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Fermi liquid theory is the basic paradigm within which we understand the normal behavior of
interacting electron systems, but quantitative values for the parameters that occur in this theory are
currently unknown in many important cases. One such case is the two-dimensional homogeneous
electron gas (2D HEG), which is realized in a wide variety of semiconductor devices. We have
used quantum Monte Carlo (QMC) methods to calculate the Landau interaction functions between
pairs of quasiparticles. We use these to study the Fermi liquid parameters, finding that finite-size
effects represent a serious obstacle to the direct determination of Fermi liquid parameters in QMC
calculations. We have used QMC data in the literature for other properties of the 2D HEG to
assemble a set of “best available” values for the Fermi liquid parameters.

PACS numbers: 73.20.-r, 71.10.Ay, 02.70.Ss

I. INTRODUCTION

Many of the key theoretical developments in condensed
matter physics have been concerned with the exploration
of models that capture important aspects of the behav-
ior of real materials. One of the most fundamental and
useful model systems in the field is the homogeneous elec-

tron gas (HEG).1 The simplicity of the system (a gas of
electrons moving in a uniform, neutralizing background)
is deceptive: the model exhibits a rich range of physics
and remains our basic starting point for understanding
the behavior of charge carriers in metals and semicon-
ductors.
The enormous theoretical challenge that must be over-

come when trying to provide an accurate description of
the HEG is that the electrons are strongly coupled by
their mutual Coulomb repulsion. Nevertheless, many
thermal and transport properties of the HEG can be
described by ignoring electron-electron interactions alto-
gether, resulting in the free-electron-gas model, in which
each electron has its own well-defined energy and momen-
tum. This observation, which predates quantum mechan-
ics, was first explained within a general theoretical frame-
work by Landau through the development of Fermi liq-
uid theory.2 Although the existence of electron-electron
repulsion and hence correlation dramatically changes the
total energy of an electron gas, low-lying excitations have
a nonvanishing overlap with the corresponding excita-
tions of the noninteracting system, in which the single-
particle orbitals are plane-wave momentum eigenstates.
Hence we may associate each excited state of the inter-
acting system with a particular set of quasiparticle mo-
mentum occupation numbers.
Remarkably, although Fermi liquid theory is our ba-

sic paradigm for the normal behavior of the fluid phase
of an electron gas, quantitative values for the parameters

that occur in this theory are essentially unknown. Armed
with knowledge of the Fermi liquid parameters, we would
have a complete parameterization of the low-energy ex-
citations of the fully interacting electron gas. This would
in turn allow nearly all thermodynamic, response, and
transport properties to be determined quantitatively,1

enabling us to understand the precise role that corre-
lation plays in the behavior of the HEG.

In this work we use quantum Monte Carlo (QMC)
calculations3,4 to determine the Fermi liquid parameters
of the two-dimensional (2D) HEG. Specifically, we have
employed the variational Monte Carlo (VMC) and diffu-
sion Monte Carlo (DMC) methods.4 VMC calculations
involve taking the expectation value of a many-electron
Hamiltonian with respect to a trial wave function that
can be of arbitrary complexity. In our work, the trial
wave function was optimized by minimizing first the vari-
ance of the energy,5,6 then the energy expectation value7

with respect to wave-function parameters. In DMC3 we
simulate a process governed by the Schrödinger equation
in imaginary time in order to project out the ground-
state component of an initial wave function. We use the
fixed-node approximation8 to impose fermionic antisym-
metry. All our QMC calculations were performed using
the casino code.9

In Refs. 10 and 11 we presented DMC calculations of
the 2D HEG single-particle energy band E(k), enabling
us to predict the quasiparticle effective mass m∗. In the
present work we use DMC calculations to determine the
Landau interaction functions1 and hence Fermi liquid pa-
rameters. Our approach is similar to that of the pioneer-
ing work of Kwon et al.,12 which was undertaken eighteen
years ago and is, to our knowledge, the only previous at-
tempt to calculate the Fermi liquid parameters directly
using QMC. Kwon et al. were unable to obtain con-
sistent quantitative results, primarily because of the ex-
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tremely small system sizes that they were forced to use at
that time. However, there have been enormous develop-
ments in QMC methodology and computer power in the
last two decades, and the time has come to revisit this
grand-challenge problem. The major causes of computa-
tional expense in this work are (i) the need to overcome
the finite-size errors in the Fermi liquid parameters by
performing calculations at a range of system sizes and
(ii) the fact that even for small numbers of electrons it
is necessary to take the difference of very similar total
energies to obtain the interaction functions. Point (ii)
makes every aspect of this work computationally expen-
sive: not only does each QMC calculation have to be
sufficiently long that the statistical error bars are small
compared with the differences to be resolved, but it must
be ensured that the trial wave function is very highly op-
timized. These calculations were only made possible by
access to the Jaguar machine at Oak Ridge Leadership
Computing Facility.
The rest of this paper is structured as follows. In Sec. II

