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Abstract
It is well-known that one signature of the three-dimensional electron topological insulator is the

Witten effect: if the system is coupled to a compact electromagnetic gauge field, a monopole in

the bulk acquires a half-odd-integer polarization charge. In the present work, we propose a corre-

sponding phenomenon for the topological insulator of bosons in 3d protected by particle number

conservation and time-reversal symmetry. We claim that although a monopole inside a topological

insulator of bosons can remain electrically neutral, its statistics are transmuted from bosonic to

fermionic. We demonstrate that this “statistical Witten effect” directly implies that if the surface

of the topological insulator is neither gapless, nor spontaneously breaks the symmetry, it necessarily

supports an intrinsic two-dimensional topological order. Moreover, the surface properties cannot

be fully realized in a purely 2d system. We also confirm that the surface phases of the bosonic topo-

logical insulator proposed by Vishwanath and Senthil (Phys. Rev. X 3, 011016 (2013)) provide a

consistent termination of a bulk exhibiting the statistical Witten effect. In a forthcoming paper, we

will provide an explicit field-theoretic, lattice-regularized, construction of the 3d topological insula-

tor of bosons, employing a parton decomposition and subsequent condensation of parton-monopole

composites.
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I. INTRODUCTION

The discovery of electronic topological insulators1–5 has fueled a growing interest in so-

called symmetry-protected topological (SPT) phases of matter. These are phases with a fully

gapped bulk spectrum, whose stability, as their name suggests, is guaranteed by a global

symmetry. When the symmetry is present, one cannot continuously deform a non-trivial

SPT state to a trivial product state without a bulk phase transition. On the other hand,

when the symmetry is absent, an SPT phase may be continuously connected to a trivial

product state. Thus, we may say that SPT phases have no “intrinsic” topological order:

they have a unique ground state on any closed manifold and possess no fractional bulk

excitations. Although their bulk spectrum is trivial, SPT phases display highly unusual

edge properties. Namely, in one dimension, the zero-dimensional edge is gapless, in two

dimensions, the one-dimensional edge is either gapless or spontaneously breaks a symmetry,

finally, in three dimensions, the two-dimensional edge is either gapless, spontaneously breaks

a symmetry or carries intrinsic topological order. Moreover, in all these cases, the properties

of the edge of a d-dimensional non-trivial SPT phase cannot be realized in a purely d − 1

dimensional system (at least if the global symmetry in this lower dimensional system acts

in a conventional way).

An example that illustrates the above properties is the three-dimensional electronic topo-

logical insulator, which is a phase of matter protected by the symmetry group U(1) n ZT
2 ,

with U(1) - the charge conservation symmetry and ZT
2 - time reversal.1 The bulk spectrum

is gapped and trivial, however, the surface supports an odd number of gapless Dirac cones

and preserves the full U(1) n ZT
2 symmetry. It is well known (and will be reviewed below)

that such properties cannot be realized in a purely two-dimensional system.6–9 Moreover,

one can distinguish a topological insulator from a trivial one even in the bulk by considering

its response to an external compact electromagnetic field. The topological insulator exhibits

electromagnetic response with a topological θ angle, θ = π, while the trivial insulator has

θ = 0. The value of the θ angle is manifested in the Witten effect10: if one inserts a magnetic

monopole into a topological insulator, it acquires a half-odd-integer charge.11,12

Over the past few years remarkable progress has been made in understanding SPT phases.

In particular, all symmetry protected phases of non-interacting fermions in arbitrary dimen-

sion have been classified.13,14 Likewise, it is believed that all possible interacting gapped

phases of bosons and fermions in one dimension have been constructed.15–19 The phases of

bosons in d = 1 are classified by the set of projective representations of the symmetry group

G, which is identical to the second cohomology group of G.17,19 A Jordan-Wigner transforma-

tion can be used to extend this result to one-dimensional fermionic systems. A generalization

1 The semi-direct product n means that the anti-unitary time reversal operator T and the U(1) rotations g

do not commute, T −1gT = g−1. Moreover, time-reversal is realized projectively here, T 2 = −1. Note that

this corresponds to the standard transformation properties of spinfull fermions fα under time-reversal:

T : fα → εαβfβ .
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of the one-dimensional cohomology classification to higher-dimensional bosonic systems has

been recently proposed.20 However, the physical properties of the resulting higher dimen-

sional SPT phases are just starting to be exposed. In the case of two dimensions, it has been

shown21 that a K-matrix construction - a multi-component Abelian Chern-Simons theory -

analogous to the one used to describe topologically ordered Abelian quantum Hall states,

reproduces the cohomology classification of SPT phases and gives a direct description of

their gapless edge modes.

In the case of three dimensions, an important advance has been made by Vishwanath and

Senthil (VS),22 who have suggested effective bulk and surface field theories for a number of

bosonic SPT phases. In particular, VS have proposed an effective theory for the bosonic

SPT phase with the symmetry group U(1) n ZT
2 , which is the direct bosonic analogue of

the three-dimensional fermionic topological insulator.2 In the present paper we will focus

on this particular phase and refer to it simply as the bosonic topological insulator.

VS have claimed that the bosonic topological insulator is characterized by an electromag-

netic response with the θ angle, θ = 2π. This was interpreted to mean that one possible

way to terminate the bulk topological insulator at the surface is to have a fully gapped sur-

face state with no intrinsic topological order, which spontaneously breaks the time-reversal

symmetry and has a Hall conductivity σxy = ±1. A general physical argument of Ref. 23,

complemented by the explicit K-matrix construction of Ref. 21, indicates that purely two-

dimensional bosonic SPT phases with a global U(1) symmetry always have an even integer

σxy, so the surface proposed by VS cannot be realized in a strictly two-dimensional model.

Moreover, one can go between the time-reversal conjugate surface states with σxy = 1 and

σxy = −1 by “painting” a layer of the 2d bosonic insulator with σxy = 2 on the surface,

which is consistent with time-reversal symmetry being broken only on the surface.

By driving surface phase transitions, VS were then able to construct alternative surface

phases of the bosonic topological insulator, where the time-reversal symmetry is restored.

These include:

i) a gapped state which preserves the full U(1)nZT
2 symmetry, but carries an intrinsic Z2

topological order. This state has the unusual property that both the electric and magnetic

anyons carry charge 1/2 under the global U(1) symmetry.

ii) a superfluid state, which spontaneously breaks the global U(1) symmetry, but leaves

the ZT
2 symmetry intact. This state is characterized by unusual vortex properties that will

be discussed in more detail below.

iii) certain (multi)-critical (gapless) states preserving both the U(1) and the ZT
2 symmetry,

which will not be discussed in the present paper.

The work of VS has left three questions open:

I. How to distinguish a non-trivial bosonic topological insulator from a trivial one in

the bulk? In the case of the fermionic topological insulator with θ = π, the Witten effect

2 In the bosonic case, time-reversal is realized non-projectively T 2 = 1, and boson operators transform

simply as, T : b→ b.
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provided such a bulk signature. However, if we accept that bosonic topological insulators

have θ = 2π, the charge carried by a magnetic monopole inside the topological insulator is

quantized in integer units, just as in a trivial insulator with θ = 0. In particular, in both

cases monopoles can carry zero electric charge.

II. What is the fundamental physical reason why the surface of a 3d bosonic topological

insulator, independent of what phase it is in, cannot be realized in a purely 2d system? For

the case of the fermionic topological insulator, such a reason exists: a putative 2d model

exhibiting the same properties as the surface cannot be consistently coupled to a compact

electromagnetic gauge field.6–9

III. Why is the surface of a bosonic topological insulator necessarily either gapless, sym-

metry broken or topologically ordered?

In the present paper we resolve the above three questions and demonstrate that they

are intimately linked. We show that one can distinguish between the trivial and non-trivial

bosonic topological insulators in the bulk by coupling them to a weakly fluctuating compact

electromagnetic field. It is, indeed, appropriate to think of the trivial and non-trivial bosonic

topological insulators as having θ = 0 and θ = 2π. Although magnetic monopoles in both

insulators can be electrically neutral, their statistics are different. In the trivial insulator

(θ = 0), monopoles are bosons, while in the non-trivial insulator (θ = 2π), monopoles are

fermions. We call this phenomenon the “statistical Witten effect.” Once we dial θ to 4π,

monopoles are again bosons. Hence, the θ angle in a bosonic insulator is periodic modulo 4π.

This is in sharp contrast to a fermionic insulator, where monopoles have bosonic statistics

both at θ = 0 and at θ = 2π, so the θ variable is periodic modulo 2π in accordance to the

common lore.

