdAJ , (C4)

with A = Aµdxµ, Aµ = (aαµ , ã
α
µ , a

β
µ, ã

β
µ)T a 4-vector con-

sisting of two flavored parts with components

Afµ = (afµ, ã
f
µ)T , (C5)

while xµ = t, x, y. The Lagrangian needs to be supplied
with proper boundary conditions; crucially, the gauge
theory contains flavor-exchanging Z2 twists. On a torus
the twists are represented by

Aµ(~r + Liêi) = (σεi1 ⊗ 112)Aµ(~r)(σεi1 ⊗ 112), (C6)

where εx, εy = 0, 1 determine whether there is a Z2 twist
along the given direction, and Li is the system size in
direction i = x, y. The theory on the torus therefore sep-
arates into 4 sectors (one untwisted, three with a twist).
On a genus g surface, the presence of twists along the
2g elementary cycles (non-contractible loops) selects one
out of the 22g topological twist sectors.

In the next two subsections we evaluate the ground

state degeneracy on the torus (|GSD| = S
(n)
g=1) and a

genus g surface (|GSD| = S
(n)
g , as well as comment on

the nature of the theories.
Let us note in advance that the S

(n)
g result for Gn de-

rived below, Eq. (C37) (or Eq. (29) and Eq. (26) of main
text), formally coincides with the result for twisted (sin-
gle flavor) Zn2 theory described by Zn2oZ2.52 Before the

twist the latter theory has a 2x2 K-matrix, K =
(

0 n2

n2 0

)
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(contrast to Eq. (C1)). This implies that the number of
species and quantum dimensions of quasiparticles also
coincide between Gn and Zn2 oZ2, remarkably since the
theories are fundamentally different, and the difference is

manifest in the derivation of S
(n)
g itself (compare Ref. 46

to Appendix C 2). Our physical argument for the melted
doubled toric code, i.e. the gauging of sublattice sym-
metry (see Sec.V C), implies topological order with Gn
gauge structure in the melted state. However, the coinci-
dence described here warns that if there was a model for
the melted state constructed independently of our melt-
ing argument, one would need to uniquely identify its
topological order using characteristics beyond GSD and
quasiparticle content.

1. Degeneracy on a torus

We first consider the ground state degeneracy of the
(Zn × Zn) o Z2 theory of melted toric code on a torus
(Lx = Ly = L for simplicity). Setting the gauge A0 = 0
implies that the gauge fields of flat connections are irro-
tational and characterized by their holonomies along the
non-contractible loops on the torus. With an additional
rescaling,

Afx(t, ~r) =
2π

L
(Xf (t), X̃f (t))T , (C7)

Afy(t, ~r) =
2π

L
(Y f (t), Ỹ f (t))T , (C8)

these uniform fields therefore parametrize the gauge-
inequivalent configurations. We additionally need to take
into account that large gauge transformations enforce the
identifications

(Xf , X̃f )⇐⇒ (Xf + kf , X̃
f + kf ), (C9)

(Y f , Ỹ f )⇐⇒ (Y f + lf , Ỹ
f + lf ), kf , lf ∈ Z. (C10)

The Lagrangian from Eq. (C3) becomes

L = 2πn
∑
f

(
Xf ˙̃Y f + X̃f Ẏ f

)
, (C11)

leading to a vanishing Hamiltonian and therefore a wave-
function that is a linear combination of simple plane
waves:

ψ(Xf , X̃f ) =
∑
pα,qα
pβ ,qβ

C
pβ ,qβ
pα,qα

∏
f

δ[2πnXf−2πpf ]δ[2πnX̃f−2πqf ],

(C12)
with pf , qf being integers, pf , qf = 0 . . . n − 1, and δ[x]
the Kronecker delta function. We can label states by

|ψ〉 = |pα, qα; pβ , qβ〉 , (C13)

and gauge equivalence from Eq. (C9) limits the number
of independent coefficients which enumerate the indepen-
dent states. Namely,

C
pβ ,qβ
pα,qα = C

pβ ,qβ
pα−n,qα = C

pβ ,qβ
pα,qα−n =

= C
pβ−n,qβ
pα,qα = C

pβ ,qβ−n
pα,qα , (C14)

giving n2 independent states per flavor, since pf , qf =
0 . . . n− 1.