we give an overview of the relevant aspects of Fermi liquid
theory and describe our computational approach to the
problem. Our results are presented in Sec. III. Finally,
we draw our conclusions in Sec. IV. We use Hartree
atomic units, in which the Dirac constant, the electronic
charge and mass, and 4π times the permittivity of free
space are unity (~ = |e| = me = 4πǫ0 = 1), throughout.

II. EVALUATING THE LANDAU ENERGY

FUNCTIONAL

A. Parameterization of excitation energies

The Landau energy functional1 is a parameterization
of the energies of the ground state and low-lying excited
states of the HEG:

E = E0 +
∑

k,σ

Eσ(k)δNk,σ

+
1

2

∑

(k,σ) 6=(k′,σ′)

fσ,σ′(k,k′)δNk,σδNk′,σ′ , (1)

where δNk,σ is the change to the ground-state quasipar-
ticle occupation number for wavevector k and spin σ, and
E0 is the ground-state energy. Sufficiently close to the
Fermi surface, the energy band Eσ(k) is linear in k and
hence we may write

Eσ(k) = EF +
kF
m∗

(k − kF ), (2)

where EF is the Fermi energy, kF is the Fermi wavevector,
and m∗ is the quasiparticle effective mass. The Landau
interaction function fσ,σ′(k,k′) describes energy contri-
butions arising from pairs of quasiparticles. Close to the
Fermi surface we may neglect the dependence of f on the
magnitudes of the wavevectors and write the Landau in-
teraction functions as fσσ′(θkk′), where θkk′ is the angle

between k and k
′. The lth Fermi liquid parameter of the

paramagnetic HEG is defined as1

F s,a
l =

AN∗
p (0)

4π

∫ 2π

0

[f↑↑(θkk′)± f↑↓(θkk′)] cos(lθ) dθ,

(3)
where A = πr2sN is the area of the simulation cell, rs is
the radius of the circle that contains one electron on av-
erage, N is the number of electrons in the simulation cell,
and N∗

p (0) = m∗/π is the quasiparticle density of states
per unit area at the Fermi surface. The suffixes s and
a (for “symmetric” and “antisymmetric”) correspond to
addition and subtraction in the integrand, respectively.
For a fully ferromagnetic HEG, the lth Fermi liquid pa-
rameter is defined as

Fl =
AN∗

f (0)

2π

∫ 2π

0

f↑↑(θkk′) cos(lθ) dθ, (4)

where the quasiparticle density of states per unit area is
N∗

f (0) = m∗/(2π).

B. Hartree-Fock theory

The total energy of a finite HEG in Hartree-Fock the-
ory can be written as

EHF =
∑

σ

∑

k∈Occσ

k2

2
−1

2

∑

σ

∑

k 6=k′∈Occσ

2π

A|k− k′|+
NvM
2

,

(5)
where vM is the Madelung constant, N is the number of
electrons, A is the area of the simulation cell and Occσ is
the set of occupied states for spin σ. The Hartree-Fock
energy is already in the form of the Landau energy func-
tional and hence within Hartree-Fock theory the energy
band is

Eσ(k) =
k2

2
−

∑

k′∈GSσ

2π

A|k − k′| (6)

for ground-state unoccupied wavevectors, where GSσ is
the set of states occupied in the ground state, and

Eσ(k) =
k2

2
−

∑

k′ 6=k∈GSσ

2π

A|k− k′| (7)

for ground-state occupied wavevectors. It also follows
immediately from Eq. (5) that the Landau interaction
functions in Hartree-Fock theory are

fσσ(k,k
′) = − 2π

A|k− k′|δσ,σ′ . (8)