We note that the idea of distinguishing different SPT phases by “gauging” the global

symmetry group has been utilized before. An example is provided by phases with a global

Z2 symmetry in two dimensions. In this case, the cohomology classification gives one non-

trivial SPT phase. As shown in Ref. 24, if one starts with the trivial phase and couples it

to a weakly fluctuating Z2 gauge field, one obtains a system with a “toric code” topological

order. The Z2 fluxes (visons) in this state have bosonic statistics. On the other hand, if one

starts with the non-trivial SPT phase and gauges the Z2 symmetry, one obtains a system

with a “double-semion” topological order. The fluxes in this state have semionic statistics.

The statistical Witten effect in a three-dimensional topological insulator is a direct analogue

of this phenomenon. We would like to mention that a general duality between SPT phases

and “weakly fluctuating” gauge theories was discussed in Refs. 25,26. It is believed that the

duality transformation can be physically interpreted as gauging the global symmetry of the

SPT.

Returning to the 3d bosonic topological insulator, the statistical Witten effect in the bulk

gives a clue as to why the surface physics cannot be fully realized in a 2d system. It turns

out that, as in the fermionic case, a putative 2d model exhibiting the same properties as the

surface of a bosonic topological insulator cannot be consistently coupled to a two-dimensional

compact electromagnetic gauge field. Such a coupled theory would have instanton events
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in space-time, where the magnetic flux through the 2d surface changes by 2π. We will

show that these events are accompanied by the creation of a single fermion excitation out

of the 2d vacuum. This is impossible in a local theory. Hence, the surface cannot exist

without the bulk! When the bulk is present, the above “anomaly” of the surface theory is

cured as follows. In the three-dimensional world, the instanton tunneling event of the 2d

surface theory corresponds to the passage of a magnetic monopole from the trivial vacuum

outside into the topological insulator. In the process, the monopole changes its statistics

from bosonic to fermionic and leaves another fermion on the surface.3 Thus, fermions are

created in pairs and no violation of locality occurs.

Besides demonstrating that the surface of a bosonic topological insulator cannot exist

purely in 2d, we will use the statistical Witten effect to argue that if the surface state

is neither gapless, nor spontaneously breaks the global symmetry it must possess intrinsic

topological order.

We now give a more detailed exposition of the above arguments. In this paper, our dis-

cussion of the bulk and surface properties of the bosonic topological insulator will be guided

only by general considerations of symmetry and locality, without reference to a construction

of this phase. In a forthcoming paper,27 we will supplement the present conclusions by an

explicit field-theoretic construction of the bosonic topological insulator, which displays the

statistical Witten effect in the bulk and realizes the phases proposed by VS at its surface.

This paper is organized as follows. In section II, we briefly review the θ-parameter, the

Witten effect and its role in fermionic topological insulators. Section III is devoted to the

statistical Witten effect in the bulk of a bosonic topological insulator. Section IV discusses

the link between the statistical Witten effect in the bulk and the physics at the surface

of the bosonic topological insulator. Section V discusses a potential place of the bosonic

topological insulator phase, to which this paper is devoted, within the general cohomology

classification of Ref. 20.

II. THE WITTEN EFFECT AND FERMIONIC TOPOLOGICAL INSULATORS

We begin with a brief review of the θ-parameter, the Witten effect and its role in fermionic

topological insulators.

Consider a fully gapped fermion insulator with no intrinsic topological order, i.e. with a

unique ground state on any closed manifold and with excitations carrying an integer electric

charge. It is useful to study the response of the insulator to an external electromagnetic

field, Aµ. In 3d, in addition to the standard Maxwell term describing the electric polar-

izability/magnetic permeability of an insulator, the electromagnetic response involves the

topological θ-term,

Sθ =
iθ

32π2

∫
d3xdτεµνλσFµνFλσ (2.1)

3 This picture is slightly simplified; we will give a more general discussion below.
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where Fµν = ∂µAν − ∂νAµ. For smooth configurations of the electromagnetic field on a

four-dimensional space-time torus, the imaginary time action Sθ evaluates to Sθ = iθn, with

integer n.4 In this sense, the θ-parameter is periodic modulo 2π. Moreover, under time

reversal, θ → −θ. Hence, naively, the distinct time-reversal invariant values of θ are θ = 0

and θ = π. Below, we will see that this conclusion is correct for fermionic insulators, but

not for bosonic ones. It turns out that both θ = 0 and θ = π, can, indeed, be realized

already in non-interacting time-reversal invariant fermionic systems. Trivial non-interacting

fermionic insulators have θ = 0. On the other hand, non-interacting fermionic topological

insulators have θ = π.11 This provides a formal distinction between the two classes of

fermionic insulators with time-reversal symmetry which does not rely on surface properties.

Another bulk manifestation of the θ term is the so-called Witten effect.10 Since we are

discussing lattice systems here, the insulator with a global U(1) symmetry can be consistently

coupled to a compact electromagnetic gauge field. Hence, monopole configurations of the

magnetic field are allowed. As shown by Witten, in the presence of the θ-angle, a magnetic

monopole with flux 2πm also carries an electric charge q = n + θm
2π

, with integer n.5 The

integer n corresponds to the freedom of adding extra particle excitations of the insulator

on top of the monopole. We note that the allowed combinations of electric charge q and

magnetic charge m are invariant under θ → θ + 2π, reaffirming the interpretation of θ

as a periodic variable. Hence, if a single magnetic monopole is placed inside a fermionic

topological insulator, it acquires a half-odd-integer polarization charge.11,12 Thus, the Witten

effect gives a clear way to distinguish trivial and topological fermionic insulators.

The Witten effect is directly connected to the reason why the surface of a 3d fermionic

topological insulator cannot be realized in a two-dimensional model. Imagine an interface

between a topological insulator and the vacuum (or a trivial insulator). Consider taking

a magnetic monopole in vacuum and dragging it across the surface with the non-trivial

insulator. The monopole in vacuum carries no charge but acquires a half-odd-integer charge

once inside the topological insulator. Since electric charge is conserved, this means that a

half-odd-integer charge must be left on the surface.

Now suppose the surface of the topological insulator could be realized purely in a 2d

lattice model. Then we can couple this 2d model to a compact U(1) gauge field. Imagine

starting with a configuration with no magnetic flux through the surface. This configuration

is equivalent to one where flux 2π passes through a single plaquette of the surface. Now

let this flux 2π slowly expand to form a smooth flux distribution over some portion of the

surface. This process is an instanton event in space-time, where the flux changes from 0 to

4 To see that n is an integer, observe that n = 1
(2π)2 ΦEi ΦBi , with i ∈ (x, y, z). Here, ΦEi =

∫
dτdxiFτi is the

(electric) gauge flux through the (τ, i) plane of the torus and ΦBi = 1
2εijk

∫
dxjdxkFjk - the (magnetic)

gauge flux through the spatial plane of the torus perpendicular to î. Since the gauge flux through a closed

2d surface is 2π-integer valued, both ΦEi /2π and ΦBi /2π are integers, and so n must be an integer.
5 We would like to stress that in the presence of monopole configurations, Sθ, Eq. (2.1), like the rest of the

terms in the continuum field theory needs to be regularized. The Witten effect, however, is independent

of this regularization.
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2π. Now, from the point of view of the 3d system, the instanton event corresponds to the

passage of a monopole through the surface of the topological insulator. As noted above, this

process must deposit a half-odd-integer charge on the boundary. Thus, in a pure 2d theory

of the boundary, local instanton events violate charge conservation. The boundary theory

taken by itself is, therefore, inconsistent. We may say that the U(1) symmetry on the surface

is “anomalous.” In the three-dimensional world, this surface anomaly is compensated by the

Witten effect in the bulk and so charge is conserved.

The above argument indicates that the surface of the topological insulator exhibits a

particular kind of anomaly, independent of what phase the surface is in. Let us now demon-

strate the anomaly for a particular realization of the surface. The most commonly discussed

surface phase is a time-reversal invariant state with a single gapless 2d Dirac cone. Although

it is possible to show that a putative 2d system with such properties cannot be consistently

coupled to a 2d compact U(1) gauge-field,6–9 the demonstration is much simpler for a dif-

ferent realization of the surface. Imagine spontaneously (or explicitely) breaking the ZT
2

symmetry on the surface. This gaps out the Dirac cone and results in the surface having a

Hall conductivity σxy = ±1/2, i.e. a background gauge field Aµ induces an electromagnetic

“polarization” current on the surface,

Jpolµ =
σxy
2π

εµνλ∂νAλ. (2.2)

We focus on one of the time-reversal conjugate states, say the one with σxy = 1/2. The only

excitations of this state are gapped fermions with charge 1. We now show that such a state

cannot exist purely in 2d.

