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We identify an important issue in defect studies using hybrid functionals. When modeling a defect,
which is supposedly an isolated system, with a finite-size supercell, the inclusion of a fraction of the
Hartree-Fock interaction results in a strong cell-size dependence and an extremely slow convergence
of the calculated defect properties, especially for shallow defect. These behaviors may give rise
to a number of errors in calculated defect properties, including the deepening of transition level
and over-stabilization of shallow defects. Numerical results from hybrid functional calculations for
a diverse array of systems can be understood within the Hartree-Fock theory of an electron-gas
model, indicating that the long-range exchange is the main cause for the errors in the calculated
defect properties within hybrid functionals.
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I. INTRODUCTION

Density-functional theory1,2 with a local or semi-local
exchange-correlation functional, such as the local den-
sity approximation (LDA)3 or the generalized gradient
approximation (GGA),4 has been successfully applied to
predict atomic structures and ground-state properties of
condensed matter systems, including many defect-related
properties using the supercell approach.5 However, for
many semiconductors and insulators the band gap is un-
derestimated and the electronic states tend to be de-
localized.6 This deficiency often leads to a large uncer-
tainty in the calculated defect properties, a problem that
has plagued the electronic structure and materials theory
community for decades.
It has been demonstrated that hybrid functionals such

as PBE07 and HSE,8 which incorporate a fraction of the
nonlocal Hartree-Fock (HF) exchange energy, improve
the calculated band gap of a broad range of semicon-
ductors at a much lower computational cost9 compared
with more sophisticated many-body methods, such as the
GW method.10 The improvement of the calculated band
gap, although empirical in nature and highly parameter
and system dependent, has generated significant inter-
est in applying these new functionals to the study of
defects in semiconductors.11–14 Another reason for the
popularity of the hybrid functionals is that some of the
classic defect related problems, for which the LDA and
GGA fails, can now be treated within hybrid functionals,
at least qualitatively. Examples include the Vk center15

and other polaronic defects,16,17 which typically involve
localization of a charge carrier at the defect site.
Even with these successes, one has to be cautious in

interpreting results obtained with hybrid functionals. It
is unclear how a mixing of a fraction of the HF ex-
change is able to correctly and accurately account for
the exchange-correlation energy of a many-electron sys-

tem. Different hybrid schemes may give different results
for a given physical system. Recently, it was reported
that current hybrid functionals do not give reliable band
gaps, especially for nanostructures and surfaces.18

In this paper, we show that the long-range nature of
the HF exchange leads to consequences that have not
been fully understood. The effect could become partic-
ularly serious when applied to isolated systems, such as
defects, modeled by the supercell approach. We show
that defect transition levels calculated using hybrid func-
tionals such as PBE0 are very sensitive to the size of the
supercell and the convergence is extremely slow. As a
result, many known shallow defects would be classified
as deep centers in practical calculations with the PBE0
functional. In addition, the thermodynamic properties of
defects, such as the shallow-to-deep transition, could also
be affected because of the over-stabilization of the shal-
low state. We show that all these problems arise from
the long-range nature of the HF exchange interaction.
This raises a serious question regarding the applicabil-
ity of some hybrid functionals (such as PBE0) for defect
calculations.

II. CALCULATIONAL METHODS

Our calculations were carried out using the VASP
package19 with projector augmented wave method.20 For
PBE0 calculations, we used mixing parameter α = 0.25,
while we used α = 0.375 and screening parameter µ =
0.2 Å−1 for HSE calculations. We used a large HF mix-
ing parameter in the HSE calculations so that the two
functionals (HSE and PBE0) give a similar band gap for
GaAs. Wave functions were expanded in a plane-wave
basis with an energy cutoff of 277, 318, and 306 eV for
GaAs, Si, and ZnO, respectively. We used the experi-
mental lattice parameters for all systems studied. For
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defect systems, atomic positions were fully relaxed until
the residual forces were less than 0.03 eV/Å. Γ-point is
used for the Brillouin zone integration. The singularity
term in the HF-exchange energy is calculated using the
method described in Ref. 21.

III. RESULTS: EFFECT ON TRANSITION

LEVELS

Figure 1 shows the defect transition level ǫ(+/0) [us-
ing the conduction band minimum (CBM) as a reference]
of two textbook examples of shallow donors, namely,
GaAs:SiGa and Si:PSi, as a function of the supercell
size. The transition levels are calculated using the well-

esbalished technique:22 ǫ(q/q′) = (Eq
tot −Eq′

tot)/(q
′ − q)−

ECBM. For comparison, results obtained using the PBE
functional4 are also shown. It can be seen that the ǫ(+/0)
transition level calculated using the PBE0 functional are
very sensitive to the supercell size, and the convergence
is extremely slow. This is in sharp contrast to the PBE
results, which quickly converge with a reasonably large
(e.g., 100-atom) supercell. Because the PBE0 results
do not converge with any practically affordable super-
cell size, the ǫ(+/0) levels for such shallow defects would
always appear to be deep in practical calculations us-
ing PBE0. For example, with a supercell size of 250
atoms, the ǫ(+/0) level calculated using the PBE0 func-
tional is 0.30 eV for GaAs:SiGa, and 0.32 eV for Si:PSi,
to be compared with the experimental values of 6 meV
for GaAs:SiGa and 45 meV for Si:PSi.