For excitations close to the Fermi surface, |k| ≈ |k′| ≈
kF , where kF is the Fermi wavevector. Let θkk′ be the an-
gle between k and k

′. Then |k−k
′|2 = 2k2F [1−cos(θkk′)].
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A = πr2sN and, for a paramagnetic HEG, kF =
√
2/rs,

so

Nfσσ′(k,k′) =
−δσσ′

rs
√

1− cos(θkk′)
. (9)

For a ferromagnetic HEG, kF = 2/rs and so

Nf↑↑(k,k
′) =

−1

rs
√

2− 2 cos(θkk′)
. (10)

C. QMC calculations

1. Evaluating the Landau interaction functions

By Eq. (1) we can evaluate the Landau interaction
functions at a discrete set of angles {θi} as

fσσ′(θi) = −[Eσσ′(ki,k
′
i)+E0−E+(ki)−E−(k

′
i)], (11)

where E0 is the ground-state energy, Eσσ′ (ki,k
′
i) is the

total energy of an excited state in which an electron is
promoted from k

′
i near the Fermi surface to ki just above

the Fermi surface, θi is the angle between ki and k
′
i,

and σ and σ′ are the corresponding spins. E+(ki) and
E−(k

′
i) are the total energies of the system with an elec-

tron added to ki and removed from k
′
i, respectively.

2. Finite-size errors

Our QMC calculations were performed for electron
gases in finite cells subject to periodic boundary condi-
tions. The available wavevectors {k} are therefore the re-
ciprocal lattice points of the simulation cell. The use of a
finite cell prevents the description of long-range Coulomb
and correlation effects,13,14 giving rise to finite-size er-
rors in the Fermi liquid parameters. We have calculated
the Landau interaction functions via total-energy differ-
ences in finite cells, used these to evaluate the Fermi liq-
uid parameters, then extrapolated the parameters to the
thermodynamic limit, where they should become inde-
pendent of the choice of simulation cell and the precise
excitations made to determine the interaction functions.

3. Simulation cell

In our calculations we have used square simulation cells
with simulation-cell Bloch vector15,16 ks = 0. There
exist quantities such as the ground-state total energy,
pair-correlation function, and static structure factor that
can be twist averaged17 in the conventional sense (i.e.,
one can evaluate estimators for these quantities at dif-
ferent simulation-cell Bloch vectors ks and then average
the results). However, there are other quantities such as
the momentum density, the energy band, and the Lan-
dau interaction functions for which ks determines the

set of wavevectors at which the quantities are defined in
a finite cell, so that by using different ks we may ob-
tain additional points on the quantity as a function of
wavevector. The computational effort required to obtain
excitation energies at different ks is essentially the same
as the computational effort required to obtain excitation
energies by considering completely different excitations.
Since the latter approach provides data that are in some
sense more independent, we concluded that our compu-
tational effort was better invested in studying different
excitations as opposed to changing ks.

The number of electrons in the ground state was chosen
to be a “magic number,” corresponding to a closed-shell
configuration in each case. For ferromagnetic HEGs, our
calculations were performed with N = 29, 57, and 101
electrons in the ground state. For paramagnetic HEGs
our calculations were performed with N = 26, 50, 74,
and 114 electrons in the ground state.

The simulation-cell area was held constant when elec-
trons were added to or removed from the ground-state
configuration. In the case of noninteracting electrons
this gives the energy band (k2/2) and Landau interaction
functions (zero) exactly without finite-size error. (Note
that in the free-electron model there are finite-size errors
due to momentum quantization in the total energy, but
no finite-size errors in the excitation energies.) For inter-
acting electrons, the fact that the density changes when
electrons are added or subtracted may be a source of
finite-size error, but the error involved is certainly much
smaller than the error that would result from allowing
the cell area to change.

4. Trial wave function

We used trial wave functions of Slater-Jastrow-
backflow form.18–20 More detailed information about our
trial wave functions can be found in Ref. 11. In Ref. 10
we argued that our DMC calculations for the 2D HEG
retrieve more than 99% of the correlation energy.

The DMC time steps used in our calculations were
0.04, 0.2, and 0.4 a.u. at rs = 1, 5, and 10, respectively,
for paramagnetic HEGs, and 0.01, 0.2, and 0.4 a.u. at
rs = 1, 5, and 10, respectively, for ferromagnetic HEGs.

