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We have constructed the Green’s tensor for two-dimensional gyrotropic photonic clusters and
have calculated their optical local density of states (LDOS). For clusters that support the chiral
Hall edge states we calculate the LDOS as a function of wavelength, position, size and shape of
the cluster. It is shown that the LDOS of Hall edge states is a strong function of the cluster shape
and position. The LDOS can be orders of magnitude higher at the edges of the cluster compared
to the free space value while it vanishes towards the cluster centre. It is shown that the LDOS
in such photonic clusters can withstand a very strong disorder due to their topological protection.
The spatial profiles of chiral Hall edge modes, their quality factors and their excitations have been
calculated. Both gyro-electric and gyro-magnetic (ferrite) clusters have been treated.

PACS numbers: 42.70.Qs,42.25.Gy

I. INTRODUCTION

Analogies between solid state physics and optics have turned out to be very productive. One of the examples of this
is the field of photonic crystals1. Such materials are sometimes called semiconductors for photons owing to the strong
resemblance between optical and electronic band structures. The properties of such artificial periodic nano-materials
can be exploited to miniaturize optical components leading to compact energy-efficient optical devices.
One of the well known fundamental effects in solid state physics is the integer quantum Hall effect (QHE)2–5. It has

been discovered that the Hall conductance of two dimensional metallic samples at low temperatures, in a magnetic
field is quantized in multiples of the ratio e2/h. This led to the establishment of an electrical resistance standard and
unprecedentedly accurate measurement of the fine structure constant α = e2/hc. One of the fundamental features
of the QHE is the existence of chiral edge states. This property has been recognized early5 and has been used to
characterize the Hall conductance in Landauer’s formalism. At first sight it is hard to assume that chiral Hall edge
states can exist for photons, where there are no Landau levels in the presence of a magnetic field, and photons are
bosons in contrast to fermionic electrons. However, these differences have been proven to be not essential6. What
is crucial instead is the breaking of time-reversal symmetry which leads to the realization of the QHE in electronic
systems without the necessity of a static magnetic field. This finding paves the way for the possibility to have an
analogue of the chiral Hall edge states for photons.
Recently the existence of the photonic chiral states have been pointed out in beautiful papers by Haldane and

Raghu7,8 where they proposed to use photonic crystals made of optically active materials possessing Dirac points
in their dispersion diagrams at the absence of the magnetic field. Subsequently it has been shown theoretically
that one-way edge states can exist in photonic crystals with gyrotropic components, even without Dirac points9 and
experimentally observed by Wang et al10. In these geometries7–10 the one-way edge states exist at the interface of
two photonic crystals where the Chern number – the topological invariant of a band11 changes across the interface.
The second photonic crystal here acts like a mirror and thus provides the confinement of the one-way edge state given
that the edge states lie inside the light cone. It turns out that the one-way edge state can exist also at the interface
of a gyrotropic photonic crystal and free space provided that the one-way edge states lie below the light cone12.
Similar one-way electromagnetic modes exist as a one-way surface plasmon when a metal is subject to a strong

magnetic field13, at the edges of a photonic crystal ribbon with infinite extent in transverse directions,14 or even in cou-
pled plasmonic particle chains,15–17 and at the interface of two gyrotropic media with opposite magnetization18. Such
strong interest in the properties of photonic chiral Hall edge states is based on their intrinsic properties, immunity to
backscattering and disorder. This makes them an ideal candidate for the development of robust nanoscale waveguides
and interconnects. Therefore, it is important to understand their fundamental properties. A microscopic theory of
chiral Hall edge states has been developed in the tight-binding approximation,19 where the connection between the
one-way edge modes and the bulk modes have been established.
So far the research has been concerned mainly with the establishment of the existence of the chiral Hall edge states

in different photonic systems with an infinite or semi-infinite extent, with the exception of Ref.12. However all realistic
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photonic structures are finite and therefore it is necessary to investigate the properties of the chiral Hall edge modes
in finite photonic clusters. Knowledge of the spatial profiles and quality factors of these chiral edge modes, their
dependencies on the shape of the cluster, as well as their excitations are very important in potential applications. It
is important also to investigate the radiation properties of sources embedded in such structures. These properties are
determined by their local density of states, which is given by the imaginary part of the trace of the electromagnetic
Green’s tensor20,21.
The purpose of this paper is twofold. The first is to construct the Green’s tensor in finite photonic gyrotropic