Imagine first coupling the putative 2d model to a non-compact 2 + 1 dimensional U(1)

gauge field Aµ. Upon integrating the gapped fermions out, we obtain an effective Chern-

Simons action for the electromagnetic field,

S =
ik

4π

∫
d2xdτεµνλAµ∂νAλ, (2.3)

with k = σxy = 1/2. If the system is realized in a 2d lattice model, we can also couple it to

a compact U(1) gauge field, so we should be able to promote Aµ in Eq. (2.3) to a compact

field. It is well-known,28 that the level k of the Chern-Simons action (2.3) must be an integer

if the U(1) gauge field is compact and the charged excitations are fully gapped and have

integer charge, so a level k = 1/2 is inconsistent. We now sketch the argument for this.

Imagine a gauge field configuration with no magnetic flux through the surface and zero

electric charge. As before, consider an instanton event where flux 2π is nucleated through

a single plaquette and then allowed to expand to a smooth distribution. According to

Eq. (2.2), this flux distribution carries a polarization charge 1/2. If the theory was purely

two-dimensional, a local charge −1/2 quasiparticle excitation must also be created on the
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surface during the instanton event in order to conserve the total electric charge.6 However,

the only excitations of the surface in this σxy = 1/2 phase are gapped fermions with charge

1. So, a purely two-dimensional theory is not consistent: instanton events necessarily violate

charge conservation by a half-odd-integer. Of course, this is precisely the property that the

surface of a topological insulator should satisfy: charge −1/2 from the surface is transferred

onto the monopole that tunnels through it. Processes where charge −1/2− n is transferred

onto the monopole and n charge 1 fermions are locally excited on the surface are likewise

allowed.

We can use a variation of the above argument to show that if the surface of a fermionic

topological insulator is neither gapless, nor spontaneously breaks the time-reversal symmetry

then it is necessarily topologically ordered. Indeed, suppose the surface is fully gapped and

preserves the time-reversal symmetry. The surface Hall conductivity must then be 0. Now,

imagine dragging a magnetic monopole through the surface of the topological insulator.

Since σxy = 0, the magnetic flux through the surface induces no surface polarization charge.

Hence, the half-odd-integer charge left by the monopole on the surface must be a localized

surface quasiparticle excitation. So, the surface supports excitations with a fractional charge

and, therefore, by the standard flux threading argument, the ground state of the system on

a 3d solid torus is degenerate. QED.

III. THE STATISTICAL WITTEN EFFECT AND THE BOSONIC TOPOLOGI-

CAL INSULATOR

Let us turn our attention to 3d bosonic insulators with no intrinsic topological order.

Now the bulk excitations are bosons b with integer charge. We may again consider the

response of the system to a compact U(1) gauge field: a θ-term (2.1) in the effective action

will generally be induced. Our discussion of the θ-term and the Witten effect in the previous

section was independent of the statistics of the bulk excitations. In particular, for smooth

configurations of the electromagnetic field on a four-torus, we still have Sθ = iθn, with an

integer n. Moreover, magnetic monopoles with flux 2πm still carry electric charge q = n+ θm
2π

,

with n an integer. Thus, we may naively conclude that θ is periodic modulo 2π and that

the time-reversal invariant points are θ = 0 and θ = π, corresponding to bosonic trivial and

topological insulators, respectively. It turns out that this conclusion is incorrect. In reality,

in a bosonic insulator, the θ-variable is periodic modulo 4π and the distinct time-reversal

invariant values of θ are θ = 0 (trivial insulator) and θ = 2π (topological insulator), while

θ = π always breaks the time-reversal symmetry.

To reach the above conclusion we need a somewhat finer grating than the ordinary Witten

effect discussed above. Namely, we need to consider the statistics of monopole excitations.

Let us, again, couple our bosonic insulator to a weakly fluctuating compact U(1) gauge

6 This is just the standard Laughlin argument which states that a 2d system with a Hall conductivity σxy

should possess excitations with charge q = σxy.
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FIG. 1: Electric charge q of dyons with magnetic flux 2π as a function of the θ-angle in a bosonic

insulator. Red lines denote dyons with bosonic statistics and blue lines - dyons with fermionic

statistics. Although the allowed values of electric charge are invariant under θ → θ + 2π, the

corresponding statistics is periodic only modulo 4π.

field. The gauge field in the bulk of the insulator will be in a Coulomb phase - i.e. there will

be a gapless photon excitation, described by Maxwell electrodynamics. In addition to the

gapless photon, there will be gapped bosonic excitations b with integer electric charge. The

photon mediates a standard Coulomb interaction V (r) = e2q1q2c/(4πr) between two static

excitations with charges q1 and q2. Here, e is a dimensionless coupling constant and c is the

velocity of the photon.

Besides the electric charge excitations, the theory will possess gapped magnetic monopole

excitations with flux 2πm. For now, let us consider the trivial bosonic insulator with

θ = 0. The monopoles then have bosonic statistics and carry electric charge 0. Two

static monopoles with fluxes 2πm1 and 2πm2 experience a Coulomb interaction, V (r) =

(2π)2m1m2c/(4πe
2r).

The photon also mediates a “statistical” interaction between the charges and the

monopoles. It is known29 that this statistical interaction results in the bound state of n

charges and m monopoles having statistics (−1)nm, where +1 corresponds to bosonic statis-

tics and −1 to fermionic statistics. It is common to refer to such general bound states as

dyons.

Now, let us reintroduce the θ variable. As we start tuning θ away from 0, a monopole

with flux 2πm acquires an electric “polarization” charge θm/2π. Thus, a dyon which had

electric/magnetic charges (n,m) at θ = 0, now carries charges (n+ θm/2π,m). For θ = 2π,

both the total (physically observable) electric charge, q = n + θm/2π, and the magnetic
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charge m are integer. However, the polarization charge does not affect the dyon statistics.31

This is consistent with the fact that statistics in three-dimensions are either bosonic or

fermionic. Thus, when θ is finite, the statistics of a dyon with charges (n + θm/2π,m)

remain at (−1)nm. Let us express the statistics of a dyon at a finite value of θ in terms of its

total electric charge q = n+ θm/2π. This yields (−1)qm−θm
2/2π for the statistics of a (q,m)

dyon at a general θ. Thus, when θ = 0, the statistics of a (q,m) dyon is (−1)qm, but when

θ = 2π, the statistics of a (q,m) dyon (q and m - both integer) is (−1)qm+m. This means

that although the allowed electric/magnetic charges at θ = 0 and θ = 2π are the same, the

dyon statistics are in general different! In particular, excitations with total electric charge 0

and magnetic flux 2π are bosons at θ = 0 and fermions at θ = 2π. Below, we refer to these

excitations simply as single monopoles. Note that once θ = 4π, the statistics of a (q,m)

dyon, again with q and m - both integer, return to (−1)qm. Thus, we conclude that in a

bosonic insulator, the θ variable is periodic only modulo 4π. Therefore, the only possible

distinct time-reversal invariant points are θ = 0 and θ = 2π. In particular, the point θ = π

manifestly breaks time-reversal invariance: here the (1/2, 1) dyon has bosonic statistics, but

its putative time-reversal partner (1/2,−1) has fermionic statistics.

We identify the values θ = 0 and θ = 2π with trivial and topological insulators of

bosons. The bulk signature of a bosonic topological insulator is the statistical Witten effect:

monopole excitations carry fermionic statistics. Below, we will show that this identification

is consistent with the surface phases of the bosonic topological insulator proposed by VS.

Before we proceed to the surface of a bosonic topological insulator, let us reconsider

fermion insulators from the point of view of dyon statistics. Let us first take the triv-

ial fermion insulators with θ = 0. Here, unit electric charges have fermionic statistics,

while monopoles have bosonic statistics. The statistical interaction between charges and

monopoles, therefore, endows the (n,m) dyon with statistics (−1)nm+n. In particular, dyons

with flux 2π and arbitrary electric charge are bosons. Now, let us turn on a finite θ an-

gle. The statistics of an excitation with total electric charge q and magnetic flux m is now,

(−1)qm+q−θm(m+1)/(2π). The above expression is invariant under θ → θ+2π. So the θ variable

in a fermionic insulator is, indeed, periodic modulo 2π, as is commonly assumed, and the

time reversal invariant points are θ = 0 and θ = π. In particular, at θ = π, the (1/2,±1)

dyons are both bosons, while (0,±2) dyons are both fermions.