At rs = 5 we find the VMC energy variance per elec-
tron to be 1.48 × 10−4 and 2.44 × 10−5 a.u. for para-
magnetic and ferromagnetic HEGs, respectively. Thus
our trial wave functions are considerably more accurate
for ferromagnetic HEGs, in which exchange effects are
dominant. This suggests that it might be advantageous
to use pairing (geminal) orbitals for opposite-spin elec-
trons in paramagnetic HEGs.21 Another possibility for
improving the trial wave function would be to use dif-
ferent Jastrow factors22 and backflow functions for each
shell of plane-wave orbitals. However, given the expense
of our calculations, there is at present little scope for
using more sophisticated wave-function forms.
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III. RESULTS

A. Landau interaction functions

The DMC Landau interaction functions at rs = 1, 5,
and 10 are shown in Figs. 1, 2, and 3, respectively. The
statistical error bars are very much smaller for ferromag-
netic HEGs than for paramagnetic HEGs, reflecting the
relative accuracy of the trial wave functions in the two
cases (see Sec. II C 4). Note that the data points are cor-
related, and so the error bars should be interpreted with
caution. The Hartree-Fock interaction function (i.e., the
exchange interaction: see Sec. II B) is reasonably accu-
rate at large θ, but the parallel-spin interaction function
is pathological as θ → 0 due to the lack of screening.
The differences between the Slater-Jastrow and Slater-

Jastrow-backflow DMC data are significant, confirming
that the former are insufficiently accurate, as argued in
Ref. 12. There is a significant difference between the
Landau interaction functions obtained from DMC calcu-
lations in which a single electron is promoted and cal-
culations in which pairs of electrons are added or pairs
of electrons are removed from the ground-state configu-
ration. Finite-size effects in promotion energies are ex-
pected to be smaller because the density of the HEG
in a finite cell is unchanged by such excitations, unlike
double additions or subtractions. We have used only pro-
motions in our production calculations to determine the
Fermi liquid parameters.

B. Fermi liquid parameters

1. Numerical integration of the Landau interaction

functions to find the Fermi liquid parameters

By Eq. (3), the Fermi liquid parameters divided by the
effective mass m∗ for an N -electron paramagnetic HEG
of density parameter rs can be written as

F s,a
l

m∗
=

r2sN

2π

∫ π

0

[f↑↑(θ)± f↑↓(θ)] cos(lθ) dθ

=
r2s
4

[

a↑↑l ± a↑↓l

]

, (12)

where

aσσ
′

l =
2

π

∫ π

0

Nfσσ′(θ) cos(lθ) dθ (13)

is the lth Fourier component of Nfσσ′(θ). To evaluate
these Fourier components we use Simpson’s rule (inte-
gration of piecewise quadratic interpolants) generalized
for the case of a nonuniform integration grid. The set of
angles {θi} at which the integrand is available does not
generally include the endpoints of the integration region
(0 and π). Where necessary we integrate a straight-line
interpolation of the closest two data points up to the
endpoints of the integration region.
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FIG. 1: (Color online) Landau interaction functions
f
σσ

′(k,k′) for 2D HEGs of density parameter rs = 1, mul-
tiplied by system size N . The parallel- and antiparallel-spin
interaction functions in a paramagnetic HEG are shown in
panels (a) and (b), respectively, while the interaction function
in a fully ferromagnetic HEG is shown in panel (c). All re-
sults were obtained with a Slater-Jastrow-backflow trial wave
function, except where labeled “SJ,” in which case a Slater-
Jastrow wave function was used. The results labeled “++”
were obtained in double-addition calculations, whereas those
labeled “−−” were obtained in double-subtraction calcula-
tions. All other results were obtained by promoting a single
electron, leaving a hole. Note that the data points within each
curve are correlated: for example, the interaction-function
values at a given system size all depend on the DMC esti-
mate of the ground-state energy. For comparison, we show the
Hartree-Fock (HF) “interaction functions” for infinite system
size [Eqs. (9) and (10)].
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FIG. 2: (Color online) As Fig. 1, but for HEGs at rs = 5.