clusters which support chiral Hall edge states, and to characterize their LDOS. The second is to calculate the spatial
profiles of chiral Hall edge states, their quality factors and their excitations. We also present the effects of disorder on
LDOS of one-way Hall edge states. We consider both gyroelectric and gyromagnetic (commonly known as ferrites)
photonic clusters composed of circular cylinders of infinite extent.
In Sec. II we outline the construction of the Green’s tensor of gyrotropic photonic clusters based on the multipole

approach. In Sec. III we present the numerical results of the LDOS calculations of gyroelectric and ferrite photonic
clusters. Then, we present the results of the spatial profile calculations of chiral Hall edge modes, their quality factors
and their excitations. Finally, we consider the effects of disorder on the LDOS.

II. ANALYTICAL TREATMENT

In this section we outline the application of the multipole method to construct the Green’s tensor for two-dimensional
ferrite and gyroelectric photonic clusters composed of cylinders with circular cross-sections, and to calculate their
LDOS. The method of calculation of chiral Hall edge mode profiles and their quality factors are also given. The details
of the derivation will be presented elsewhere. To construct the Green’s tensor we apply the multipole technique22

proven to be highly efficient and accurate23,24. The LDOS can be calculated from the imaginary part of the Green’s
tensor20,21

ρ(r;ω) = −4ImTr[Ge
αβ(r, r;ω)], (1)

where Ge
αβ(r, cs;ω) is the 3 × 3 electric field Green’s tensor for an observation point at r and a source point at cs.

The columns of the Green’s tensor [Ge
xβ , G

e
yβ, G

e
zβ ] are generated by a source parallel to axes β = x, y, z. In Eq.(1)

the LDOS is normalized to its free space value.
The geometry of the problem consists of Nc non-overlapping monotype gyrotropic cylinders aligned along the z

axis with radii al and located at the positions cl and with the dispersive tensorial material parameters ε̂l(ω) and
µ̂l(ω). The cylinders are located in a gyrotropic background medium with material parameters ε̂b(ω) and µ̂b(ω).
The positions of the cylinders, their radii and their material characteristics can be arbitrary. Although the material
characteristics of cylinders and background media can be complex, in the numerical examples in Sec. III they are
assumed to be hermitian tensors. The time dependence we choose in the form e−iωt, and we scale the magnetic field
by the free space impedance Z0, Z0H → H.
The magnetic permeability tensor of a ferrite material is given by

µ̂ =




µ⊥ iµxy 0
−iµxy µ⊥ 0

0 0 µ||


 (2)

and the dielectric constant of a ferrite is a scalar ε. The dielectric permittivity tensor of a gyroelectric material has
the form

ε̂ =




ε⊥ iεxy 0
−iεxy ε⊥ 0

0 0 ε||


 (3)

and the magnetic permittivity is a scalar µ. In (2) and (3) we have assumed the Voigt geometry where the external
static magnetic field H0 is applied in the z axis direction.
For this geometry, the polarizations are decoupled and the field is determined by a single component Ez for TM

polarization and ferrite cylinders, while it is specified by the Hz component for the TE polarization and gyroelectric
cylinders. The TE polarization for ferrite cylinders and the TM polarization for gyroelectric cylinders are not inter-
esting and their solutions simply reduce to the known scalar case22. Therefore, for ferrite clusters we consider only
the TM polarization, while for the gyroelectric cylinders we consider the TE polarization only.
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Accordingly, for this two-dimensional geometry the Green’s tensor for TM polarization reduces to a form involving
only a single scalar Ge = Ezδuz , and the LDOS can be calculated from

ρ = −4Im[Ez(r, r;ω)], (4)

while for TE polarization the Green’s tensor reduces to a 2× 2 tensor

Ge =




Gxx Gxy 0
Gyx Gyy 0
0 0 0


 (5)

and the LDOS we calculate from (1) where the Green’s tensor is given by (5).
For the ferrite cluster, the electric field component Ez is determined from the equation

∇2Ez(r; cs) + k2n2(r)Ez(r; cs) = −δ(r− cs), (6)

where n2(r) = ε(µ2
⊥ − µ2

xy)/µ⊥ takes the role of the refractive index. For the gyroelectric cluster the magnetic field
Hz component of the Green’s tensor is given by the solution of the equation

(
∇2 + k2n2(r)