Before we conclude this section, we briefly mention a more formal field-theoretic way

to deduce the periodicity of the θ angle in bosonic and fermionic systems, which considers

only smooth configurations of the electromagnetic field without monopole defects.32,33 Here,

one places the system on a generic closed four-manifold, instead of the four-torus, which we

considered so far. It turns out that on a most general four-manifold, Sθ = iθn, with n - a

half-integer. An example of a manifold where a gauge field configuration with half-odd n

exists is CP2, which allows for n = 1/2. Thus, the θ variable is periodic at least modulo

4π. However, theories with fermion degrees of freedom require that the space-time manifold

be endowed with a spin structure. Not all manifolds admit a spin structure; those that do,

have integer n. Thus, in theories with fermions, θ is quantized modulo 2π.
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IV. SURFACE OF THE BOSONIC TOPOLOGICAL INSULATOR AND THE

STATISTICAL ANOMALY

The statistical Witten effect displayed by the bulk of a bosonic topological insulator

strongly constrains the properties of its surface. Indeed, as usual, let’s couple the system to

a weakly fluctuating compact U(1) gauge field. As we drag a monopole through the surface,

it changes its statistics from bosonic to fermionic. Since in a local theory fermions are created

in pairs, this means that a fermion must be left on the surface. Thus, from the point of view

of the 2d surface, instanton events create single fermion excitations, (apparently) violating

locality. Therefore, the surface cannot be realized in a local two-dimensional model. We will

call this property of the surface, “the statistical anomaly.” We note that this “anomaly,”

must be manifested by the surface, independent of what phase it is in, in order to have a

consistent three-dimensional theory.

It turns out that the discussion above is slightly simplified. In reality, the weakly fluctu-

ating U(1) gauge theory in the bulk is in the Coulomb phase and long-range statistical inter-

actions between charged excitations on the surface and monopoles in the bulk are present.

As we will see in an explicit example below, this means that in the full 3d theory, the point

excitation left by the monopole on the surface need not be a fermion. Nevertheless, a pu-

tative 2d model with the properties of the surface must still exhibit the statistical anomaly,

when coupled to a 2d compact U(1) gauge field.

We now turn to the various possible surface phases of a bosonic topological insulator

proposed by VS. We will show that all of these states exhibit the statistical anomaly in 2d

and discuss how the statistical Witten effect resolves the anomaly in the full 3d theory. We

will then present an argument showing that if the surface of a bosonic topological insulator

is neither gapless, nor spontaneously breaks the symmetry it must carry topological order.

A. Surface phases with σxy = ±1.

The simplest surface phase proposed by VS is an insulator with no intrinsic topological

order and a Hall conductivity σxy = ±1. This state spontaneously breaks the time-reversal

symmetry. Its excitations are gapped bosons b with integer charge. Let us show that a

purely 2d system with such properties would exhibit a statistical anomaly and so cannot

be realized.7 Imagine first coupling the putative 2d model to a weakly fluctuating 2d non-

compact U(1) gauge field Aµ. We again obtain a 2d Chern-Simons effective action but now

with level k = 1,

S =

∫
d2xdτ

(
1

4e2
F 2
µν +

ik

4π
εµνλAµ∂νAλ + iAµJ

b
µ

)
(4.1)

7 Our argument is very similar to one given in Ref. 23. The only difference is that we treat the electromag-

netic field as a weakly fluctuating dynamical field, instead of an external field.
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Here, in addition to the Chern-Simons term, we’ve kept the Maxwell term F 2
µν in the action,

as well as an explicit coupling of the gauge field to the gapped boson excitations, whose cur-

rent is denoted by J bµ. Thus, the total electric current is given by the sum of the polarization

current (2.2) and the boson current J bµ,

JEMµ =
k

2π
εµνλ∂νAλ + J bµ (4.2)

As is well known, the 2+1 dimensional theory (4.1) is fully gapped. The effect of the

Chern-Simons term with k = 1 is to dynamically attach magnetic flux −2π to the b exci-

tations, which have intrinsic electric charge 1 as seen in (4.1). As a result, the statistics

of b is transmuted from bosonic to fermionic. Moreover, since the magnetic flux Φ carries

an electric polarization charge Φ/2π, the b particle with flux −2π attached is electrically

neutral.

Now, if the phase under consideration can be realized in a 2d lattice model, we should be

able to promote Aµ to a compact gauge field. Imagine an instanton event in the putative 2d

theory (4.1). Start with a configuration with no flux and no charge, nucleate flux 2π through

a single plaquette and let this flux expand into a continuous distribution. The flux will then

carry a polarization charge 1. Therefore, in order for the total charge to be conserved, a local

charge −1 quasiparticle excitation must also be created during the instanton event. This

excitation must be identified with the b (anti)-particle. Thus, an instanton event creates a b

anti-particle together with flux 2π out of the vacuum. As noted above, this composite object

has fermionic statistics. Thus, single fermion excitations are created locally by instanton

events: the surface theory has a statistical anomaly, and therefore, cannot be realized in a

purely two-dimensional model.

Note that the above argument explains why σxy must be an even integer for a purely two-

dimensional bosonic insulator with no topological order, in accordance with the K-matrix

construction of Ref. 21, as well as general constraints on the consistency of Chern Simons

terms on 3 manifolds with and without spin structures33. Indeed, for a general integer

level k of the Chern-Simons theory (4.1), b bosons have flux −2π/k bound to them and are

transmutted to anyons with a statistical angle θ = −π/k.8 An instanton tunnelling event

involves the creation of flux 2π (and the corresponding polarization charge k) together with

k b-anti-particles. This composite object has statistics θ = −πk and so k must be an even

integer in order to prevent single fermions from being created out of the vacuum.

We also briefly note that the above argument is consistent with the fact that a two-

dimensional fermionic insulator with no topological order can have any integer σxy. Indeed,

suppose the charge carriers in the theory (4.1) are fermions f with unit charge. These

excitations again have a flux −2π/k dynamically bound to them and their statistics is

transmutted to θ = π − π/k. An instanton event involves the creation of flux 2π together

with k f -anti-particles. This composite object has statistics θ = πk2 − πk, which is bosonic

8 The 2d statistical angle should not be confused with the θ-angle in 3d.
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as long as k is an integer.

Let us now return to the surface of the bosonic topological insulator with σxy = 1 and

discuss how the anomaly in the 2d model is resolved in three dimensions. Let’s place a

trivial vacuum in the region z > 0, a bosonic topological insulator in the region z < 0 and

an interface with σxy = 1 at z = 0. We now couple the system to a fully three-dimensional

compact U(1) gauge field. The simplest thought experiment to carry out is to start with

a neutral monopole in vacuum and let it pass through the surface of a bosonic topological

insulator, picking up charge −1 and leaving a polarization charge 1 on the surface. As

discussed in the previous section, a neutral monopole in vacuum is a boson, likewise, a

monopole with charge −1 inside the topological insulator is a boson. Thus, statistics are

conserved in the process considered. Alternatively, we can imagine starting with a neutral

monopole in vacuum and letting it pass through the topological insulator surface while

remaining neutral. This process will leave a b-anti-particle on the surface together with a

polarization charge 1. Now, the neutral monopole in the bulk of the topological insulator is

a fermion. However, the statistical interaction between the b-boson on the surface and the

monopole in the bulk allows us to view this pair together as a boson. Thus, statistics are

again conserved.

We can also look at the full 3d problem from the perspective of surface physics. It turns

out that the electromagnetic response of the surface with σxy = 1 endows the excitations

near the surface with an effective 2d statistical interaction. Processes where two particles

are exchanged in the plane of the surface over distances much larger than their separation

from the surface receive a Berry’s phase, which mimics two-dimensional statistics. Labelling

the monopoles on the vacuum side of the interface as m+ and monopoles on the topological

insulator side of the interface as m−, we obtain the following effective 2d exchange statistics

(see appendix A)

θ(b, b) = − πα2

1 + α2
, θ(m+,m+) =

π

4(1 + α2)
, θ(m−,m−) =

π

4(1 + α2)
+ π (4.3)

θ(b,m±) = ∓ π

1 + α2
, θ(m+,m−) = − π

2(1 + α2)
(4.4)

Here, Eq. (4.3) summarizes the self-statistics and Eq. (4.4) - the mutual statistics of ex-

citations. We note that the b-particle preserves its self and mutual statistics as it passes

through the interface, so there is no need to distinguish b excitations on the two sides of the

interface. Note that all the statistical angles depend on the three-dimensional fine-structure

constant α = e2

4π
(we assume, for simplicity, that the dielectric constant and permeability

of the topological insulator are the same as of vacuum). Note, in particular, that unlike in

a theory where the electromagnetic field is purely two-dimensional, the effective statistics

θ(b, b) of the b-particles near the surface is generally not fermionic; θ(b, b)→ −π only when

α→∞. We also note that unlike in a purely two-dimensional theory, static b-particles will

experience long-range 1/r Coulomb interactions mediated by the gapless bulk photon. Fi-

nally, the extra π in the self-statistics of m− compared to m+ reflects the intrinsic fermionic
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nature of monopoles in the topological insulator.