The Fourier coefficients {aσσ′

l } are linear in E0,
E+(ki), E−(k

′
i), and Eσσ′ (ki,k

′
i). We therefore gather

the coefficients of each of these in the expression for aσσ
′

l
[Eqs. (13) and (11)]. Finally, we evaluate the coefficients
of E0, E+(ki), E−(k

′
i), and Eσσ′ (ki,k

′
i) in the expression

for F s,a
l /m∗ using Eq. (12). Since we have independent

DMC estimates of E0, E+(ki), E−(k
′
i), and Eσσ′ (ki,k

′
i),

we can evaluate both the expected Fermi liquid param-
eters divided by effective mass and the accompanying
standard errors.

A systematic integration error arises from the use of
numerical quadrature with a finite set of angles. This
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FIG. 3: (Color online) As Fig. 1, but for HEGs at rs = 10.

integration error is not included in our statistical error
bars. We may place an upper bound on the error by com-
paring the Fermi liquid parameters obtained using (i) the
generalized composite Simpson’s rule and (ii) the gener-

alized composite trapezoidal rule to obtain aσσ
′

l . Results
are given in Table I for HEGs at rs = 5. It is clear that
the integration error is negligible compared with the ran-
dom error for F0/m

∗ and F1/m
∗. For F s,a

2 /m∗ the effect
of the choice of integration rule is more significant, espe-
cially for smaller numbers of electrons, where relatively
few values of θ are available; however the error is still
small compared with the overall results.
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TABLE I: Comparison of the first three Fermi liquid param-
eters (FLPs) in a.u. for a 74-electron paramagnetic HEG at
rs = 5 (F s

0 , F
a

0 , F
s

1 , F
a

1 , F
s

2 , and F a

2 ) and a 57-electron fer-
romagnetic HEG at rs = 5 (F0, F1, and F2), derived from
the Fourier components of the Slater-Jastrow-backflow DMC
Landau interaction functions by numerical integration using
the composite Simpson’s rule and the composite trapezoidal
rule.

FLP over eff. mass Simpson Trapezoidal

F s

0 /m
∗

−1.78(4) −1.78(4)

F a

0 /m
∗ 0.01(1) 0.01(1)

F s

1 /m
∗ 0.18(1) 0.18(1)

F a

1 /m
∗

−0.06(1) −0.06(1)

F s

2 /m
∗

−0.18(1) −0.22(1)

F a

2 /m
∗ 0.12(1) 0.12(1)

F0/m
∗

−1.94(1) −1.94(1)

F1/m
∗

−0.461(2) −0.466(3)

F2/m
∗

−0.170(3) −0.193(3)

The Fermi liquid parameters divided by the effective
mass for a ferromagnetic HEG can be written as

Fl

m∗
=

r2sN

2π

∫ π

0

f↑↑(θ) cos(lθ) dθ =
r2s
4
a↑↑l . (14)

Hence we can evaluate the Fermi liquid parameters di-
vided by the effective mass (with standard errors) for
the ferromagnetic case using the same approach as for
the paramagnetic case.

2. Finite-size extrapolation of the Fermi liquid parameters

We have calculated the Fermi liquid parameters di-
vided by the effective mass at three or more system sizes
for each density and magnetic state and we have extrap-
olated the parameters to infinite system size by assuming
the finite-size error falls off as N−1/4. This was the scal-
ing found for Fermi liquid properties in Refs. 13 and 14.
The finite-size errors in the Fermi liquid parameters are
determined by long-range correlation effects and we have
therefore used the same system-size scaling for paramag-
netic and ferromagnetic phases. The finite-size extrapo-
lations at rs = 1, 5, and 10 are shown in Figs. 4, 5, and 6,
respectively. The statistical error bars on the Fermi liq-
uid parameters divided by the effective mass are generally
much smaller than the apparent fluctuations as a func-
tion of system size. These fluctuations are presumably
finite-size effects arising from the discrete nature of the
lattice of wavevectors. We have therefore decided not to
weight the residuals by the inverse of the error bars when
performing the extrapolation to infinite system size. The
quoted error bars on the extrapolated Fermi liquid pa-
rameters divided by the effective mass given in Tables II
and III are obtained from an ordinary least-squares fit.
There is no evidence for a systematic deviation of the

Fermi liquid parameters from the fitted curves at small
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FIG. 4: (Color online) Fermi liquid parameters divided by ef-
fective mass, (a) F0/m

∗, (b) F1/m
∗, and (c) F2/m

∗, against
system size for paramagnetic HEGs (both symmetric and an-
tisymmetric parameters) and ferromagnetic HEGs of density
parameter rs = 1.

system sizes beyond the “noise” that obviously affects
all the data points shown in Figs. 4, 5, and 6. We have
therefore included all the data shown in these figures in
our extrapolation to infinite system size.