23,24 By inspect-
ing Fig. 1, one may consider an extrapolation scheme
to obtain a converged result. An appropriate extrapo-
lation, however, requires an analytical understanding of
the scaling of the PBE0 results, as we will discuss later.
It should be mentioned that there are two corrections,

i.e., the electrostatic correction and the alignment of the
potential, involved in the calculations of charged systems
using the supercell technique. Both of these corrections
will not affect the main results presented here. This is be-
cause these corrections exist in calculations with any en-
ergy functional, and our PBE results converge to within
0.01 eV with a 128-atom cell as it is shown in Fig. 1.

IV. RESULTS: EFFECT ON STABILITY

The error demonstrated in Fig. 1 could lead to serious
consequences in the study of other defect-related physical
processes using hybrid functionals. For example, many
defects exist in two different configurations (one stable
and the other metastable). Often one of these config-
urations has a shallow transition level, while the other
exhibits a deep level. The transition between these two
states could determine the dopability and doping limit
of a semiconductor.25 A classic example is the DX center
in III-V semiconductors, where a donor atom (e.g., Si on
a Ga site in GaAs) could undergo a displacement from
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FIG. 1: (Color online) The defect transition level ǫ(+/0) of
GaAs:SiGa (red solid) and Si:PSi (blue dotted) as a function
of the supercell size. Open and filled dots show the PBE and
PBE0 results, respectively. Energy is referenced to the CBM
level.

the substitutional lattice site (a shallow-donor state) to
a neighboring interstitial site (a deep-donor state).26–28

Another example, which has recently attracted signifi-
cant attention,16,29,30 is the so-called small-polaron de-
fects in wide-band-gap semiconductors, such as a Li atom
on a Zn site in ZnO and, similarly, a Mg atom on a
Ga site in GaN. To describe such systems, not only the
shallow transition levels, but also the relative thermody-
namic stability of the two states, need to be correctly
predicted. However, as we show below, shallow defects
can be unphysically over-stabilized in hybrid functional
calculations.

Figure 2 shows the schematic energy diagrams and
structures of the negatively charged SiGa in GaAs, which
has two states denoted by Si−1

d and Si−1
DX, as shown in

Figs. 2(a) and 2(b), respectively. The Si−1
d is four-fold

coordinated with a Td symmetry, while the Si−1
DX is dis-

placed to an interstitial site (C3v symmetry) by breaking
one of the Si-As bonds, leaving the Si dangling bond
(DB) level deep inside the band gap. The bond break-
ing tends to increase the total energy of the system, but
the Si−1

DX state is stabilized by the lowering of the dou-
bly occupied DB level. The relative stability of the two
states is determined by the amount of the lowering of
the DB level. Experimentally, the Si−1

d state is known to
be a hydrogenic defect, with a shallow transition level of
about 6 meV.23 Therefore, in this state the doubly occu-
pied defect level should be located nearly at the CBM,
which is indeed the case using the LDA or GGA func-
tional. However, the use of the PBE0 functional results
in defect states dropped deep into the band gap (shown
in Fig. 2), which is apparently at odds with experiment.
With such an unphysical lowering of the hydrogenic de-
fect state (about −0.29 eV calculated using a 250-atom
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FIG. 2: (Color online) Atomic structure and schematic energy
level of (a) Si−1

d and (b) Si−1
DX in GaAs. Green and violet

balls stand for Si and As atoms. In hybrid functional (PBE0)
calculations, the Si−1

d level is significantly lowered (−0.29 eV
calculated using a 250-atom supercell) as represented by the
red arrow.

supercell), one cannot expect an appropriate description
on the thermodynamic stability of shallow defects and
the transition between the shallow and deep states.

