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We establish a physically meaningful representation of a quantum energy density for use in Quan-
tum Monte Carlo calculations. The energy density operator, defined in terms of Hamiltonian com-
ponents and density operators, returns the correct Hamiltonian when integrated over a volume
containing a cluster of particles. This property is demonstrated for a helium-neon “gas,” showing
that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems.
The formation energies of defects or interfaces are typically calculated as total energy differences.
Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfa-
cial energies can be calculated more efficiently with the energy density, since the region of interest
is small. We also demonstrate how the energy density correctly transitions to the bulk limit away
from the interface where the correct energy is obtainable from a separate total energy calculation.

I. INTRODUCTION

A description of local energetics at the quantum level
opens the possibility of greater insight into properties as
fundamental as bonding or energy transport in matter.
In electromagnetism, formulations of the energy density
are well known, but quantum analogues of the classical
representations have received only limited attention for
many-body condensed matter systems. As in the classical
setting, representations of the quantum energy density
are not unique, but this ambiguity is mitigated somewhat
by the fact that each representation is an observable of
the quantum system.

The search for a more complete understanding of en-
ergy transport in phonon systems led Hardy1 to define a
quantum energy density operator, closely related to the
Hamiltonian, nearly 50 years ago. The perspective taken
in that work was to associate distinct energies with each
quantum particle. Later on, and perhaps independently,
Ziesche and Lehmann2 introduced alternative representa-
tions of the kinetic energy density as well as a field form
of the potential energy for both the many-body wave-
function and Kohn-Sham3 orbitals. Similar forms were
also recognized by Chetty and Martin,4 and have recently
been applied5 to the problem of defect formation ener-
gies and surface relaxations, in the context of Density
Functional Theory6 (DFT).

In this work, we expand on prior formulations of the
quantum energy density and investigate its application
within Quantum Monte Carlo (QMC) calculations, which
allow access to the many-body properties of quantum sys-
tems with high accuracy. Following the work of Hardy,
we seek quantum operators to represent observable forms
of the energy density. A new form of the kinetic en-
ergy density operator is presented, disrupting the no-
tion of unique kinetic energies within specialized atomic
volumes.5 If the perspective is taken that particles carry
the energy, we also show that the partitioning of poten-
tial energy among various charge species is not arbitrary,
but must take a unique form if long-ranged energy trans-

fers between neutral subsystems are to be avoided. Ap-
propriate forms of the energy density operator for use
in Diffusion Monte Carlo7,8 (DMC) simulations are es-
tablished with special consideration given to typical use
cases such as twist averaging.9 As the energy operator
for a subsystem does not, in general, commute with the
Hamiltonian, we compare the appropriateness of mixed
versus extrapolated estimates of subsystem energies.

A great advantage of such a local description of ener-
getics is that it offers an alternative to the “brute force”
approach of calculating formation energies from total en-
ergy differences, which is currently the standard way of
obtaining formation energies of surfaces, interfaces, and
defects. A large portion of this computational effort is ex-
traneous due to cancellation between similar parts of the
systems. For Quantum Monte Carlo, the situation is even
worse because these similar regions contribute substan-
tially to the statistical variance while adding nothing to
the final answer. The use of densities reduces this prob-
lem, since quantities are accumulated over the area of
interest alone, which eliminates the noise from other re-
gions. The efficiency gains of this approach can be quite
substantial, especially if the region of interest is small
compared to the total simulation volume, a property we
demonstrate with a model of δ-doped silicon.

The remainder of the paper is organized as follows. In
section II we derive kinetic and potential energy densi-
ties (along with corresponding operators) starting from
standard expressions for the respective energies. A single
form of the energy density operator is recommended for
use in DMC. We then validate our chosen form of the
energy density operator in section III with a model of
a helium-neon gas. This system is chosen because the
atoms involved are weakly interacting, providing separa-
ble atomic energies. Efficiency enhancements for QMC
energy difference calculations are explored in detail in
section IV with a simple model of δ-doped silicon, where
dopant atoms are confined to a single crystal plane. In
section V, we find the Kohn-Sham energy density result-
ing from our representation and demonstrate its close
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relationship with one recently employed in DFT by Yu,
Trinkle, and Martin.5 We also compare atomic energies
of δ-doped silicon obtained from the Martin form in DFT
with Diffusion Monte Carlo results. Our major conclu-
sions are then summarized in section VI. Appendix A
contains an alternative derivation of the energy density
operator starting from a general form and imposing suc-
cessive physical conditions. Potential energy densities in
Ewald10 systems are treated in appendix B.

II. DERIVATION OF THE ENERGY DENSITY

All descriptions of energy density (Er) must satisfy the
simple requirement

E =

∫
drEr, (1)

where E is the total energy. While Eq. 1 is only loosely
constraining, it can be used to arrive at fairly natural
forms for the energy density. When these forms are re-
cast in terms of energy density operators, it becomes
clear that this “natural” approach amounts to preserving
the exchange symmetries of the Hamiltonian in each cor-
responding energy density operator. Even within such
highly symmetric forms, ambiguity remains. Valid forms
of the energy density are evaluated on the basis of suit-
ability for use in QMC calculations.