Let us repeat the thought experiment above. Take a neutral monopole in vacuum (m+)

and let it tunnel through the interface turning into a neutral monopole m− and creating

a b-anti-particle. Now, the 2d self-statistics of an anti-b - m− composite is θ = θ(b, b) −
θ(b,m−) + θ(m−,m−) = π

4(1+α2)
, which turns out to be exactly the same as the self-statistics

of m+. Hence, statistics are again conserved!

B. Surface superfluid.

Another surface phase proposed by VS is a superfluid where the global U(1) symmetry is

spontaneously broken but the time-reversal symmetry is preserved. The excitations of this

phase include a 2d gapless Goldstone mode and gapped superfluid vortices on the surface.

An effective theory of this surface phase is most easily expressed in dual variables. The

surface action S =
∫
d2xdτL with

L =
1

8π2ρs
(εµνλ∂νaλ)

2 + i(aµ +
Aµ
2

)j+
µ + i(aµ −

Aµ
2

)j−µ −
i

2π
εµνλAµ∂νaλ. (4.5)

Here, the superfluid current Jsµ is expressed in terms of the dual gauge field aµ as Jsµ =

− 1
2π
εµνλ∂νaλ. The dual gauge field aµ should not be confused with the electromagnetic gauge

field Aµ, which we treat at this stage as a non-compact external probe field. Here ρs denotes

the superfluid stiffness. The effective 2d theory involves two types of gapped superfluid

vortices, ψ±; j± are the corresponding vortex currents. The vortices are minimally coupled

to aµ. Note that under time-reversal, ψ± → ψ†∓.

The only unusual property of the surface superfluid described by the action (4.5), com-

pared to an ordinary two-dimensional superfluid, is that the vortices ψ± formally carry a

global U(1) charge ±1/2. Thus, the total electromagnetic current,

JEMµ = − 1

2π
εµνλ∂νaλ +

1

2
(j+
µ − j−µ ), (4.6)

involves both the superfluid current and the vortex currents. Since the global U(1) sym-

metry in a superfluid is spontaneousy broken, it is inappropriate to label its excitation by

their global charge; we will discuss a more physical distinction between the present surface

superfluid and an ordinary purely two-dimensional superfluid shortly.

As noted, we temporarily switch off the fluctuations of the external electromagnetic field

Aµ. Then the dual gauge field aµ will be in the Coulomb phase, i.e. the dual photon will be

gapless and will directly correspond to the superfluid Goldstone mode. The gapless 2 + 1

dimensional photon mediates a logarithmic Coulomb interaction between static 2d surface

vortices. We note that since flux φ of aµ corresponds to a global charge −φ/2π, pure flux-

tunneling events of aµ are prohibited by charge conservation. As a result, the dual gauge

field does not go into a confined phase: the superfluid is stable. However, events where flux

φ = 2π is created together with a vortex ψ†+ and an antivortex ψ− are allowed. Indeed, such
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events conserve both the global U(1) charge and the vorticity of the superfluid. We can

write the corresponding term in the Lagrangian as,

∆L = λm†ψ†+ψ− + h.c., (4.7)

where the monopole operator m† creates flux 2π of aµ and λ is a coupling constant. It is

well-known that m† acquires a finite expectation value in the 2d Coulomb phase. In fact,

since m† carries charge −1 under the global U(1) symmetry, it serves as the superfluid order

parameter and may be identified with the physical boson operator b. Moreover, we may

schematically replace m† in Eq. (4.7) by its expectation value,

∆L→ λ〈m†〉ψ†+ψ− + h.c.. (4.8)

Hence, the term (4.7) induces tunneling between the gapped ψ+ and ψ− vortices; energy

eigenstates will be superpositions of ψ+ and ψ−. Note that time-reversal maps the vortex

ψ†+ to an antivortex ψ−. Hence, in the absence of an extra particle-hole symmetry, there is

no reason for ψ+ and ψ− vortices to have the same energy and so a finite tunneling between

them generally will not give rise to an equal weight superposition.

Let us now switch on the fluctuations of Aµ, first treating it as a non-compact two-

dimensional gauge-field. The effective 2d theory (4.5) then becomes fully gapped - indeed,

when the global U(1) symmetry of a superfluid is gauged, the Goldstone mode disappears

and the external electromagnetic field becomes Higgsed. The effect of the mutual Chern-

Simons term i
2π
εµνλAµ∂νaλ in Eq. (4.5) is to attach flux 2π of A to ψ†±: the superfluid

vortices become magnetic flux tubes. Moreover, a flux ±π of a is attached to ψ†±; Eq. (4.6)

indicates that this flux corresponds to an electric polarization charge ∓1/2 under A. Thus,

the ψ± flux tubes, which couple minimally to Aµ with charges Q = ±1/2, as in Eq. (4.5),

become overall electrically neutral, in accordance with the fact that electric charge is Debye

screened in a superconductor.

As in an ordinary 2d superconductor, the interaction between two static flux tubes is

exponentially screened - the flux tubes are local excitations. However, the flux attachment

discussed above endows the flux-tubes with a statistical interaction: both ψ+ and ψ− acquire

fermionic self-statistics. The mutual statistics between ψ+ and ψ− are bosonic. Indeed, we

can think of the action (4.5) as a Chern-Simons theory for the two-component gauge field

(aµ, Aµ) with the K-matrix, K =

(
0 1

1 0

)
. The ψ± vortices carry charges (1,±1/2) under

this two-component gauge field; the aforementioned statistics immediately follow.

Note that the tunelling operator (4.7) converts a ψ− flux-tube to a ψ+ flux-tube: the

statistics is preserved in the process. Hence, the statistics of the energy eigenstates, which

are superpositions of ψ+ and ψ− will likewise be fermionic.

We conclude that the key signature of the superfluid on the surface of a topological

insulator is that upon coupling to a 2d electromagnetic field, its flux-tubes possess fermionic

statistics. This is in contrast to an ordinary time-reversal invariant purely two-dimensional
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superfluid, whose flux tubes are bosons. The fermionic statistics of flux-tubes directly imply

that a putative purely 2d system with the same properties suffers from a statistical anomaly

and so cannot exist. Indeed, if the effective theory (4.5) emerges from a purely 2d lattice

model, we should be able to promote the electromagnetic field Aµ to a compact gauge

field. An instanton of Aµ creates a flux 2π excitation out of the vacuum. The only such

excitations in the theory are the fermionic flux-tubes. Thus, single fermions are created out

of the vacuum during instanton events and a purely two-dimensional model is inconsistent.

How is the statistical anomaly resolved in the full 3d theory in the present case? The

electromagnetic field in the bulk of the system is in the Coulomb phase. Nevertheless, the

magnetic field must still penetrate the surface in the form of tubes with quantized flux.

The “demagnetization effects” in the bulk lead to a V (r) = 1
αr

interaction between static

flux-tubes. Moreover, the magnetic field profile of a single flux-tube on the surface now has

an algebraic 1/r3 tail, instead of falling off exponentially, as in a purely 2d system. Likewise,

the electric charge cloud that screens the ±1/2 charge of a ψ± vortex has a density profile

with a 1/r3 tail. It turns out that these tails fall off sufficiently quickly for the statistics of

flux-tubes to remain well-defined and fermionic.

Thus, as a monopole passes from the vacuum outside the topological insulator through

the interface, it changes its statistics from bosonic to fermionic and excites a fermionic

flux-tube on the surface. So, the statistics are conserved!

Before we conclude this section, we would like to stress that the fermionic statistics

acquired by flux tubes upon gauging the U(1) symmetry are not directly related to the

statistics of global superfluid vortices in the absence of an external gauge field. VS have

claimed that it is also appropriate to think of the statistics of global superfluid vortices on

the surface of a topological insulator as fermionic. As we discuss in appendix B, this claim

is correct only when the system has an additional particle-hole symmetry. On the other

hand, the fermionic statistics of flux-tubes are completely robust to particle-hole symmetry

breaking. Moreover, as emphasized in appendix B, the two effects have different dynamical

origins.