The independent states in the untwisted sector are
physical only if they are Z2 symmetric. This constraint

leads to n2 states of the form |p, q; p, q〉 and n2(n2−1)
2

states of the form |pα, qα; pβ , qβ〉+ |pβ , qβ ; pα, qα〉, for the
total of

S
(n)
g=1,untwisted =

n2(n2 + 1)

2
. (C15)

There are three twisted sectors, having a Z2 twist along
x, y, or both directions of the torus. There exist symme-
try transformations mapping the sectors onto each other,
so that all three have the same degeneracy46. Focusing
on a y-twist example, in accordance with Eq. (C6) we
demand that

Aαi (x, y + L) = Aβi (x, y) (C16)

Aβi (x, y + L) = Aαi (x, y), (C17)

Afi (x+ L, y) = Afi (x, y). (C18)

We can now switch to a field Bfµ defined on the system
with double length along y. Physically, we glue the two
tori of opposite flavors together after cutting them open
completely along one direction (y), which is along the dis-
location “tunneling loop” winding along y. (This loop is
the remnant αβ line of the annihilated dislocation—anti-
dislocation pair.) The resulting system is topologically
still a torus. The new field is constructed as:

Bµ(x, y) ≡ (bµ, b̃µ)T =

{
Aαµ(x, y), 0 ≤ y < L

Aβµ(x, y − L), L ≤ y < 2L

(C19)
and satisfies

Bµ(x, y) = Bµ(x+ L, y) = Bµ(x, y + 2L). (C20)

Similarly to the untwisted case, we can set B0 = 0 and
parametrize

Bi(t, x, y) =
2π

Li
(Xi(t), X̃i(t))

T , (C21)

where Ly = 2Lx ≡ 2L. The Lagrangian Eq. (C3) be-
comes

L =
n

4π

∫ L

0

dx

∫ 2L

0

dy
(
bdb̃+ b̃db

)
=

= 2πn
(
X1

˙̃X2 + X̃1Ẋ2

)
, (C22)

while the large gauge transformations consistent with
Eq. (C19) introduce the periodicity

Xi ⇐⇒ Xi + 1. (C23)

The trivial equations of motion and periodicity lead to
the wavefunction

ψ(Xi) =
∑
p,q

cp,qδ[2πnX1−2πp]δ[−2πnX2−2πq], (C24)
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where cp,q = cp−n,q = cp,q+n, and therefore the degener-
acy of the y-twisted sector is n2. Note that the twisted
sector is equivalent to a single flavored (Z2 invariant) un-
twisted sector (e.g. Eqs. (C22) and (C11)).

Since there are 3 twisted sectors, it follows

S
(n)
g=1,twisted = 3n2, and the total ground state degen-

eracy on the torus is

S
(n)
g=1 =

n2(n2 + 7)

2
. (C25)

This result precisely matches the one obtained from a
simpler physical argument for the melted state, Eq. (25).

2. Degeneracy on genus g surface

The theory on a genus g surface can be analyzed in
the same way as the theory on torus. The defining
holonomies of gauge fields are now along 2g elementary
cycles, i.e. non-contractible loops forming a homology
basis on the surface. The canonical basis can be made
by choosing loop pairs {γ1

i , γ
2
i }, with i-th pair tied to

i−-th “hole” in the surface, i ∈ {1, . . . , g}, so that only
intersections of loops are between γ1

i and γ2
i (see also

Ref. 46).
We start with the untwisted sector. As on torus,

Eq. (C13), the holonomies now lead to labeling of states
by

|ψ〉 = ⊗i
∣∣piα, qiα; piβ , q

i
β

〉
, i = 1 . . . g, (C26)

where as in Eq. (C14) the equations of motion lead to
identifications:

(piα, q
i
α; piβ , q

i
β)⇔ (piα − n, qiα; piβ , q

i
β)⇔ (piα, q

i
α − n; piβ , q

i
β)

⇔ (piα, q
i
α; piβ − n, qiβ)⇔ (piα, q

i
α; piβ , q

i
β − n).