V. ORIGIN OF THE ISSUES

Since hybrid functionals have been shown to give im-
proved results for many systems compared with the LDA
or GGA, the results shown above are rather intriguing
and it is imperative to understand the origin of these
problems with an aim to eventually correct them. To
this end, we find it is beneficial to investigate the bulk
energy gap Eg first. Here we define Eg = ECBM−EVBM,

where EVBM = E0
tot−E+1

tot , ECBM = E−1
tot−E0

tot, and Eq
tot

is the total energy of a supercell of a pure system carry-
ing a charge q. Within the LDA or GGA, the additional
charge q has little effect on the band edge levels for a rea-
sonably large supercell (e.g., 100-atom cell). Therefore,
as shown in Fig. 3(a), even using a relatively small super-
cell, Eg calculated with the PBE functional approaches
the Kohn-Sham (KS) band gap, ǫg = ǫCBM−ǫVBM, where
ǫCBM and ǫVBM are the KS eigenvalues of the CBM and
VBM, respectively. However, this is not the case at all for
results calculated using hybrid functionals such as PBE0.
Figure 3(b) shows the calculated Eg for bulk GaAs

as a function of cell size using the PBE0 functional.
Again, the strong size dependence and slow convergence
are clearly seen, suggesting that these issues arise from
the intrinsic properties of the hybrid functionals. We
note that similar behavior has been observed in the pre-
vious study on α-quartz.31 The underestimation of Eg

can be understood by inspecting the one-electron levels
involved in calculating Eg, as shown in Fig. 4. An intrigu-
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FIG. 3: The calculated Eg of GaAs as a function of supercell
size using the PBE (a) and PBE0 (b) functionals. The dashed
lines indicates the Kohn-Sham band gap ǫg.

ing finding is that, upon introducing an extra electron,
the occupied CBM state (labeled as spin-up in the figure)
shifts downward by 0.75 eV relative to the original CBM
state (calculated with 128-atom supercell). Clearly, even
without a defect, the addition of an electron (or hole)
in an otherwise perfect crystal already produces a state
deep inside the band gap in a relatively large supercell (in
this case, a 128-atom cell). Results for the shallow donor
GaAs:SiGa (also shown in Fig. 4), an isoelectronic system
to the defect-free (Ga64As64)

−, shows a very similar be-
havior: The occupied (supposedly shallow) donor level is
lower in energy than the unoccupied level by about 0.78
eV. Therefore, it is this unphysical over-binding of the
additional electron (or hole) within PBE0 that is respon-
sible for all of the above described results. It is worth not-
ing that the results for charged, defect-free supercells can
be important on their own because studies of defects such
as the Vk center15 and other self-traps of carriers17,32,33

involve such calculations using supercell techniques.

FIG. 4: One-electron levels of neutral (left) and negatively
charged (middle) 128-atom GaAs supercell without defect and
with the shallow donor GaAs:SiGa (right) calculated using the
PBE0 functional, showing surprisingly large level splittings.

Next, we show that all the issues discussed above are a
direct consequence of the HF exchange potential included
in the PBE0 functional. The wave function of a shallow
defect state is substantially delocalized well beyond the
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size of supercells used in first-principles calculations, and
the defect state forms a band. This, when coupled with
the nonlocal and long-range nature of the HF exchange
potential, results in a significant intra-band exchange en-
ergy for the (supposedly) isolated defect state represented
by a supercell model. It is this intra-band exchange that
is responsible for the splitting between the occupied and
the unoccupied one-electron levels discussed above. Note
that this intra-band exchange shall not be confused with
the self-exchange since within the HF theory, the self-
exchange and self-Coulomb potentials cancel each other
exactly. Of course, other factors, such as correlation and
the difference between up-spin and down-spin wave func-
tions, will also contribute to the energy difference. But
as we will show below, the intra-band exchange is the
major cause for the unphysical results calculated using
the PBE0 functional.
We now focus on the additional electron at the CBM.

The behavior of this additional electron resembles a fully
spin-polarized uniform electron gas (EG), i.e., all up-spin
states are occupied whereas all down-spin states are un-
occupied. Within the uniform EG model, the exact HF
exchange energy is known. If we neglect the subtle differ-
ence between the wave functions of the occupied and that
of the unoccupied state, within the Hartree-Fock theory,
the one-electron energy difference between the unoccu-
pied down-spin state and the occupied up-spin state is

∆ǫCBM = ǫ↓CBM − ǫ↑CBM = α
2kF
π

F (
k

kF
), (1)

where k is the wave vector, kF is the Fermi wave vec-
tor, α is the scaling parameter of the HF potential
used in the hybrid functional (α = 0.25 in PBE0), and

F (y) = 1−y2

4y
ln | 1+y

1−y
|. At the Γ point, ∆ǫCBM = α 2kF

π
=

α 41.9
rs

(eV), where rs (in a.u.) is defined by considering

only the additional electron (or hole) and is related to

the volume of the supercell via rs = (3Vcell

4π
)