C. Surface phase with Z2 topological order.

Yet another surface phase proposed by VS is fully gapped, respects the U(1)nZT
2 symme-

try and carries an intrinsic 2d Z2 (toric code) topological order. The excitations of this phase

are e and m anyons carrying electric and magnetic charge respectively under the emergent

Z2 gauge field. e and m have bosonic self-statistics and are mutual semions. The bound

state of e and m is a fermion. The e and m anyons transform trivially under time-reversal,

but both carry charge 1/2 under the global U(1) symmetry. This property is somewhat

unusual; standard two-dimensional bosonic states with Z2 topological order, global U(1)

and time-reversal symmetries, have just one (or none) of the anyons carrying charge 1/2.

We will now argue that precisely this property makes the present phase impossible to realize

in a purely two-dimensional system.
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Again, if the state with the above properties can be realized in a purely 2d lattice model,

we should be able to couple the model to a compact 2d U(1) gauge field. Let us imagine

a flux-tunneling event in such a coupled model. We start with an initial state with no

magnetic flux and no charge, nucleate flux 2π through a single plaquette at the origin and

let it expand to a smooth distribution. Since the system is time-reversal invariant, σxy = 0,

and so the flux carries no electric charge. Thus, any local quasi-particle created during the

instanton tunneling event must be neutral. Now, both e and m charge 1/2 anyons pick

up a Berry’s phase π upon encircling the flux in the final state, but acquire no Berry’s

phase upon encircling the origin in the initial state. In a local model an instanton tunneling

event cannot change the Berry’s phase acquired by a distant quasiparticle upon encircling

the spatial location of the event. The only possible resolution of the above puzzle is that

the instanton event must create a quasiparticle, which has mutual semionic statistics with

both e and m anyons, compensating the π Berry’s phase due to the magnetic flux. This

quasiparticle must be identified with the neutral fermion f = em†. Hence, the instanton

event creates a neutral f fermion together with flux 2π. Since f is neutral, its statistics are

not affected by the 2π flux and remain fermionic. Thus, single fermions are created out of

the vacuum during such instanton tunneling events. This is not possible in a local 2d model,

which is thus seen to possess a statistical anomaly.

We note in passing that, as pointed out by VS, a toric code with both e and m anyons

carrying charge 1/2 can be realized strictly in 2d, provided that the system has a Hall-

conductivity σxy = 1. This 2d system breaks time reversal symmetry and is described by a

K matrix construction, with K =

(
0 2

2 0

)
and the charge vector t = (1, 1). The relationship

between this 2d state and the σxy = 0 surface state can be understood by considering a slab

of topological insulator of a large but finite thickness, with the σxy = 0 toric code state on

the top surface, and the non topological σxy = 1 state on the bottom surface. The entire

slab viewed as a 2d system realizes the toric code with σxy = 1. It follows that an interface

between the toric code state and the σxy = 1 state on the surface of the topological insulator

will exhibit edge states identical to those of the 2d σxy = 1 state.

Since a K-matrix construction exists, the 2d theory should be free of anomalies. Let us

explicitely check this. As usual, let’s couple the 2d model to a compact U(1) gauge field and

imagine an instanton event which creates flux 2π out of the vacuum. Since σxy = 1, this

flux carries a polarization charge 1. As for the toric code on the surface of the topological

insulator, the instanton also creates an em bound state, whose intrinsic semionic mutual

statistics with the charge 1/2 e and m anyons cancels the π Berry’s phase acquired by the

latter upon encricling the 2π flux. However, in the present case, the em bound state carries

charge −1 in order to conserve the total charge. Thus, the instanton creates an em bound

state with charge −1 together with flux 2π. The attached flux transmutes the intrinsic

fermionic statistics of em to bosonic. Thus, the statistics are conserved in the process and

the theory is anomaly free.

Returning to the bosonic topological insulator with the time-reversal invariant toric code
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surface, in the present case, the anomaly is resolved very directly in three dimensions:

the monopole simply passes through the surface of the topological insulator changing its

statistics and leaving an f fermion on the surface. Thus, the fermion parity is conserved.

Note that both the monopole and the f particle are electrically neutral, so there is no

long-range statistical interaction between them mediated by the 3d photon.

D. General constraints on the surface.

The discussion in the previous section immediately generalizes to a proof of the statement

that if the surface of a bosonic topological insulator is neither gapless, nor spontaneously

breaks the symmetry it must possess topological order. Indeed, suppose the surface is fully

gapped and does not break the time-reversal symmetry. Then the surface Hall-conductivity

σxy = 0. Now, let’s tunnel a neutral monopole across the interface between the vacuum

and the topological insulator. Since σxy = 0, no polarization charge is induced on the

surface. This means that any excitation created on the surface during the tunneling process

is neutral. Thus, this excitation will possess no statistical interaction with the monopole

in the bulk. Now, the neutral monopole in the bulk is a fermion. Thus, the quasiparticle

left on the surface is likewise a fermion. Hence, the gapped surface state must support

fermionic excitations. Since we are dealing with a system made out of bosons, the presence

of fermionic quasiparticles implies that the surface phase has intrinsic 2d topological order.

QED.

The above argument not only proves that the gapped, symmetry respecting surface of

the topological insulator must support intrinsic topological order, but also places some

constraints on the order allowed. In general, it may be convenient to label SPT phases by

their gapped, symmetry respecting topologically ordered surface states. Such a label will

carry the information about the intrinsic topological order (fusion rules, braiding statistics),

as well as the quantum numbers of anyon excitations under the global symmetry. Of course,

many different topologically ordered surface states may be realized; in fact, one can always

“paint” an additional layer of a purely two-dimensional topologically ordered phase on top of

the surface. A possible way to arrange the different topologically ordered states is by their

quantum dimension D. Thus, we may use the surface state(s) with the lowest quantum

dimension to label an SPT phase. (There may still be several such states allowed).

We note that any surface state of an SPT that has intrinsic topological order, apart

from the realization of global symmetry, has to be identical to one of the allowed strictly 2d

topological orders. This follows immediately from the slab construction mentioned above, in

which the top surface is the state in question and the bottom surface is in a gapped global

symmetry violating topologically trivial state. Since both the bulk of the SPT phase and

the bottom surface support no topologically non-trivial excitations, the topological order of

the slab as a whole is just given by the topological order on the top surface. This proves that

the braiding statistics on the surface of an SPT phase must be realizable strictly in 2d. Note

that since the bottom surface in the above construction breaks the symmetry, this argument
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makes no statement about the realization of symmetry in the topologically ordered state on

the top surface.

Let us now identify the symmetry respecting topologically ordered surface state(s) of the

bosonic topological insulator with the lowest quantum dimension. One allowed topologically

ordered surface state is the toric code with charge 1/2 anyons, discussed in the previous sec-

tion. This state has a quantum dimension D = 2. It is known that there are no time-reversal

invariant topological orders with a smaller quantum dimension.34 Moreover, the only other

time-reversal invariant topological order with D = 2 is the double-semion theory.34 However,

as argued above, the topologically ordered state on the surface must posses fermionic quasi-

particles. The double-semion theory supports no fermionic excitations. Thus, we conclude

that the toric code with charge 1/2 anyons is the unique symmetry respecting surface state

of the bosonic topological insulator with the smallest quantum dimension.

V. RELATION TO THE COHOMOLOGY CLASSIFICATION

In this section, we briefly comment on the potential place of the bosonic topological insu-

lator phase considered in the present paper within the cohomology classification of Ref. 20.

A similar discussion has been given by VS.

The cohomology classification predicts a Z2
2 structure for 3d phases with the bulk sym-

metry group U(1) n ZT
2 . This means that there are three non-trivial phases, g1, g2, g3

where the third one, “g3 = g1 + g2,” can be thought of as a weakly interacting “mixture” of

the first two. Moreover, the cohomology technology predicts a Z2 classification for phases

with just the ZT
2 symmetry and no nontrivial phases with just the U(1) symmetry. This

implies that one of the three non-trivial phases with U(1) n ZT
2 symmetry, say g1, is just

the non-trivial ZT
2 phase, i.e it does not involve the U(1) symmetry in any interesting way.

In particular, if we start with g1 and explicitely break the U(1) symmetry, the resulting

state is still protected by ZT
2 and cannot be smoothly connected to a product state. On

the other hand, since g3 = g1 + g2, out of the remaining two phases, g2 and g3, one (say

g2) must become trivial under the ZT
2 classification if U(1) is explicitely broken, while the

other (g3) remains non-trivial. We hypothesise that the phase g2 is identical to the bosonic

topological insulator described in this paper: it is unstable whenever either the U(1) or the

ZT
2 symmetry is broken in the bulk. It would be desirable to explicitly confirm this identi-

fication by showing that the exactly solvable lattice model of Ref. 20, which realizes the g2

phase, indeed, exhibits the statistical Witten effect. We note that VS have also conjectured

an effective theory for the pure ZT
2 phase g1, and thereby, for the phase g3. However, we do

not consider these phases in the present work.