(C27)

The Z2 invariance to α ↔ β allows only the com-

binations ⊗i
∣∣piα, qiα; piα, q

i
α

〉
and ⊗i(

∣∣∣piα, qiα; piβ , q
i
β

〉
+∣∣∣piβ , qiβ ; piα, q

i
α

〉
). There are (n2)g of the former and

[(n2 · n2)g − (n2)g]/2 of latter, and since there is only
one untwisted sector, a total of

S
(n)
g,untwisted = n2g n

2g + 1

2
. (C28)

Next consider the 22g−1 twisted sectors, labeled by the
combination of cycles across which there is a twist. As
discussed in detail in Ref. 46, using Dehn twist transfor-
mations of the surface, Z2 twists across any combination
of cycles can be reduced to a twist across a single cycle.
It is enough therefore to consider a Z2 twist across a sin-
gle elementary cycle, e.g. the γ1

g loop. Picking g-th cycle

γ1 for the twist means that on an α-flavored copy of the
surface, Σαg , the g-th hole is cut open and glued to its

identical copy Σβg along the cut. The resulting surface Σ

has genus 2g − 1. A mirror symmetry of Σ through the
g-th hole maps the two flavored copies into each other,
σΣ : Σαg ↔ Σβg . We can again introduce a single gauge
field:

Bµ(~r) ≡ (bµ, b̃µ)T =

{
Aαµ(~r), ~r ∈ Σαg

Aβµ(σΣ~r), ~r ∈ Σβg
, (C29)

leading to the action

L =
n

4π

∫
Σ

(
bdb̃+ b̃db

)
. (C30)

Since the flat connection B is determined by its
holonomies, it can be parametrized as

b = 2π

2g−1∑
i=1

(Xi
1ω

(1)
i +Xi

2ω
(2)
i ) (C31)

b̃ = 2π

2g−1∑
i=1

(X̃i
1ω

(1)
i + X̃i

2ω
(2)
i ) (C32)

using the dual (1-form) basis of the homology basis∫
γvi

ω
(w)
j = δvwδij . (C33)

Gauge transformations again lead to Xi
1, X

i
2 being de-

fined only up to integers, while the action Eq. (C30) be-
comes

L = 2πn

2g−1∑
i=1

(
Xi

1

˙̃
Xi

2 + X̃i
1Ẋ

i
2

)
, (C34)

essentially 2g−1 copies of the twisted torus sector theory,
Eq. (C22). The states are therefore labeled by

|ψ〉 = ⊗i
∣∣pi, qi〉 , i = 1 . . . 2g − 1; pi, qi = 1 . . . n.

(C35)
The action of Z2 here exchanges holes positioned on op-
posite halves of the surface, i.e. i ↔ σΣi, where the
i = g variables are mapped into themselves. “Diago-
nal” states have pi, qi, i = 1 . . . g − 1 quantum numbers
repeated for i = g + 1 . . . 2g − 1 on the other half of
the surface, while pg, qg are chosen independently; this
gives (n2)g−1 · n2 = n2g invariant states. The “off-
diagonal” states are symmetrized, and have (pi, qi) 6=
(pσΣi, pσΣi) for i 6= g, while pg, qg are independent; this
gives n2 · (n2)g−1((n2)g−1 − 1)/2. In total,

S
(n)
g,twisted = n2g n

2(g−1) + 1

2
. (C36)

Taking into account the number of sectors, Eqs. (C28)
and (C36) give

S(n)
g = n2g n

2g + 1

2
+ (22g − 1)n2g n

2(g−1) + 1

2
, (C37)
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FIG. 15. A minimal representation of three-torus, having one
site (dot) of a cubic lattice with periodic boundary conditions
in all three directions. There are three independent group el-
ements g1, g2, g3 on directed edges (arrows) of this unit-cell,
the other edges being determined by periodicity. Model with
topological order with gauge group G in this system contains
four commuting operators: three force the flux on three cu-
bic faces to zero, while the fourth acts similarly to a lattice
gauge transformation on the six directed edges connected to
the lattice site (dashed lines are periodic images of edges).

which for g = 1 reduces to the torus results,
Eqs. (C15), (C25).