We have attempted to check the exponent used for
finite-size extrapolation of our Fermi liquid parameters
by simultaneously fitting the functions

Fi(N) = ci + aiN
γ (15)
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FIG. 5: (Color online) As Fig. 4 but for HEGs of density
parameter rs = 5.

to all our DMC data using a χ2 fit. The values of the
parameters ci and ai differed for each Fermi liquid pa-
rameter at each density, while the exponent γ was con-
strained to be the same in all cases. We find the optimal
exponent to be γ = −0.24(10), which is superficially con-
sistent with the exponent γ = −0.25 determined theoret-
ically by Holzmann et al.13 However, this is certainly not
a conclusive numerical determination of the exponent γ.
The χ2 value per data point with the optimal exponent
of γ = −0.24 is 6.88. The fact that this is much greater
than 1 indicates that the fit is far from perfect. The main
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FIG. 6: (Color online) As Fig. 4 but for HEGs of density
parameter rs = 10.

reason is the finite-size “noise” due to shell-filling effects,
which is not included in the statistical error bars on the
Fermi liquid parameters over effective mass. (The error
bars only account for the random noise inherent in the
QMC calculation.) If, instead of performing a χ2 fit, one
performs a simple least-squares fit (i.e., each data point
is weighted equally rather than by the squared recipro-
cal of the nominal error bar), one finds that the optimal
exponent is γ = −1(2). Alternatively, if one performs a
χ2 fit with the exponent fixed at γ = −1, the resulting
χ2 value is 7.26 per data point, which is only slightly
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larger than the χ2 obtained with the “optimal” value of
γ = −0.24.
In summary, we do not believe that we can mean-

ingfully determine the finite-size scaling exponent γ nu-
merically, but our results are consistent with the value
γ = −0.25 determined theoretically by Holzmann et al.

We have therefore used this value in our analysis.

3. DMC results for the Fermi liquid parameters

Our results for the first three Fermi liquid parame-
ters (symmetric and antisymmetric) of the paramagnetic
HEG divided by the effective mass are given in Table II,
and the analogous results for a ferromagnetic HEG are
given in Table III.

C. Relationships between the Fermi liquid

parameters and other accessible quantities

1. Quasiparticle effective mass

By Eq. (2), the quasiparticle effective mass is

m∗ =
kF

(dE/dk)kF

. (16)

However, by Galilean invariance,1 the Fermi liquid pa-
rameter F s

1 is related to the effective mass of the param-
agnetic HEG via m∗ = 1+F s

1 , and, for the ferromagnetic
HEG, m∗ = 1 + F1. Hence

m∗ =
1

1− F s
1 /m

∗
, (17)

for paramagnetic HEGs and

m∗ =
1

1− F1/m∗
, (18)

for ferromagnetic HEGs, so we can immediately evaluate
the effective mass using the results in Tables II and III.
In order to test the validity of our results, we compare

the effective masses obtained using Eqs. (17) and (18)
with the effective masses extracted directly from the en-
ergy bands (reported in Ref. 11) in Table IV. The two
measures of the effective mass disagree by a statistically
significant margin in half the cases. The enormous un-
certainty in the finite-size extrapolation of the Fermi liq-
uid parameters is the most likely reason for the disagree-
ment. Direct calculation of the effective mass using a fit
to the energy band together with Eq. (16) is likely to be
more reliable, and we therefore suggest that the values
of F a,s

l /m∗ given in Tables II and III be multiplied by
the effective mass m∗ reported in Ref. 11 to obtain the
Fermi liquid parameters.