A. Kinetic Energy Density

The hermiticity of the momentum operator immedi-
ately provides three equivalent forms for the kinetic en-
ergy,

T = −1

2

∑
i

〈∇2
iΨ|Ψ〉 (2)

=
1

2

∑
i

〈∇iΨ|∇iΨ〉 (3)

= −1

2

∑
i

〈Ψ|∇2
iΨ〉, (4)

where the sum is over all quantum particles. Using ex-
change symmetries and transforming to real space, these
forms become

T = −N
2

∫
dR∇2

1Ψ(R)∗Ψ(R) (5)

=
N

2

∫
dR∇1Ψ(R)∗∇1Ψ(R) (6)

= −N
2

∫
dRΨ(R)∗∇2

1Ψ(R), (7)

where R represents the N particle coordinate vector, R =
[r1, r2, . . . , rN ]. For notational convenience, we introduce
R\i which is just R excluding ri.

In the spirit of the number density, ρr ≡
N
∫
dR\1 |Ψ(r,R\1)|2, we recognize distinct kinetic en-

ergy densities

TL
2

r = −N
2

∫
dR\1∇

2
rΨ(r,R\1)∗Ψ(r,R\1) (8)

TLRr =
N

2

∫
dR\1∇rΨ(r,R\1)∗∇rΨ(r,R\1) (9)

TR
2

r = −N
2

∫
dR\1Ψ(r,R\1)∗∇2

rΨ(r,R\1). (10)

The superscripts denote the direction of action of the gra-

dients in the expectation value, left (L) or right (R). TL
2

r

and TR
2

r have the undesirable feature of being complex
valued. After separating the real and imaginary parts,
the relationship between the three energy densities takes
a more illuminating form with help from the chain rule,

TR
2

r − TL
2

r =
i

2
∇r · jr (11)

TR
2

r + TL
2

r

2
= TLRr − 1

4
∇2
rρr, (12)

where ρr and jr are the number and current densities,
respectively.

To construct operators corresponding to the above
densities, we insert density operators within the standard
operator for the total kinetic energy,

T̂ =
1

2

∑
i

p̂2
i . (13)

The real space density operator for particle i is defined
as

δ̂rri =

∫
dR|R〉δrri〈R|. (14)

Since each density operator integrates to the identity,∫
drδ̂rri =

∫
dR|R〉〈R| ≡ 1̂, (15)

any insertion of density operators into T̂ will create a
kinetic energy density operator T̂Xr satisfying the nor-
malization condition ∫

drT̂Xr = T̂ . (16)

The operators corresponding to TL
2

r , TLRr , and TR
2

r are
then given by

T̂L
2

r =
1

2

∑
i

p̂2
i δ̂rri (17)

T̂LRr =
1

2

∑
i

p̂iδ̂rri p̂i (18)

T̂R
2

r =
1

2

∑
i

δ̂rri p̂
2
i , (19)
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as can be confirmed directly by calculating 〈Ψ|T̂Xr |Ψ〉.
The complex nature of TL

2

r and TR
2

r surfaces here in the
non-hermiticity of the corresponding operators. Again, a
symmetric combination remedies the problem:

T̂L
2+R2

r =
1

2

∑
i

p̂2
i δ̂rri + δ̂rri p̂

2
i

2
. (20)

Density operator insertion also reveals a less obvious
“modulus” form:

T̂modr =
1

2

∑
i

|p̂i|δ̂rri |p̂i|. (21)

Though difficult to apply in real space, this form is per-
fectly reasonable in a momentum space formulation since
|p̂||p〉 = |p||p〉. Since Tmodr cannot be related to the
other forms of the kinetic energy densities by introduc-
ing a vanishing surface term, integration over “gauge
independent”5 volumes will not provide unique kinetic
energies.

In Diffusion Monte Carlo calculations, expectation val-
ues of observables are approximated by “mixed” esti-
mates:

〈A〉 ≈ 〈Ψ0|Â|ΨT 〉
〈Ψ0|ΨT 〉

. (22)

Here Â is the observable in question, ΨT is a variational
approximation of the ground state, and Ψ0 is the ex-
act ground state (for fermions it is actually the lowest
energy state sharing the nodes8,11 or phase12 of ΨT ).
Any leftward (L) acting representations of the kinetic en-
ergy operator are challenging for DMC, since they involve
derivatives of Ψ0, and hence derivatives of the projection
operator used to obtain Ψ0 from ΨT . It would therefore

be ideal if T̂R
2

r could be used to obtain the energy den-
sity. Fortunately, there is a class of situations that make
this choice possible.

In order to reduce finite size effects, observables in
QMC calculations of extended systems are often calcu-
lated with twist averaged boundary conditions (TABC),
i.e. they are integrated over the first Brillouin zone of the
simulation cell. At each k-point, solutions (Ψk) to the
Schrodinger equation13 satisfy a many-body form14,15 of
the standard16 Bloch condition, and hence Ψ−k = Ψ∗k.

From this, we can relate TL
2

r,k and TR
2

r,k :

TR
2

r,−k = 〈Ψ−k|T̂R
2

r |Ψ−k〉

= 〈Ψk|T̂R
2†

r |Ψk〉

= 〈Ψk|T̂L
2

r |Ψk〉

= TL
2

r,k . (23)

If the k-point set used to approximate the Brillouin zone

integration has inversion symmetry, we further see that

TR
2

r,TABC =
1

Nk

∑
k

TR
2

r,k

=
1

Nk

∑
k

TR
2

r,k + TR
2

r,−k

2

=
1

Nk

∑
k

TR
2

r,k + TL
2

r,k

2

= TL
2+R2

r,TABC . (24)

Thus TR
2

r,TABC will be real-valued for pure (non-mixed)
estimators as long as inversion symmetry of the k-point
grid is maintained. For DMC, the mixed estimator (see
Eq. 22) will again yield a complex-valued kinetic energy
density, but since the imaginary part is due solely to
errors in the trial function ΨT , it can safely be ignored.