)
Hz(r) = iẑ · [∇× (ε̂−1u δ(r− cs))]/k, (7)

where n2(r) = µ(ε2⊥ − ε2xy)/ε⊥ and ε̂−1 is the inverse of the dielectric tensor (3). To find all the components of the
electric Green’s tensor Ge (5) it is necessary to solve (7) for the two orientations of the source u = x,y and find the
corresponding electric field components from Maxwell’s equation E = −ε̂−1∇×H/ik. The equations (6) or (7) needs
to be solved in order to construct the Green’s tensor and to deduce the LDOS using (1) for the TE polarization or
(4) for the TM polarization. The calculations of the spatial profiles of chiral Hall edge states are also found from the
solutions of (6) or (7) but without the source terms.
To find a solution of the multiple scattering problem (6) or (7) we represent the exterior field in the background

medium at cylinder l with local coordinates rl = (rl, θl) = r− cl in the multipole expansion

V (r; cs) =

∞∑

m=−∞

[
Al

mJm(knerl) +Bl
mH(1)

m (knerl)
]
eimθl , (8)

while the interior field is

V (r; cs) =

∞∑

m=−∞

[
Cl

mJm(knl
irl) +Dl

mH(1)
m (knl

irl)
]
eimθl , (9)

where V (r) represents either the Ez or Hz field and ne and nl
i are the refractive indices of the background medium

and cylinder l respectively. The coefficients Al = [Al
m] represent the local field at the vicinity of the lth cylinder

originating from all other cylinders or external sources and Bl = [Bl
m] represent the outgoing field of the lth cylinder,

while Cl = [Cl
m] represent the internal field of the cylinder l and Dl = [Dl

m] represent the field originating from an
internal source of the lth cylinder. By applying Green’s second theorem over the cluster, with a subsequent application
of Graf’s addition theorem, we derive a partitioned system of linear equations for the unknown multipole coefficients
Bl. With the introduction of the partitioned vector B = [Bl] the linear system for the unknown coefficients B can
be expressed as

(I−RH)B = Q, (10)

where Q represents the external or internal sources. This is an infinite system of equations and must be truncated in
any numerical implementation. The number of retained multipole coefficients per cylinder determines the accuracy
of the solution. The internal field expansion coefficients Cl are expressed in terms of Bl using boundary conditions
which are satisfied exactly in this approach. The nonreciprocal behavior of the considered clusters originates from
the boundary conditions. The boundary condition matrix for gyrotropic circular cylinders is diagonal as in the scalar
case (see Ref.22) but contains an additional term proportional to εxy. The explicit form of these relations will be
given elsewhere. The external Ez field can be reconstructed from the global expansion

Ez(r; cs) = H
(1)
0 (kne|r− cs|)/(4i)

+

Nc∑

q=1

∞∑

m=−∞

Bq
mH(1)

m (kne|rq|)e
im arg(rq),

(11)
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where rq = r − cq, while the internal field of the lth cylinder can be calculated using the local expansion (9). The
reconstruction equation for the Hz field takes a similar form

Hz(r; cs) = (Q1e
i arg(r−cs) +Q2e

−i arg(r−cs))

× H
(1)
1 (kne|r− cs|)

+

Nc∑

q=1

∞∑

m=−∞

Bq
mH(1)

m (kne|rq|)e
im arg(rq),

(12)

and the internal Hz field of the lth cylinder can be calculated using the local expansion (9). The first term in (11)
or (12) is absent when the source is located in one of the cylinders. Likewise the second term in (9) is absent if the
source is in the background. All other field components are found from Maxwell’s equations analytically.
The outlined multipole method is efficient and accurate as for the scalar material case22. The singularity of Green’s

tensor is associated only with the source term and this is removed analytically in Eq.(1) and Eq.(4) thereby leading to
highly accurate results for the calculated LDOS values. The boundary conditions on each cylinder are satisfied exactly,
facilitating convergence, and the calculation of the LDOS map requires only one matrix inversion. The generalized
Lorentz reciprocity condition25 Ge

αβ(r, cs,H0) = Ge
β,α(cs, r,−H0) holds with accuracy better than 10−10 in all our

numerical examples in Sec. III.
To find the chiral Hall edge states it is necessary to find the null solutions of the generalized eigenvalue system

(I−RH)B = 0. (13)

This requires the vanishing of the determinant of the linear system i.e.

det(S−1) = 0, (14)

S−1(λ) = (I−RH). (15)