2. Isothermal compressibility

The isothermal compressibility κ∗ of the interacting
2D HEG at zero temperature satisfies

κ

κ∗
=

r4s
4(1 + ζ2)

[

∂2

∂r2s
− 1

rs

∂

∂rs

]

E(rs, ζ), (19)

where E(rs, ζ) is the total energy per electron as a func-
tion of density parameter rs and spin polarization ζ, and
κ is the isothermal compressibility of the noninteracting
system.1

A parameterization of the correlation energy per elec-
tron in paramagnetic 2D electron gases is given in Ref.
23, so that we may evaluate κ/κ∗ directly using Eq. (19).
We refer to this as the total-energy approach.
Within Fermi liquid theory we have1

κ

κ∗
=

1

m∗
+

F s
0

m∗
, (20)

for a paramagnetic HEG and

κ

κ∗
=

1

m∗
+

F0

m∗
, (21)

for a ferromagnetic HEG, giving us a second approach for
calculating the isothermal compressibility, which we refer
to as the Fermi-liquid approach. The value of F s

0 /m
∗ is

taken from Table II, while the value of m∗ is taken from
Ref. 11.
A comparison of the isothermal compressibilities ob-

tained using these two different approaches is given in
Table V. Unfortunately the results are quite different.
We verified that the compressibility ratios evaluated us-
ing the total-energy approach with two different parame-
terizations of the correlation energy23,24 agree to at least
three significant figures. We therefore believe that the
isothermal compressibilities obtained from fits to ground-
state DMC energy calculations are reliable.
The values of F s

0 /m
∗ implied by the ground-state total-

energy results of Ref. 23 together with the effective-mass
data reported in Ref. 11 are F s

0 /m
∗ = κ/κ∗ − 1/m∗ =

−0.523(2), −2.77(2), and −6.17(4) at rs = 1, 5, and 10,
respectively. These are relatively close to the values of
F s
0 /m

∗ obtained at finite system sizes (see Figs. 4, 5, and
6).
The analogous results for a ferromagnetic HEG are

shown in Table VI. Again we see a significant difference
between the compressibilities obtained directly from the
total energy and from the Fermi liquid parameters.

3. Isothermal spin susceptibility

The isothermal spin susceptibility χ∗ of a paramag-
netic HEG at zero temperature satisfies1

χ

χ∗
= r2s

(

∂2E

∂ζ2

)

ζ=0

, (22)
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TABLE II: Fermi liquid parameters over effective mass in a.u. for the paramagnetic 2D HEG, extrapolated to the thermodynamic
limit.

rs F s

0 /m
∗ F a

0 /m
∗ F s

1 /m
∗ F a

1 /m
∗ F s

2 /m
∗ F a

2 /m
∗

1 −0.2(2) −0.17(8) −0.18(3) −0.18(4) −0.102(5) 0.00(2)

5 0.7(8) 2.0(7) −0.03(2) −0.17(7) −0.2(1) 0.1(1)

10 −1(1) 3.1(7) −0.1(3) −0.3(1) −0.1(5) 0.1(4)

TABLE III: Fermi liquid parameters over effective mass in
a.u. for the ferromagnetic 2D HEG, extrapolated to the ther-
modynamic limit.

rs F0/m
∗ F1/m

∗ F2/m
∗

1 −0.50(4) −0.22(3) −0.14(3)

5 −1.5(2) −0.61(6) −0.13(6)

10 −1.8(3) −1.03(3) 0.08(8)

TABLE IV: Quasiparticle effective masses in a.u. for different
density parameters rs and spin-polarization values ζ, obtained
directly from the energy band11 and from the F s

1 or F1 Fermi
liquid parameter [Eqs. (17) and (18)].

Effective mass m∗

rs ζ
Ref. 11 Eqs. (17) and (18)

1 0 0.947(3) 0.85(2)

5 0 0.97(3) 0.97(2)

10 0 0.85(6) 0.9(2)

1 1 0.841(3) 0.82(2)

5 1 0.73(2) 0.62(2)

10 1 0.67(4) 0.493(7)

where χ is the (Pauli) spin susceptibility of a free electron
gas. Attaccalite et al.24 have reported a parameterization
of the correlation energy obtained in QMC calculations
as a function of both density parameter rs and spin po-
larization ζ. Hence we can use Eq. (22) to evaluate χ/χ∗

using the total-energy approach.
Within Fermi liquid theory the isothermal spin suscep-

tibility χ∗ of an interacting electron system satisfies1

χ

χ∗
=

1

m∗
+

F a
0

m∗
. (23)

The value of F a
0 /m

∗ is taken from Table II, while the
value of m∗ is taken from Ref. 11.
We compare the isothermal spin susceptibilities ob-

tained using these two approaches in Table V. The re-
sults obtained from a fit to the ground-state energy as a
function of density parameter and spin polarization are

TABLE V: Modification to the isothermal compressibility and
spin susceptibility of a paramagnetic 2D HEG due to electron
interactions as calculated (i) from Eqs. (19) and (22) together
with parameterizations of the total energy per particle23,24

and (ii) from Eqs. (20) and (23) together with the present
calculation of the Fermi liquid properties.