We also note that VS have proposed an additional phase with just the ZT
2 symmetry,

which falls outside the cohomology classification of Ref. 20. The time-reversal symmetry

breaking surface state of this phase has a thermal Hall response with κxy/T = 4, so that a

domain wall on the surface between two time-reversal conjugate regions with κxy/T = ±4

supports 8 chiral gapless modes (cL − cR = 8). This gapless domain wall is identical to the
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edge state of a 2d E8 integer quantum Hall state of bosons with κxy/T = 8. Recently, several

explicit constructions of this 3d phase have appeared35,36 (including an exactly solvable model

in Ref. 36). Again, we do not consider this phase (and its mixtures with “conventional”

cohomology phases) in this paper.

VI. CONCLUSION

In the present paper we have identified the statistical Witten effect as the bulk signa-

ture of three-dimensional bosonic topological insulators, protected by the symmetry group

U(1) n ZT
2 . We have shown that this effect immediately implies that the surface physics

of the topological insulator cannot be fully realized in a local two-dimensional model. The

statistical Witten effect also implies that if the surface is neither gapless, nor spontaneously

breaks the symmetry, it must be topologically ordered. Moreover, we have demonstrated

that the surface phases of the bosonic topological insulator inferred by Vishwanath and

Senthil22 are consistent with the statistical Witten effect in the bulk.

A reader may ask, how do the authors know that time reversal respecting insulators

exhibiting the statistical Witten effect can exist? In a forthcoming paper,27 we will provide an

explicit field-theoretic, lattice-regularized, construction of a time-reversal invariant bosonic

insulator, which displays the statistical Witten effect in its bulk and realizes the surface

phases of VS. The first step of our construction involves a parton decomposition of the

microscopic bosons, which yields a phase with an emergent gapless u(1) gauge field and

deconfined parton and monopole excitations. (The emergent gauge field and its monopoles

should not be confused with the external electromagnetic gauge field). In the second step, we

form certain dyon bound states of monopoles and partons, and by dyon condensation drive

a confinement transition to a fully gapped phase with no intrinsic topological order. This

phase has all the bulk and surface properties of a bosonic topological insulator discussed in

the present paper.

An important question is whether the bosonic topological insulator can be realized ex-

perimentally, for instance, in a cold atom system. A first step towards this goal would be

to identify realistic lattice models that might support such a phase. While the cohomology

classification20 provides an exactly solvable model realizing each SPT phase, such models

involve complex multi-site interactions whose experimental implementation is unlikely.

In this work we have pursued the line of attack,24–26 where symmetry protected topolog-

ical phases are differentiated by “weakly gauging” their global symmetry. As the present

paper was being completed, significant broad progress on the same front was reported in

Ref. 37, which utilized this general approach to distinguish SPT phases within the coho-

mology classification20 with various global symmetries. However, we do not know how to

“gauge” the time-reversal symmetry. Thus, we do not have a completely general tool to

diagnose SPT phases whose global symmetry group contains time-reversal. Fortunately, for

the topological insulator phase considered in this paper, it was sufficient to gauge just the

U(1) part of the symmetry to expose the statistical Witten effect; time-reversal remained
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as a global symmetry of the resulting weakly fluctuating U(1) gauge theory. However, there

are phases within the cohomology classification, which appear to involve the time-reversal

symmetry in a more “active” manner. For instance, the classification predicts a single non-

trivial SPT phase in three dimensions with just the time-reversal symmetry.9 Although a

surface theory for this phase was proposed by VS, a bulk signature is currently lacking. Yet

a bulk diagnostic would be greatly desirable, since the surface termination is generally not

unique. Moreover, it is often not immediately obvious why a given surface phase cannot be

realized in a purely two-dimensional system. As we have seen with the example of the ordi-

nary/statistical Witten effect in fermionic/bosonic topological insulators, a bulk signature

may be the key to identifying (and resolving) the surface “anomaly.”

Note added: Concurrently with this paper, Ref. 35 has appeared, which discusses the

fermionic statistics of monopoles inside the bosonic topological insulator using as the starting

point the form of the ground state wave-function obtained in Ref. 38. Ref. 35 also provides

a “coupled-layer” construction of the bosonic topological insulator.
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Appendix A: Statistical interactions near the σxy = 1 surface of a bosonic topological

insulator.

In this appendix, we study the surface of the bosonic topological insulator with σxy = 1

when the system is coupled to a weakly fluctuating 3d compact electromagnetic gauge field

Aµ. We show that bosons b and monopoles m moving in the plane of the surface experience

an interaction, which mimics two-dimensional fractional exchange statistics.

We begin with the following action,

S =
1

4e2

∫
d4x(Fµν − 2πMµν)

2 +
i

4π

∫
z=0

d3x‖εijkAi∂jAk + i

∫
d4xAµJ

b
µ + S0

B (A1)

9 As we have already mentioned, there also exists a different SPT phase with time-reversal symmetry,22,35,36

which lies outside the conventional cohomology classification of Ref. 20.
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Here, the region z > 0 is occupied by the trivial vacuum, the region z < 0 by the topological

insulator and the interface lies in the z = 0 plane. The Greek indices run over τ, x, y, z,

while the Latin indices run over τ, x, y; x‖ = (τ, x, y) labels the coordinates in the plane of

the interface. The Chern-Simons term for A encodes the σxy = 1 electromagnetic response

of the surface. J bµ is the 3+1 dimensional boson current. Mµν represents the Dirac strings

of magnetic monopoles, so that the 3+1 dimensional monopole current is given by Jmµ =

−1
2
εµνλσ∂νMλσ. S0

B is a Berry’s phase term, which endows the monopoles in the topological

insulator with fermionic statistics. We will give an explicit expression for this term below.

Note that we have not “compactified” the Chern-Simons term; here, for simplicity, we

will not expicitely consider events where monopoles tunnel through the surface. We can then

separate monopoles into those in the trivial vacuum (m+) and in the topological insulator

(m−), and write Mµν = M+
µν + M−

µν , with the corresponding monopole currents Jm±µ =

−1
2
εµνλσ∂νM

±
λσ. We choose a gauge where the Dirac strings of m+ and m− do not pass

through the interface. More specifically, we take the Dirac string of a static m+ monopole

to run along the +z direction and the Dirac string of a static m− monopole to run along

the −z direction:

M±
ij = −εijk

∫
d4x′S±(x− x′)Jm±k (x′), M±

iz = 0 (A2)

S± = ±θ(±z)δ(x)δ(y)δ(τ) (A3)

Then, M+, Jm+ (M−, Jm−) vanish as long as z < 0 (z > 0).

It is now simple to give an expression for S0
B:

S0
B = πi

∫
d4xd4x′Jm−i (x)εijk∂jD3(x‖ − x′‖)Jm−k (x′) (A4)

Here, D3(x‖) = (4π|x‖|)−1, is the 2 + 1 dimensional propagator. Eq. (A4) can also be

rewritten as

S0
B = πi

∫
d3x‖d

3x′‖J
m−‖
i (x‖)εijk∂jD3(x‖ − x′‖)J

m−‖
k (x′‖) (A5)

where

J
m±‖
i (x‖) =

∫
dzJm±i (x‖, z) (A6)

is the projection of the 3 + 1 dimensional monopole current onto the z = 0 plane. Eq. (A5)

gives the familiar Berry’s phase for a 2d fermion with current J
m−‖
i . Now, if we consider a

process where two 3d monopoles m− are exchanged, their projections onto the z = 0 plane

are also exchanged. Hence, Eq. (A5) accurately captures the full 3+1 dimensional “intrinsic”

fermionic exchange statistics of m− monopoles. (Here, we do not consider configurations

where two m− monopoles simultaneously have the same x, y coordinates and so have the

same projection onto the z = 0 plane. Such configurations form a set of measure zero.)