This is equivalent of finding the poles of the scattering matrix S in the complex frequency ω plane, or equivalently in
the complex wavelength plane λp = λ′

p + iλ′′
p . All poles are located in the lower half of the complex frequency plane

or equivalently in the upper half of the complex wavelength plane because of the causality condition.
The finite cluster is open, and therefore all modes are leaky. Their quality factors can be calculated using the ratio

Q = λ′
p/2λ

′′
p , where λ′

p is the real part of the wavelength and λ′′
p is its imaginary part. The real part λ′

p defines
the wavelength or the frequency of the mode while the imaginary part λ′′

p defines its quality factor Q. After the
poles are found the application of the singular value decomposition to (13) determines the vector of the multipole
coefficients B for all cylinders. The modal field can then be reconstructed using equations (9), (11) or (12) without
source terms, and all other field components are calculated analytically using Maxwell’s equations. It is well known
that the Green’s tensor has a modal decomposition (see Eq.(II.12) in Ref.20 or Eq.(3.5) in Ref.21), but we will not
consider this representation here.

III. NUMERICAL RESULTS

In this section we present the results of numerical calculations of the LDOS of chiral Hall edge modes as a function
of wavelength, position and cluster shape based on the method outlined in Sec. II. The spatial dependencies, quality
factors and excitations of chiral Hall edge modes are also presented. First we consider the gyroelectric photonic
honeycomb cluster (see Fig. 1(a)), and then we present results for ferrite clusters in the shape of a finite honeycomb
ribbon and a hexagonal shaped honeycomb flake (see Fig. 9). The effects of disorder on the LDOS are also briefly
discussed.

A. The LDOS and chiral Hall edge modes in gyroelectric clusters

Here we study the properties of the LDOS and the chiral Hall edge modes in gyroelectric clusters. For this case
we use the parameters and geometry reported in the reference19, in which it was shown that the one-way Hall states
exist between the interface of two semi-infinite photonic crystal regions (see Fig. 1a). The underlying photonic crystal
structure has a hexagonal lattice of period d of air cylinders. The cylinders have a radius a = 0.35d and are located
in a uniform dielectric with ε = 16. The TE modes of this crystal have a complete band gap for wavelengths
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FIG. 1: (Color online) (a) The geometry of the gyroelectric cluster composed with Nc = 770 cylinders. In the corresponding
semi-infinite photonic cluster the edge states are localized at the interface between the top five layers and the bottom gyroelectric
cluster formed with Nc = 633 cylinders. (b) The band structure of a corresponding infinite photonic crystal embedded with
honeycomb resonators.

3.390 < λ/d < 5.208 (see the band diagram in Fig. 1(b)). In the structure shown in Fig. 1(a)) the top region consists
of such a photonic crystal. The bottom crystal is the same as the top except that there are gyroelectric cylinders
embedded in the hexagonal lattice, which themselves form a honeycomb lattice, with a lattice period d′ = 6d and
radii a = 0.5d. These are cylinders with larger radii, as plotted in Fig. 1(a). The components of the dielectric tensor
for gyroelectric resonators are ε⊥ = 16 and εxy = 1, while µ = 1 throughout. Such a choice of parameters has allowed
the application of the tight-binding approximation in Ref.19. The typical value of εxy for available materials is of
the order of 10−3 and presently there is an intense search to find ways in which this parameter can be enhanced.
The dielectric tensor components ε⊥ and εxy are functions of frequency and they have a form similar to the ferrites
permittivity tensor components (see Eq. (16)). It has been shown in Ref.9 that the effect of the dispersion is not
essential on the chiral Hall edge states and here we follow the Ref.19 and consider ε⊥ and εxy as constants. The
introduction of the honeycomb resonators with ε⊥ = 16 without magnetization εxy = 0 introduces new bands in the
band gap (red bands in Fig. 1(b) at d/λ ≈ 0.24 and d/λ ≈ 0.29.
The bands at d/λ ≈ 0.24 are replotted in Fig. 2(a) with an enlarged scale as a function of the wavelength λ/d

revealing the existence of a degenerate Dirac point at the K point of the Brillouin zone for the wavelength λ/d ≈ 4.44.
Using the λ/d scale will facilitate the subsequent comparison of the band diagram and the LDOS calculations. The
introduction of gyrotropic resonators with εxy = 1 lifts the degeneracy and band gaps are opened up (see Fig. 2(b))
resulting in bands with non-zero Chern numbers7.
In these situations the Hatsugai theorem27 ensures the existence of chiral Hall edge states. Then the introduction