The final expression for GSD in Eq. (C37) precisely
matches the one obtained from a simpler physical deriva-
tion of the melted state, Eq. (26), and it also matches (as
it must) the GSD result obtained directly from the struc-
ture of the gauge group Gn, Eq. (28).

Appendix D: GSD of D4 topologically ordered state
on the three-torus T 3

To build an exactly solvable model with topological
order described by discrete (possibly non-Abelian) gauge
group G in three dimensions with periodic boundary con-
ditions (i.e. on a three-torus T 3), it is enough to consider
a single unit-cell of a cubic lattice, Fig. 15. We follow the
model construction from Refs.53 and 54. There is only
one lattice site and three directed edges in the unit-cell
cube, the rest being automatically determined by the pe-
riodicity. Each edge is assigned a direction (marked by
arrow in Fig. 15) and a group element, so the degrees of
freedom are gi ∈ G, i = 1, 2, 3. The orthonormal basis
of the Hilbert space is |g1, g2, g3〉. When an edge with
group element g is considered in direction opposite to its
arrow, the assigned group element is considered as the

inverse g−1.
The model is defined using operator A (tied to the

single lattice site) and operators Bij tied to the three
faces of the unit-cell cube. The Bij operator projects
the total flux on the ij face of the cube to zero, e.g.
BXZ enforces the identity g1 · g3 · g−1

1 · g−1
3 = 11, where

direction of edges is taken into account as one goes
around the XZ square plaquette. (Formally, the zero-
flux definition leads to the expression BXZ |g1, g2, g3〉 =∑
h1,h2∈G
[h1,h2]=0

δ(h1, g1)δ(h2, g3) |g1, g2, g3〉.)

Next we consider the Ag operator, which acts as a
gauge transformation on the six edges connected to the
cubic lattice site: Element gi on edge i is transformed
into g · gi [gi · g−1 ] if the edge is directed away [to-
wards] the site. Note that three of the six edges are peri-
odic images (dashed lines in Fig. 15). The site operator
A = 1/|G|

∑
g∈GAg therefore acts as:

A |g1, g2, g3〉 =
1

|G|
∑
g∈G

∣∣gg1g
−1, gg2g

−1, gg3g
−1
〉
. (D1)

It is easy to check that A and Bij operators are all
projectors and commute with each other. The exactly
solvable Hamiltonian is therefore given by

H = −A−BXY −BY Z −BXZ , (D2)

and describes a phase with G topological order.53,54 The
ground state manifold is given by solving the set of equa-
tions:

A |ψ〉 = |ψ〉 (D3)

Bij |ψ〉 = |ψ〉 .

An arbitrary wavefunction is |ψ〉 =∑
h1,h2,h3∈G

c(h1, h2, h3) |h1, h2, h3〉, and we consider

the set of equations for the coefficients c(h1, h2, h3)
which result from applying Eqs. (D3). (Note that the
three Bij equations just enforce that c(h1, h2, h3) = 0
unless h1, h2, h3 commute with each other.)

By solving the equations we find that out of |D4|3 =
512 coefficients c(h1, h2, h3) the ground state manifold
has exactly 92 independent ones, thus the GSD of D4

topologically ordered state on the three-torus is 92.