In the remainder of the paper, T̂R
2

r is used as the kinetic
energy density operator.

B. Potential Energy Density

When deriving the potential energy density, we con-
sider a system comprised of electrons (neglecting spin)
and identical ions with nuclear charge Z. This choice
is made to simplify the analysis while maintaining the
essential partitioning between fast moving particles (the
electrons) and slow moving or immobile particles (the
ions). Generalizing to multiple ionic species, or any other
system interacting via pair potentials, is straightforward.
The potential energy operator of such a system is given
by

V̂ =
1

2

∑
i6=j

v̂eerirj +
∑
i`

v̂eIrir̃` +
1

2

∑
` 6=m

v̂IIr̃`r̃m , (25)

where vee, veI , and vII are the electron-electron,
electron-ion, and ion-ion Coulomb energies, respectively.
In the above and in following expressions, electron co-
ordinates are denoted ri or rj while ion coordinates are
denoted r̃` or r̃m.

In order to translate the potential energy into a density,
we enlist the help of the pair density operator and its
factorization according to electron or ion species,

ρ̂rr′ =
∑
p 6=p′

δ̂rrp δ̂r′r′p (26)

=
∑
i 6=j

δ̂rri δ̂r′rj +
∑
i`

δ̂rri δ̂r̃′r̃`

+
∑
i`

δ̂rr̃` δ̂r′ri +
∑
` 6=m

δ̂rr̃` δ̂r′r̃i (27)

= ρ̂eerr′ + ρ̂erρ̂
I
r′ + ρ̂Ir ρ̂

e
r′ + ρ̂IIrr′ , (28)
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where ρ̂er and ρ̂Ir are the single particle density operators

ρ̂er =
∑
i

δ̂rri ρ̂Ir =
∑
`

δ̂rr̃` . (29)

By rewriting the pair potential operators in the form

v̂rirj =

∫
drdr′δ̂rri δ̂rrj v̂rr′ , (30)

the total potential energy becomes

V = 〈Ψ|V̂ |Ψ〉 (31)

=
1

2

∫
drdr′

[
ρeerr′v

ee
rr′ + ρerρ

I
r′v

eI
rr′

+ ρIrρ
e
r′v

Ie
rr′ + ρIIrr′v

II
rr′

]
. (32)

In this step, we have made use of the Born-Oppenheimer
approximation,17 so that ρeIrr′ ≈ ρerρIr′ with ρer depending
on ion positions. This immediately suggests potential
energy densities “belonging” to electrons or ions:

V er =
1

2

∫
dr′
[
ρeerr′v

ee
rr′ + ρerρ

I
r′v

eI
rr′
]

(33)

V Ir =
1

2

∫
dr′
[
ρIrρ

e
r′v

Ie
rr′ + ρIIrr′v

II
rr′
]
. (34)

The separation of terms is made on the basis of whether
r is equal (via a delta function) to an electron or ion
coordinate.

In many electronic structure calculations, including the
majority of QMC calculations, the ions are considered to
be classical and immobile. In this case, densities for the
ion terms revert to collections of delta functions,

ρIr =
∑
`

δrr̃` ρIIrr′ =
∑
` 6=m

δrr̃`δr′r̃m , (35)

and so the electron and ion potential energy densities
become

V er =
1

2

∫
dr′ρeerr′v

ee
rr′ +

1

2
ρer
∑
`

veIrr̃` (36)

V Ir =
1

2

∑
`

δrr̃`

∫
dr′ρer′v

Ie
rr′ +

1

2

∑
`

δrr̃`
∑
m 6=`

vIIr̃`r̃m .

(37)

When rewritten as an operator, the potential energy
density takes on the simple form

V̂r =
∑
i<j

δ̂rri + δ̂rrj
2

v̂eerirj +
∑
i`

δ̂rri + δ̂rr̃`
2

v̂eIrir̃`

+
∑
`<m

δ̂rr̃` + δ̂rr̃m
2

v̂IIr̃`r̃m . (38)

Thus each particle carries half the energy of any pair
interaction in which it participates. The same partition-
ing was also chosen by Hardy, but it was presented as a

somewhat arbitrary choice.1 As we show in appendix A,
this equal sharing of potential energy between particles,
regardless of charge, is not accidental. Without it, en-
ergy would be transferred over large distances between
otherwise non-interacting (neutral) systems.

It is worth noting that if v̂eIrir̃` is replaced by a non-local
pseudopotential

v̂PPrir̃` =
∑
Y

|Y 〉vYrir̃`〈Y | (39)

in the analysis above (with {Y } representing spherical
harmonics), the density operator for pseudopotential en-
ergy has the same form:

V̂ PPr =
∑
i`

δ̂rri + δ̂rr̃`
2

v̂PPrir̃` . (40)

Thus pseudo-ions are treated on the same footing as other
particles.