Compress. ratio κ/κ∗ Spin-suscept. ratio χ/χ∗

rs
Tot. en. ap. Fermi liq. ap. Tot. en. ap. Fermi liq. ap.

1 0.533 0.9(2) 0.691 0.89(8)

5 −1.735 1.7(8) 0.296 3.0(7)

10 −4.989 0.2(2) 0.153 4.3(7)

TABLE VI: Modification to the isothermal compressibility of
a ferromagnetic 2D HEG due to electron interactions as cal-
culated (i) from Eqs. (19) together with a parameterization of
the total energy per particle24 and (ii) from Eqs. (21) together
with the present calculation of the Fermi liquid properties.

Compress. ratio κ/κ∗

rs
Tot. en. ap. Fermi liq. ap.

1 0.680 0.69(4)

5 −0.636 −0.1(2)

10 −2.347 −0.3(3)

quite different to the results obtained using our Fermi
liquid parameters.

The values of F a
0 /m

∗ implied by the ground-state
total-energy results of Ref. 24 together with the effective-
mass data reported in Ref. 11 are F a

0 /m
∗ = χ/χ∗ −

1/m∗ = −0.365(2), −0.73(2), and −1.02(4) at rs = 1,
5, and 10, respectively. These are relatively close to the
results obtained at finite system size shown in Figs. 4, 5,
and 6. The finite-size extrapolation appears to move the
Fermi liquid parameters away from the values suggested
by the spin susceptibility.

Both the isothermal compressibility and spin suscep-
tibility results show that we are not able to extrapolate
the Fermi liquid parameters to the thermodynamic limit
with quantitative accuracy. There is no clear numerical
evidence to support the N−1/4 scaling, and in most cases
any systematic finite-size error appears to be swamped by
oscillations due to shell-filling effects in the Fermi liquid
parameters as a function of system size.



10

D. Summary of the “best available” Fermi liquid

parameters

In Tables VII and VIII we summarize the Fermi liq-
uid parameters determined from QMC results reported in
Refs. 11,23,24. The values of F s

1 and F1 are determined
using the effective masses reported in Ref. 11, the values
of F s

0 are determined using the effective masses of Ref.
11 together with the parameterization of the correlation
energy given in Ref. 23, and the values of F0 and F a

0 are
determined using the effective masses together with the
parameterization of the correlation energy given in Ref.
24.

IV. CONCLUSIONS

We have used QMCmethods to calculate the Fermi liq-
uid parameters of the 2D HEG. However, the results we
have obtained are inconsistent with more direct evalua-
tions of the isothermal compressibility and spin suscepti-
bility. Determining the Fermi liquid parameters therefore
remains a grand-challenge problem due to the enormous
difficulty in extrapolating the QMC data to the ther-
modynamic limit. Nevertheless, we have been able to
describe the difficulties of determining the Fermi liquid
parameters using QMC techniques, and we have assem-
bled a set of “best available” values of some of the pa-
rameters. Our work demonstrates considerable progress
in determining accurate values for the Fermi liquid pa-
rameters of the 2D HEG. Although the quasiparticle
effective masses deduced from our determination of the
Fermi liquid parameters are only in approximate agree-
ment with the values obtained directly from the energy
band,11 neither method shows mass enhancement at low
densities.
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TABLE VII: Best available Fermi liquid parameters of the paramagnetic 2D HEG as inferred from QMC results in the literature
(see text).

rs F s

0 F a

0 F s

1

1 −0.495(2) −0.346(2) −0.053(3)

5 −2.68(5) −0.713(9) −0.03(3)

10 −5.2(3) −0.870(9) −0.15(6)
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TABLE VIII: Best available Fermi liquid parameters of the
ferromagnetic 2D HEG as inferred from QMC results in the
literature (see text).

rs F0 F1

1 −0.428(2) −0.159(3)

5 −1.46(1) −0.27(2)

10 −2.57(9) −0.33(4)
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