1

3 .
Figure 5 compares the calculated results using hybrid

functionals and the result from the EG model for a range
of difference systems including Si, GaAs, and ZnO. Let
us focus on the PBE0 results (filled symbols) first. It
is clear that PBE0 results follow closely the scaling be-
havior of the EG model discussed above, regardless of if
the system is an ideal system with an additional electron
or a defective system. Considering the diverse systems
that we studied, the quantitative agreement between the
PBE0 and EG model is rather impressive. The aver-
age difference between the PBE0 result and that from
the EG model is about 0.15 eV, which indicates that the
long-range HF exchange is indeed the root of the various
issues discussed above. The cell-size sensitivity and slow
convergence are originated from the scaling behavior of
the intra-band exchange energy, which scales as 1/rs or

(1/Natom)
1

3 and converges slowly with respect to the cell
size. Since the computational cost of hybrid functional
calculations (e.g., PBE0) scales roughly as O(N4), it is
extremely difficult to carry out a converged calculation
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FIG. 5: (Color online) Comparison between results calculated
using EG model (solid lines) and PBE0 and HSE functional
(symbols) for a range of difference systems including GaAs, Si,
and ZnO with respect to rs. The SiGa and PSi in figure stand
for shallow donors Si in GaAs and P in Si, respectively. The
HSE results with different mixing and screening parameters
are shown in (b) as discussed in the text.

using the PBE0 functional within current computational
capabilities. As demonstrated earlier, unconverged cal-
culations will lead to artificially deep defect transition
levels and over-stabilize shallow defects.

Ideally, defects in semiconductors are isolated systems.
When they are modeled using the supercell technique,
the long-range exchange interaction included in the hy-
brid functionals poses a serious problem since this ficti-
tious interaction converges extremely slowly with respect
to the cell-size, and it is nearly impossible to achieve a
converged result within current computational capabili-
ties. Screened hybrid functionals such as HSE may allevi-
ate this problem if the screening length is appropriately
chosen. However, one still has to be cautious in inter-
preting the results obtained from these functionals with
adjustable parameters.

Within the HSE functional, an error function is in-
troduced to separate out the long-range part of the HF
potential, which is then replaced by the corresponding
PBE component. This scheme was originally proposed
to improve the efficiency of hybrid functional based cal-
culations for periodic systems. A direct consequence of
the removal of the long-range exchange is the reduction in
the intra-band exchange energy and a faster convergence
with respect to the supercell size for defect-related calcu-
lation. Fig. 5 also shows the results calculated using the
HSE functional (open symbols), which indeed show that
∆ǫCBM and ∆ǫD are reduced significantly compared with
PBE0. Since we use a screening parameter of 0.2 Å−1,
the Coulomb potential is effectively cut off at r ∼10 Å−1

(∼19 a.u.). Therefore, the HSE results should converge
at around rs = 19 a.u., as shown in Fig. 5(a).

It would be interesting to investigate the convergence
behavior of the HSE functional with respect to the
screening parameters. Figure 5(b) compares the results
calculated with the PBE0 functional and two versions of
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HSE functional with different mixing and screening pa-
rameters. The parameters are chosen such that all three
functionals give a similar band gap for a given system. It
is clear that HSE functional with a larger µ = 0.32 Å−1

converges faster.
Since deep centers are usually more localized and one

would expect that the results for deep centers converges
faster compared with shallow defects. We have tested
supercell size dependence for deep defects, e.g., the (0/−)
transition level of Cr in GaAs, which is about 0.8 eV from
VBM in experiment. The calculated (0/−) level using
the PBE0 functional is 1.01 eV with a 64-atom supercell,
and 0.95 eV with a 250-atom cell. The size dependence
is indeed smaller than those for shallow defects as shown
in Fig. 1.
Our results imply that 1) for shallow defects, the PBE

or a highly screened HSE functional is preferred over
PBE0 functional and 2) the EG model can be used to
extrapolate the PBE0 results calculated with finite cell
size. It seems that using a screened hybrid functional is a
more practical solution for defect calculations. However,
one has to be cautious in choosing the mixing and screen-
ing parameters since different defects might require dif-
ferent screening parameters. In addition, defect systems
are composite systems in which the defect states and the

host states may experience different screening. Whether
or not the ad hoc truncation can yield more reliable result
is still subject to further study.

VI. SUMMARY

We have shown that applying hybrid functionals to de-
fect study using the supercell approach is prone to sys-
tematic errors: (1) The transition levels for hydrogenic
shallow defects can be as deep as several tenths of an eV.
(2) Adding an electron (or a hole) to an otherwise ideal
semiconductor without defects can introduce an unphys-
ically deep defect-like state in the band gap. (3) Shal-
low defects can be significantly over-stabilized. (4) Bulk
band gap can be severely underestimated if evaluated us-
ing total-energy difference and may deviate significantly
from the KS gap.
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