An alternative form can be introduced which bears
some similarity to the classical energy density of elec-
tric fields. If we denote the Coulomb potential due to
a point charge q sitting at rq as vqrrq and recall that

−∇2
rv
q
rr′ = qδrr′ , the potential energy of a pair of charges

can be written in the following way:

vqq
′

rqrq′
=

∫
drvqrrqq

′δrr′q (41)

= −
∫
drvqrrq∇

2
rv
q′

rrq′
(42)

=

∫
dr∇rvqrrq∇rv

q′

rrq′
−
∫
ds · vqrrq∇rv

q′

rrq′
. (43)

If the integral is taken over the entire simulation domain,
then the surface term vanishes and we are left with an
energy density for the pair:

vqq
′

r = ∇rvqrrq∇rv
q′

rrq′
. (44)

The resulting energy density for a collection of point
charges involves products of electric fields from differ-
ent particles, rather than the square of the total electric
field, and thus avoids the infinite energy involved in the
formation of a point charge. Applying the transforma-
tions entailed in Eqs. 41-43 to Eq. 25, a density operator
that stores potential energy in these single particle fields
is

V̂ fieldr =
∑
i<j

∇rv̂erri∇rv̂
e
rrj +

∑
i`

∇rv̂erri∇rv̂
I
rr̃`

+
∑
`<m

∇rv̂Irr̃`∇rv̂
I
rr̃m . (45)

It should be noted that this field form assumes a system
composed of Coulomb particles. It is unlikely that similar
forms exist for general pair interactions, e.g. dispersive
interactions between helium atoms cannot be described
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by the electric field from a static charge density since
they arise from induced correlations between particles.

Besides its potential lack of generality, the field form
poses other difficulties for QMC calculations. First,
V̂ fieldr would have to be evaluated over an entire grid or

basis expansion for each sample, whereas V̂r can be accu-
mulated with a simple histogramming approach. Second,
the divergences in ∇rvqrrq∇rv

q′

rrq′
would result in a high

variance, since large positive or negative values would
be accumulated as any particle passed near a grid point.
Similarly, a basis expansion of V fieldr would have diffi-
culty capturing the divergences, potentially introducing
bias as well as having a large variance. For these reasons,
we prefer V̂r for use in QMC.

C. Total Energy Density

To summarize, the energy density operator we have
derived has the following form:

Êr =
1

2

∑
i

δ̂rri

p̂2
i +

∑
j 6=i

v̂eerirj +
∑
`

v̂eIrir̃`


+

1

2

∑
`

δ̂rr̃`

∑
i

v̂Ierir̃` +
∑
m 6=`

v̂IIr̃`r̃m

 . (46)

It divides the total energy into single particle contribu-
tions, with the particles themselves carrying the kinetic
and potential energy (as expressed by the delta func-
tions).

If the energy density operator is integrated over a sub-
volume of the entire domain, one obtains a Hamiltonian
operator which reasonably represents that subsystem.
As an example, consider the Hamiltonian for an infinite
number of particles inhabiting all of space. If the par-
ticles are constrained to undergo periodic motion in an
array of cells, we have an extended Ewald system with
energy density operator

Ê∞r =
1

2

∑
c

∑
i

δ̂rrci

p̂2
ci +

∑
j 6=i

v̂rcircj


+

1

2

∑
c6=c′

∑
ij

[
δ̂rrci v̂rcirc′j + δ̂rrc′j v̂rcirc′j

]
, (47)

where c is the cell index, and rci is the position of the
i-th particle in cell c. Integrating this energy density
operator over a single periodic cell results in the familiar
Ewald Hamiltonian involving only the particles in the
cell, along with the potential felt from periodic images:∫

Ω0

drÊ∞r =
∑
i

p̂2
0i

2
+
∑
i<j

v̂r0ir0j +
1

2

∑
c6=0

∑
ij

v̂r0ircj .

(48)

In order to calculate the potential energy density result-
ing from Ewald interactions, special care must be given
to separate out single particle energies (including the par-
titioning of constant terms). This issue is addressed in
more detail in appendix B.

III. DEMONSTRATION OF SEPARABILITY: A
HELIUM-NEON “GAS”

The energy density represents a partitioning of the to-
tal energy among particles. If the energy density pro-
vides a physical description of this partitioning, it should
match the partitioning naturally found in separable sys-
tems. For example, the atoms in a low density helium-
neon gas only weakly interact and so, to a good approxi-
mation, the total many body wavefunction separates into
a product of atomic wavefunctions, Ψtot =

∏
a Ψa. In

this case, the total energy also separates into a sum of
atomic energies:

Etot = 〈Ψtot|Ĥtot|Ψtot〉 ≈
∑
a

〈Ψa|Ĥa|Ψa〉 =
∑
a

Ea.

(49)

Such atomic energies constitute a physically meaningful
partitioning of the energy, which should be reflected in
the energy density. Any deviation from this partitioning
can be considered a long-ranged transfer of energy be-
tween weakly interacting systems. As shown in appendix
A, the energy density operator of Eq. 46 should be ca-
pable of isolating these atomic energies when integrated
over single atom volumes.