Appendix E: Local “surgery” for operators in lattice
with dislocations

Here we present the explicit local “surgery” operations
for redefining local star and plaquette operators, as well
as other details for the 3d toric code analyzed in the main
text. All the information is given in Figures 16 to 20.
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FIG. 16. Edge dislocation of an ZX loop, example of edge-1 segment along ẑ. Black dots are removed sites, forming the αβ
surface. The dislocation line is represented by the outmost array of black sites, and in this edge-1 example does not contain
star operators. All stabilizers that contain removed spins are repaired by just gluing their neighboring sites together in the
local neighbor network, and that is how the flavor jump occurs as a string operator which pierces the αβ plane is constructed
step-by-step. The exception to the seamless repair are stabilizers that contain spins on the dislocation lines, for which the
explicit repair “surgery”, such that all stabilizers commute, is shown. The two plaquettes (two black triangles) lying in a star
containing plane orthogonal to the dislocation line are merged into a new plaquette, with σz acting on 9 blue square spins.
Notice that this stabilizer locally mixes the flavors. The star operator (third black triangle) just loses the removed spin, acting
on 5 purple diamonds. The surgery is repeated along edge, shifting by a lattice constant (two planes). A new local cubic
constraint for plaquettes, containing the merged plaquette operator, can be constructed, using σz on the light green spins. Two
black circles mark the removed local constraints. The corner site of a square-shaped dislocation loop made of edge-1 is on an
empty site, and therefore needs no special surgery. Locally in total, one plaquette and one constraint are removed, consistent
with independence of GSD on the length of dislocation lines.
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FIG. 17. Edge dislocation of an ZX loop, example of edge-2 segment along ẑ. In this case the dislocation line contains star
operators. See caption of Fig. 16 for details. The two star operators (black triangles) are merged into a new one acting on 13
purple diamonds. Two plaquettes are replaced by three new ones B1, B2, B3, marked by 3 blue, 2 cyan, and 4 purple squares,
respectively. Three cubic constraints (green circles) are replaced by new ones marked a, b, c, each at a center of a “modified
cube” formed by neighboring plaquettes. The a, b, c constraints include: two B1 type plaquettes as “cube” top and bottom (in
total 6 plaquettes); a B3 as a “cube” back side (in total 6); and both B2 and B3 as “cube” sides (in total 7), respectively.
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FIG. 18. Screw and edge-A dislocation segments of an XY loop (Y Z is equivalent). There are no removed sites in this
dislocation loop, just a shearing of bonds site along ŷ within the loop. All stabilizers are redefined with such a new neighbor
network on the lattice. 1) The screw dislocation line segment passes through the empty sites of the lattice, while edge-A passes
through line without star operator sites. An ZX plane plaquette positioned on a screw dislocation line segment (example:
rightmost black triangle for flavor β) is repaired by replacement by a 9 site σz operator Bs1 (cyan squares). The cubic constraints
on this segment (rightmost black circle for flavor α) now use the repaired plaquette operators on front and back cube sides. 2)
For each spin site R on the edge-A segment, two plaquettes (black triangles) are merged into one new Bs2 (blue squares, mixing
flavors), while the star positioned below R is edited by removing its action on spin at R. Two local cubic constraints on either
side of edge-A sites are merged into a single constraint containing two Bs2 plaquettes. Green circles mark plaquettes which are
involved, together with Bs1 and Bs2, in the cubic constraint (black circle) at the loop corner. The corner should be included
in the screw segment. In total locally, the number of stabilizers and constraints is unchanged, consistent with independence of
GSD on the size of dislocation loops.
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FIG. 19. Edge-B dislocation segment of an XY loop (Y Z is equivalent), lying along x̂ (inequivalent to edge-A due to ~b = ŷ).
See caption of Fig. 18. The edge-B does not pass through star operator sites. The plaquettes labeled by spins on the dislocation
line sites (example: black triangle for flavor β) have to lose one spin operator (blue squares). The plaquettes on empty sites of
edge-B (examples are black circles) are replaced by two (purple and cyan squares). Pairs of star operators below edge-B (black
triangles) are merged (green diamonds). The corner (marked with a) should be included into the edge-B segment. In total
locally, the number of stabilizers (stars and plaquettes) and local cubic constraints is unchanged, consistent with independence
of GSD on the size of dislocation loops.The cubic constraint belonging to corner (a) includes plaquettes labeled by green circles.
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FIG. 20. Dislocation loop linking, example of ZX and XY loops. After the screw loop is created by editing the local neighbor
network, the sites for the ZX loop should be removed, and network edited again per rules of Fig. 16. A single plaquette in
the screw plane (black triangle in circle) must be completely removed. The cubic constraint at that same site now contains B1

plaquettes (Fig. 16) and the ones marked by green circles.
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