We next integrate out the gauge field Aµ in the action (A1) to determine the full statistical

interaction between the b and m± particles. To do so, it is convenient to introduce an
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auxilliary 2 + 1 dimensional gauge field αi living on the interface and rewrite (A1) as,

S =
1

4e2

∫
d4x(Fµν − 2πMµν)

2 + i

∫
d4xAµJ

b
µ + S0

B

+

∫
d3x‖

(
− i

4π
εijkαi∂jαk +

i

2π
Aiεijk∂jαk

)
(A7)

The integral over Aµ is now easy to perform, giving

Seff = S3+1
eff + S0

B + Sα (A8)

where

S3+1
eff =

1

2

∫
d4xd4x′

(
J bµ(x)D4(x− x′)J bµ(x′) +

(2π)2

e2
Jmµ (x)D4(x− x′)Jmµ (x′)

)
+ 2πi

∫
d4xd4x′J bµ(x)D4(x− x′)∂νMµν(x

′) (A9)

and

Sα = − i

4π

∫
d3x‖ αiεijk∂jαk +

e2

2(2π)2

∫
d3x‖d

3x′‖αi(x‖)(−∂2
‖δij + ∂i∂j)D4(x‖ − x′‖)αj(x′‖)

+ i

∫
d3x′‖αi(x‖)j

α
i (x‖) (A10)

with

jαi (x‖) =

∫
d4x′εijk∂jD4(x‖ − x′)

(
∂lMkl(x

′)− ie2

2π
J bk(x

′)

)
(A11)

Here, D4(x) = (4π2|x|2)−1, is the 3 + 1 dimensional propagator. The effective action S3+1
eff

represents the standard bulk interaction between charges and monopoles mediated by the

gapless photon, while Sα captures the modification of the interaction due to the interface.

Let us first discuss S3+1
eff . The first two (real) terms in Eq. (A9) give rise to the 1/r

Coulomb interaction between static charges/monopoles. The last (imaginary) term in

Eq. (A9), which we denote as S3+1
B , encodes the bulk statistical interaction between charges

and monopoles. Explicitely,

S3+1
B = −2πi

∫
d4xd4x′J bi (x)εijk

(
∂jK

+(x− x′)Jm+
k (x′) + ∂jK

−(x− x′)Jm−k (x′)
)

(A12)

where

K±(x‖, z) = ± 1

4π2|x‖|

(
π

2
± tan−1

(
z

|x‖|

))
(A13)

We note that the seeming difference between K+ and K− corresponds to a gauge choice;

a replacement of K− by K+ in Eq. (A12) modifies the action by a multiple of 2πi. Here,

we are interested in configurations where the separation between the excitations along the
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surface, |x‖|, is much larger than their distance to the surface z. In this “2d” limit, we

may set z in Eq. (A13) to zero. (A finite value of z gives corrections to the “2d” statistical

interaction, which are less relevant in the RG sense.) We then obtain,

S3+1
B = −πi

∫
d3x‖d

3x′‖J
b‖
i (x‖)εijk∂jD3(x‖ − x′‖)(J

m+‖
k (x′‖)− J

m−‖
k (x′‖)) (A14)

with J
b‖
i defined analogously to Eq. (A6). Eq. (A14) implies that in the absence of a σxy = 1

surface, charges and monopoles behave as mutual semions, when moving in a 2d plane. This

is the expected result.

We now turn our attention to the modification of the bulk statistics by the interface,

described by the Sα term (A10). Integrating the gauge field αi out, we obtain,

Sαeff =
1

2

∫
d3x‖d

3x′‖j
α
i (x‖)D

α
ij(x‖ − x′‖)jαj (x′‖) (A15)

with Dα - the propagator of the α field, explicitely given by

Dα
ij(x‖) =

2π

1 + α2
(−iεijk∂kD3(x‖) + 2αδijD4(x‖)) (A16)

Here, we work in the gauge ∂iαi = 0. After some algebra, we find that in the “2d” limit

described above, the imaginary (Berry’s phase) part of Eq. (A15) simplifies to,

SαB = i

∫
d3x‖d

3x′‖
~JTi (x‖)Θ

αεijk∂jD3(x‖ − x′‖) ~Jk(x′‖) (A17)

with ~J = (J b‖, Jm+‖, Jm−‖) and

Θα =
π

1 + α2

 −α2 α2/2 −α2/2

α2/2 1/4 −1/4

−α2/2 −1/4 1/4

 (A18)

After combining Eq. (A17) with the bulk Berry’s phases, Eqs. (A5), (A14), we find that the

total Berry’s phase for 2d exchange processes is given by,

SB = i

∫
d3x‖d

3x′‖ ~J
T
i (x‖)Θεijk∂jD3(x‖ − x′‖) ~Jk(x′‖) (A19)

with

Θ =
π

1 + α2

 −α2 −1/2 1/2

−1/2 1/4 −1/4

1/2 −1/4 1/4 + (1 + α2)

 (A20)

The effective statistical angles in Eqs. (4.3), (4.4) immediately follow. We can now imagine

a process discussed in the main text, where an m+ monopole tunnels through the interface,
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turning into an m− monopole and a b anti-particle, and leaving a polarization charge 1 on

the surface. Such a process can be thought off as a creation of an excitation with quantum

numbers (−1,−1, 1), corresponding to entries in the vector ~J . One can use Eq. (A20) to

check that the (−1,−1, 1) excitation has bosonic self-statistics and trivial mutual statistics

with all the other excitations. Therefore, monopole tunneling events preserve the statistics

and the theory is consistent.

Appendix B: Statistics of superfluid vortices on the surface of a bosonic topological

insulator.

This appendix is devoted to the statistics of vortices on the superfluid surface of a 3d

bosonic topological insulator in the absence of a fluctuating electromagnetic gauge field.

As discussed in section IV B, the superfluid surface is described by the effective theory in

Eqs. (4.5),(4.7). Here, we turn off the external electromagnetic field Aµ.

As superfluid vortices have a long-range logarithmic interaction, the notion of statistics

here is formal. For the present purposes, we define statistics as the Berry’s phase in the

imaginary time path integral accumulated during an adiabatic exchange. With this formal

definition, as long as the tunneling between the ψ+ and ψ− vortices in Eq. (4.7) is switched

off, the statistics of ψ± are clearly bosonic. Any “statistical interaction” between superfluid

vortices must, therefore, come from this tunneling term (4.7). In contrast, once fluctuations

of the external electromagnetic field are switched on, vortices acquire fermionic statistics

even when the tunneling term (4.7) is absent. Moreover, as already noted, once the theory is

gauged, a weak tunneling λ between the ψ+ and ψ− flux-tubes does not affect their statistics.

Hence, the fermionic statistics of flux-tubes and any potential statistics of superfluid vortices

have different dynamical origins.

Let us now turn on a weak tunneling term (4.7) and carefully examine the statistics of

resulting superfluid vortex excitations. We can think of an isolated vortex as a two-level

system (ψ+, ψ−) with an energy splitting 2∆ related to the difference of bare energies of ψ+

and ψ− vortices. As we already pointed out, in the absence of an additional particle-hole

symmetry, ∆ will generally be non-vanishing. Our two-level system also has a tunneling

amplitude λ〈m†〉 related to the local expectation value of the monopole operator m. Hence,

we can think of the vortex as a spin in a magnetic field ~b = (λRe〈m†〉, λIm〈m†〉,∆).

As we already noted, m† may be interpreted as the local order parameter of the superfluid.

According to this interpretation, the phase of 〈m†〉 should wind by 2π around a superfluid

vortex. This can be confirmed by an explicit calculation of the monopole expectation value

in our dual gauge theory description.39

Now, imagine starting with vortex 1 at ~x = (a, 0) and vortex 2 at ~x = (−a, 0), and per-

forming a counter-clockwise exchange operation. Each vortex “spin,” ξ1,2, will see the effec-

tive “magnetic field,”~b1,2, generated by the phase of the other vortex. We may write,~b1(τ) =

(λ|〈m〉| cos θ(τ), λ|〈m〉| sin θ(τ),∆) and ~b2(τ) = (−λ|〈m〉| cos θ(τ),−λ|〈m〉| sin θ(τ),∆), with

θ(τ) evolving with time from 0 to π, so that ~b1 and ~b2 exchange during the process. If
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we start with both vortex spins in their respective ground states, the system picks up

a Berry’s phase equal to the area on the unit sphere traced out by ~b1 and ~b2, namely

SB = iπ(1 − ∆/
√
λ2|〈m〉|2 + ∆2). On the other hand, if both vortex spins are in their

excited states, an opposite Berry’s phase is picked up. Hence, as long as the splitting ∆ is

non-zero, the vortex statistics is entirely non-universal. This differs from the conclusion of

VS that vortices are fermions. The vortex statistics is fermionic only if ∆ = 0.

Thus, in the absence of an extra symmetry, which would guarantee the degeneracy of ψ+

and ψ− vortices, the vortex statistics are non-universal. If such a symmetry is present, the

statistics are fermionic.
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