To test this property, we have performed Variational
Monte Carlo18 simulations of three systems: a single he-
lium atom, a single neon atom, and a helium-neon pair,
each using the Ewald summation to represent an infinite
gas. In all cases, the interatomic distance was fixed at 14
a.u. on a square lattice and pseudopotentials generated
with the OPIUM19 program represented ion cores (nu-
cleus of helium and the He core of neon). Orbitals were
generated by the Quantum Espresso20 package with a
cutoff of 150 Ry. All QMC calculations were performed

Total Kinetic Potential

He isolated -2.8629(08) 2.6543(67) -5.5172(68)
He integrated -2.8622(10) 2.6470(60) -5.5093(60)

Ne isolated -33.9157(32) 22.571(25) -56.487(25)
Ne integrated -33.9159(26) 22.566(16) -56.482(17)

TABLE I. Total, Kinetic, and Potential atomic energies for
He and Ne from isolated total energy calculation or integrated
energy density of He-Ne pair. All energies are in Hartree
units. Parentheses indicate statistical uncertainty in the last
two decimal places.
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with QMCPACK.21 The conclusions reached here are in-
sensitive to these choices and generalize to DMC calcu-
lations, since DMC can be represented as a reweighting
of VMC configurations.

The results of the calculations are shown in Table
I. The integrated energies from the He-Ne pair system
match the energies of the single atom systems to within
a few mRy, verifying that the energy density operator
partitions the energy in a physically meaningful way.

IV. EFFICIENT ENERGY DIFFERENCES:
δ-DOPED SILICON

Beyond providing physical insight into local energetics,
the energy density is particularly useful in QMC because
it can reduce the statistical variance of energy differences.
In some cases the desired quantity can be obtained in a
single calculation with the energy density,4,5 further in-
creasing the efficiency. To illustrate these points, we have
performed a series of DMC energy density calculations
for a simple model of δ-doped silicon, where variations in
the energy density are expected to vary along only one
spatial direction.

In a δ-doped material, a thin layer of dopant atoms
is sandwiched between two bulk regions. Since we are
interested only in demonstrating the efficiency enhance-
ment of the energy density over total energy calculations,
we introduce several idealizations in our system. First,
the δ layer is represented by a plane of single atoms.
Second, the “dopant” is chosen to be germanium since
it is not expected to introduce long-ranged charge dis-
turbances. Third, the cell dimensions parallel to the δ
layer are chosen minimally; the system is represented as
a line of 2-atom primitive cells (8, 12, or 16 cells long)
and doping is achieved by replacing a single Si atom with
Ge, forming a (110) plane. These idealizations are made
for convenience only and do not affect our conclusions.

It is natural to discuss the energy density in terms of
atomic energies. Here volumes assigned to each atom are
chosen to be the Voronoi22 polyhedra of the nuclei which
enclose the set of points nearest each nucleus. Though
more physically motivated and transferable volumes can
be found,5 they depend on the detailed shape of the final
density which makes a histogramming approach difficult.
Also, in many cases the region of interest is joined to a
bulk region where any repeated volumes of the appropri-
ate size will contain the same energy due to the period-
icity of the lattice. Thus differing definitions in atomic
volumes can only change the location of the boundary
enclosing the bulk by no more than a single primitive
cell.

Total, kinetic, and potential atomic energies for the
24-atom system (12 × 1 × 1 tiled primitive cell at the
gamma point) are shown in Fig. 1. The energy profiles
are asymmetric due to the bipartite diamond lattice. As
expected, atomic energies for the δ-doped system relax to
bulk values away from the dopant plane, further estab-

FIG. 1. Total (a), kinetic (b), and potential (c) atomic DMC
energies for 12 × 1 × 1 systems. Bulk Si is shown in blue
with δ-doped in red. Atomic positions are projected onto
the Cartesian x-axis and shown in units of a/2. Each atom
represents an equivalent (110) plane. Ge is at the origin.

lishing the local quality of the energy density operator
(see Eq. 46).

In Diffusion Monte Carlo, the total energy is esti-
mated more accurately than other quantities, since the
mixed estimator provides the exact answer, Emix =
〈Ψ0|Ĥ|ΨT 〉/〈Ψ0|ΨT 〉 = E0. Observables (O) that do not
commute with the Hamiltonian are estimated using the
extrapolated estimate, Oextrap ≡ 2Omix − Otrial, which
is accurate to second order in the trial wavefunction error.
Here Otrial is obtained from a separate VMC calculation.

The energy density presents an interesting situation:
although it is intimately related to the total energy,
the energy density operator does not commute with the
Hamiltonian. For very small volumes (δΩ), it is reason-
able to expect the mixed estimate to be more accurate,
since

∫
δΩ
drÊr and Ĥ will be most different. It is also

clear that for volumes (Ω′) approaching the system size,

the commutator of
∫

Ω′ drÊr and Ĥ tends to zero. Thus
there will always be some integration volume for which
the mixed estimator is more accurate.

For cases similar to our δ-doped Si example, the right
choice for calculating total energy differences from energy
densities is the mixed estimator. Since the DMC total
energy is correct for the bulk system, the bulk atomic
energies are also correct due to symmetry. The same
conclusion is reached for atomic energies in the bulk-like
regions of the δ-doped system, since they match the en-
ergies of the bulk system (see Fig. 1). Thus the mixed
estimator is also exact for the dopant region and the ex-
trapolated value underestimates the exact value by the
VMC error.

Due to the cancellation of atomic energies in the bulk-
like regions, the energy difference of interest can be writ-
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FIG. 2. Energy difference (a) and speedup (b) vs. integration
distance from Ge dopant. Energy differences between the
doped and bulk systems are marked in black. Quantities in
red use the bulk-like region of the doped system to estimate
bulk energies. Speedup is relative to standard total energy
differences.

ten as

Edopedtot − Ebulktot =

∫
Ωd

drEdopedr −NdEbulka , (50)

where the volume Ωd encloses all energy disturbances due
to the δ layer, Nd is the number of atoms within Ωd, and
Ebulka is the energy per atom of bulk. As in the standard
approach, Ebulka can be computed in a separate bulk cal-
culation, but the energy density provides an alternative.
It can also be estimated from the bulk-like region of the
doped system,

Ebulka =
1

Nb

∫
Ωb

drEdopedr , (51)

with Ωb and Nb satisfying Ωd ∪ Ωb = Ωtot and Nd +
Nb = Ntot, respectively. Thus the energy difference can
be obtained from a single calculation.

Figure 2a shows the convergence of the energy differ-
ence as the integration volume surrounding the δ layer
is increased. The final point in black corresponds to the
standard total energy difference. Consistent with Fig. 1,
the energy difference converges to its final value once the
neighboring layers are summed over.

The statistical variance is also greatly reduced rela-
tive to total energy differences, resulting in a significant
speedup as shown in Fig. 2b. The speedup is defined as
the ratio computer times required to reach the same sta-
tistical error using the two approaches. For the smallest
converged volumes, the computational cost is diminished
by a factor of 16. In general the speedup achieved de-
pends on the relative size of the subsystem of interest.
For a system of nearly uniform composition with Ntot

FIG. 3. Atomic DMC energies for 16, 24, and 32 atom δ-
doped Si vs atomic position. Ge is at the origin.

atoms and a subsystem of Nsub atoms, it will roughly
scale as Ntot/Nsub.

This can amount to a substantial savings, since a se-
ries of calculations of increasing size are often performed
to extrapolate to the thermodynamic limit. To repre-
sent this process, Fig. 3 displays atomic energies for the
16, 24, and 32 atom δ-doped systems. For our model
system, finite size effects due to confinement and artifi-
cial periodicity are rather small (along the [110] direction
only), as evidenced by the similarity of the dopant energy
profiles. The same integration volume can therefore be
used throughout to obtain the energy differences. The
speedup gained by the energy density approach in each
case is summarized in Table II.

The efficiency gains realized here should be transfer-
able to many systems of practical interest that display
more complicated electronic structures. An important
class of problems involves charge reordering in the vicin-
ity of a defect. Integrating the energy density over suc-
cessively larger volumes of space which each contain the
defect can provide a useful diagnostic tool in such cases.
If this local energy fails to converge or converges only very
slowly with distance away from the defect, then the ener-
getic effects of the charge reordering are long-ranged, e.g.
the energy is distributed over a large polarization field.
If, however, the convergence is rapid, then the energetic
effects of the charge reordering are truly local and an effi-

8 × 1 × 1 12 × 1 × 1 16 × 1 × 1

doped & bulk 3.5 6.6 8.9
doped only 9.3 16.3 22.0

TABLE II. Speedup at fixed integration volume for various
system sizes (M × 1 × 1 primitive cell tilings).
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ciency gain can be realized by obtaining the energy from
the smallest converged volume. This approach should
even apply to charged defects, provided the energetic ef-
fects of the charge reordering are local in this sense. In
such cases standard corrections such as those by Makov
and Payne23 can be used to remove charge image inter-
action effects from the total energy while the efficiency
gains are retained from the partial integration of the en-
ergy density.

V. COMPARISON TO DFT ENERGY DENSITY

Though Density Functional Theory (DFT) originated
with the mapping of the ground state density onto the
total energy, its use has been extended to include a va-
riety of other physical observables. Since many these
properties represent an approximation beyond the use of
inexact functionals (i.e., their accuracy depends on the
overall physical relevance of the Kohn-Sham system it-
self), their fidelity to the true system must be assessed
via benchmark calculations. The addition of the energy
density to this repertoire should be given the same com-
parison.

Since the DFT total energy must derive from the
many-body Hamiltonian, the transformations found ear-
lier can be used to obtain a DFT energy density. We
will start with the expression for the DFT total energy
as defined in Yu, et al.:5

EDFTtot = T + Vee + VeI + VII (52)

T = −1

2

∑
n

∫
drφ∗nr∇2

rφnr (53)

Vee =
1

2

∫
drdr′ρrv

C
rr′ρr′ +

∫
drρrεXC(ρr,∇rρr)

(54)

VeI =

∫
dr
∑
`

[
ρrV

L
rr`

+
∑
nY

φ∗nrV
NL
Y rr`

P̂Y φnr

]
(55)

VII =
∑
`<m

Z`Zmv
C
`m, (56)

where r & r` are the electronic and ionic coordinates,
φnkr and ρr are the DFT orbitals and density, vC is the
bare Coulomb energy, and V Lrr` and V NLY,rr`

are the local
and non-local parts of the pseudopotential centered on
ion `.

Applying the transformations

∇2
r1 → δrr1∇2

r1 (57)

vCr1r2 →
δrr1 + δrr2

2
vCr1r2 (58)

V L/NLr1r`
→ δrr1 + δrr`

2
V L/NLr1r`

(59)

to Eq. 52, we find expressions for DFT kinetic and poten-
tial energy densities associated with either the electrons

FIG. 4. Atomic energies referenced to respective bulk values
of the 8× 1× 1 doped system. Results for DMC are shown in
red and DFT in black. Ge is at the origin.

or ions:

T er = −1

2

∑
n

φ∗nr∇2
rφnr (60)

V er = ρr

[
1

2

∫
dr′vCrr′ρr′ + εXC(ρr,∇rρr) +

1

2

∑
`

V Lrr`

]

+
1

2

∑
`nY

φ∗nrV
NL
Y rr`

P̂Y φnr (61)

V Ir =
∑
`

δrr`

[
1

2

∑
m 6=`

Z`Zmv
C
`m +

1

2

∫
dr′ρr′V

L
r′r`

+
1

2

∑
nY

∫
dr′φ∗nrV

NL
Y r′r`

P̂Y φnr

]
. (62)

For comparison, the energy density of Yu, et al.5 is

T er = −1

2

∑
n

φ∗nr∇2
rφnr (63)

V er = ρr

[
1

2

∫
dr′vCrr′ρr′ + εXC(ρr,∇rρr) +

1

2

∑
`

V Lrr`

]
(64)

V Ir =
∑
`

ρLrr`

1

2

∑
m6=`

V Lrr` +
1

2

∫
dr′ρr′V

L
r′r`


+
∑
`

δrr`
∑
nY

∫
dr′φ∗nrV

NL
Y r′r`

P̂Y φnr, (65)

where ρLrr` is the classical charge density corresponding

to the local part of the pseudopotential, ρLrr` ≡ −∇
2V Lrr` .

Here the model potential and density employed by Yu
et al.5 have been removed, as they were introduced for
numerical accuracy only.
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The only distinctions between the two forms, as rep-
resented above, involve the treatment of pseudopoten-
tials. First, the form of Yu et al.5 locates all of the
energy from the non-local part of the pseudopotentials
on the ion cores rather than distributing half of it to
the electrons within the cutoff radius. Second, the por-
tion of the electron-ion energy belonging to ion ` is dis-
tributed according to ρLrr` rather than as a delta function,
though this charge density approaches zero as the local
potential approaches −Z`/|r − r`|. Provided the region
of interest contains one or more atomic volumes, either
definition of the DFT energy density will yeild quanti-
tatively similar results. Thus results obtained from the
VASP24–27 implementation of Eqs. 63, generalized to the
PAW formalism,5,28,29 can be meaningfully compared to
our DMC calculations.

The DFT (PBE30,31) energy density of the doped sys-
tem is shown in Fig. 4 alongside our DMC results. De-
spite the proximity of neighboring particle images in the
transverse direction, test DMC calculations in a larger
108 atom system showed that finite size effects due to
correlation are small. The model potential and den-
sity in the formalism of Yu et al.5 introduces an inde-
pendent reference energy for each atomic species, and
so bulk values of Si or Ge have been subtracted from
each respective atomic energy in the doped system. Both
PBE and DMC agree regarding the range of the energy
disturbance due to Ge and whether atomic energies lie
above or below the corresponding bulk values. However
the magnitude of the departure from bulk differs by as
much as a factor of two. A remaining source of ambigu-
ity in comparing DMC and DFT energy densities is the
non-uniqueness of the terms involving exchange and cor-
relation: − 1

2

∑
n

∫
drφ∗nr∇2

rφnr + ρrεXC(ρr,∇rρr). Al-
though functionals that reproduce the exact energy den-
sity will also produce the exact ground state energy by
default, this requirement represents an additional con-
straint beyond the canonical density and total energy.

VI. CONCLUSION

Consistent with prior studies, we have derived an en-
ergy density operator that provides a description of local
energetics. This operator is well suited for QMC calcu-
lations as it can be implemented in existing codes with
minimal effort and without adding to the computational
cost. For the case of Diffusion Monte Carlo, a simple
asymmetric form of the kinetic energy density operator
can be used as long as the wavefunction is real, or, if
twist averaging, the k-point set has inversion symmetry.
We have also established that standard DMC mixed esti-
mates of subsystem energies should be preferred over ex-
trapolated estimates when calculating total energy differ-
ences, despite the non-commutativity between total and
subsystem energy operators.

We have demonstrated that the energy density can be
used to improve the efficiency of energy difference cal-

culations. The speedup realized in a given calculation
is related to the degree of cancellation between total en-
ergies. Though the gains will depend on the physical
system, we anticipate that the energy density approach
will be worthwhile for many important systems, such as
surfaces, interfaces, and point defects.
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Appendix A: Alternative Derivation of the Energy
Density Operator

The energy density operator Êr can be derived by start-
ing with a general form and imposing successive physical
conditions. Specifically, Êr must integrate to the Hamil-
tonian (

∫
drÊr = Ĥ) and will be constrained to share its

symmetries. It will also be required to obey an isolation
principle: neutral atoms far away from each other do not
exchange energy. As the energy density operator is not
unique, one condition will involve a conscious choice of
representation and hence is a matter of taste or conve-
nience.

The real space form of the energy density operator can
be written as

Êr =
∑
i

ai(r,R)ĥi +
∑
i<j

bij(r,R)v̂ij , (A1)

where ĥi is the single particle Hamiltonian of particle i
and v̂ij is the potential between particles i and j. The

functions airR and bijrR distribute the energy from each
term over space (r), possibly depending on all particle
coordinates (R). In all expressions, i labels a particle,
while the composite index ij labels a bond, and so ij
and ji are interchangeable.

The non-commutativity of ĥi and airR is ignored, since
a more general representation only leads to an arbi-

trary linear combination of T̂L
2+R2

r , T̂LRr , T̂modr , or other
equivalent forms adding unnecessary clutter to what fol-

lows. As before, we select T̂R
2

r for practical reasons,
which Eq. A1 reflects.
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The terms already present in a Hamiltonian do not
change form when a new particle is added to the sys-
tem. In particular, they do not depend on the position
or momentum of the new particle. The final form of
the Hamiltonian also does not depend on the order in
which particles are added. Imposing these invariances
on the energy density constrains the distribution func-
tions to depend only on the particle coordinates of the
corresponding Hamiltonian terms:

ai(r,R) = ai(r, ri) bij(r,R) = bij(r, ri, rj). (A2)

Next, we specify where the energy is to be stored.
The energy can be stored in fields of various kinds, such
as bijrrirj = ∇rvrri∇rvrrj/vrirj , as we have seen before.
However, we will view the energy as being carried by the
particles:

ai(r,R) = ai(ri)δrri (A3)

bij(r,R) = biji (ri, rj)δrri + bijj (ri, rj)δrrj . (A4)

The physical system is invariant under the translation
or inversion of all particles (ri → ri + ∆r and ri → −ri),
so

ai(r,R) = aiδrri (A5)

bij(r,R) = biji (ri − rj)δrri + bijj (ri − rj)δrrj (A6)

biji/j(−r) = biji/j(r). (A7)

Since the energy density merely redistributes energy,
we have the normalization condition

∫
drÊr = Ĥ, which

further requires

ai = 1 biji (rij) + bijj (rij) = 1. (A8)

The energy density operator must also be invariant
under the exchange of identical particles (ri ↔ rj):

biji (rij) = bijj (rij) =
1

2
(identical particles). (A9)

To establish the same partitioning of interaction energy
among disparate particles, consider a system comprised
of a nucleus n of charge Z and Z+1 electrons. Integrating
the pair potential energy density operator over a volume
containing only electron Z + 1,

v̂Z+1 =

∫
ΩZ+1

drV̂ pairr (A10)

=
1

2

Z∑
i=1

1

|rZ+1 − ri|
− Zbene (rZ+1 − rn)

|rZ+1 − rn|
. (A11)

Since the unknown function bene depends only on the po-
sitions of the nucleus and electron Z + 1, we are free to
consider any configuration of the first Z electrons. By
moving them arbitrarily close to the nucleus, the inter-
action energy between the electron and the compressed
neutral atom must vanish:

v̂Z+1 →
Z

|rZ+1 − rn|

(
1

2
− bene (rZ+1 − rn)

)
= 0. (A12)

This can only be satisfied if bene (rZ+1 − rn) = 1/2 and
thus benn (rZ+1 − rn) = 1/2 also.

Though the configuration used to establish this point is
highly improbable in nature, any deviation from an equal
partitioning of energy has real physical consequences.
If the electron and atom were a large distance apart
(far enough so that dispersive forces are negligible, but
Coulomb forces are not), the same conclusion is reached
since the atomic size is small compared to the separa-
tion distance. The equal partitioning guarantees that the
energy shared with the distant electron by the electron
cloud and nucleus exactly cancel. If this were not the
case, the energy attributed to a neutral atom far from a
neutral chunk of matter would vary like 1/r, causing a
long ranged energy transfer between effectively isolated
systems.

Since any pairing of electrons and/or protons (e − e,
e−p, or p−p) results in each particle carrying 1/2 of the
interaction energy, it immediately follows that a pair of
composite particles (such as nuclei with differing charge)
also evenly split interaction energy. This line of reasoning
also extends to coarse grained models of atomic interac-
tions, such as helium atoms interacting via an approxi-
mate pair potential. Thus if particles carry the energy,
the energy density operator must have the form

Êr =
∑
i

δrri ĥi + ĥiδrri
2

+
∑
i<j

δrri + δrrj
2

v̂ij , (A13)

which has been symmetrized to restore hermiticity.

Appendix B: The Ewald Potential Energy Density

To compute the energy density according to Eq.
46, the energy carried by a single particle must be
determined. In the standard breakup of the Ewald
potential10,32 into long and short ranged parts, it is not
immediately obvious how constant terms in the potential
energy should be distributed among particles. Beginning
with the general description of energy density in an in-
finite Ewald system (Eq. 47), we determine the correct
partitioning.

The single particle energy is isolated by integrating the
energy density around particle i in an arbitrary cell:

vEwaldi =
1

2

∑
j 6=i

vij(rij) +
1

2

∑
L 6=0

∑
j

vij(rij + L). (B1)

The set of vectors {L} mark the centers of the infinite
cell array. Dividing each Ewald pair potential into long
and short ranged components,∑

L

vij(r + L) = vsij(r) + v`ij(r), (B2)

and denoting corresponding Fourier transforms as ṽsij(k)
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and ṽ`ij(k), we find the desired single particle energy:

vEwaldi =
1

2

∑
j 6=i

[
vsij(rij)− ṽsij0 +

∑
0≤|k|≤kc

eikrij ṽ`ijk

]
+

1

2

[
− ṽsii0 − v`ii(0) +

∑
0≤|k|≤kc

ṽ`iik

]
. (B3)

The standard expression for the total Ewald potential
is recovered by summing over all particles. Similarly,
the Ewald potential energy density is the sum of single
particle densities:

V̂ Ewaldr =
∑
i

δrriv
Ewald
i . (B4)
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