of the top photonic crystal creates sufficient conditions for the existence of one-way Hall modes at the interface of the
two regions. For more details, see Ref.19.
Having reviewed the properties of semi-infinite structures, we now consider the properties of finite clusters. In Fig. 3
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FIG. 2: (Color online) (a) A fragment of the band structure for a hexagonal photonic crystal with embedded micro-resonators
without magnetization; (b) band structure for a hexagonal photonic crystal with embedded micro-resonators with magnetiza-
tion.
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FIG. 3: (Color online) The LDOS ρ on a logarithmic scale versus wavelength λ/d for an observation point at (−0.5; 2.98)
located in the background for the cluster composed with Nc = 633 cylinders (bottom green dashed curve). The blue solid curve
is the same as the green dashed curve but for a hexagonal cluster embedded with non-magnetized honeycomb resonators and
the red long dashed curve is the same as the blue curve but with gyroelectric resonators with radii a = 0.48d.

we plot the LDOS ρ on a logarithmic scale versus wavelength (the green dashed curve) for a finite hexagonal cluster
of Nc = 633 air cylinders embedded in the background with ε = 16 and for a point located in the background near the
centre of the cluster with the coordinates (−0.5, 2.89) (the bottom black dot in Fig. 1(a). This cluster is similar to
the structure plotted in Fig. 1(a) but without the top five layers and without the embedded resonators in the bottom
region. The LDOS for this cluster exhibits a clear photonic band gap in the wavelength range 3.40 < λ/d < 5.2
consistent with the band structure calculations. Within the gap the LDOS can be 109 times smaller than free space
value.
The blue solid curve in Fig. 3 is the LDOS for the same point and the same hexagonal cluster but with embedded

honeycomb resonators (see Fig. 1(a)). The introduction of the honeycomb resonators in this finite cluster introduces
two resonance regions at λ/d ≈ 3.5 and λ/d ≈ 4.5 inside the band gap which is consistent with the band structure
shown in Fig. 1(a). The LDOS at the Dirac point λ/d = 4.4 (see Fig. 2(a)) of this finite cluster is two orders of
magnitude lower than the free space value (see the blue curve at λ/d ≈ 4.4 in Fig. 3), while for the infinite photonic
crystal the LDOS at the Dirac point vanishes. We have calculated ρ for a larger cluster and have observed that ρ at
the Dirac point is reduced accordingly.
The LDOS for the cluster with the embedded resonators has one peak at the first resonance region at λ/d = 3.5

and two peaks at the second resonance region at λ/d = 4.5 (see the blue solid curve in Fig. 3). The introduction
of the magnetization splits these peaks in two. To see this more clearly we have replotted the vicinity of the second
resonance region in Fig. 4. The red long-dashed curve in Fig. 4 is the same as the red curve in Fig. 3 and reveals these
four resonance regions which correspond to the four bands of the infinite photonic crystal with embedded gyroelectric
microresonators (see Fig. 2(b)). The green dashed curve in Fig. 4 corresponds to the cluster with Nc = 770 cylinders
depicted in Fig. 1(a) but for a point located at the interface of a cluster with gyroelectric microresonators and a
‘mirror’ composed of five layers of a hexagonal photonic crystal for the point with the coordinates (−0.5, 11.65) (top
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FIG. 4: (Color online) The red long dashed curve is the same red curve as in Fig. 3, while the green dashed curve is the
LDOS for a gyroelectric cluster depicted in Fig. 1(a) and for a source point located at (−0.5, 11.65) (top black dot). The
blue oscillating curve is for the gyroelectric cluster with Nc = 1007 cylinders formed by placing four layer mirrors around the
gyroelectric cluster composed with Nc = 633 cylinders and for the same observation point as the green dashed curve.

black dot in Fig. 1(a)).
The blue solid curve in Fig. 4 is the LDOS for a cluster composed with Nc = 1007 cylinders formed by placing

‘mirrors’ composed of four layers of cylinders around the cluster with Nc = 633 cylinders and embedded gyroelectric
resonators and for the same observation point as for the green dashed curve. The geometry of this cluster is plotted
in Fig. 6. The introduction of the ‘mirrors’ has a dramatic effect on the LDOS which now has a number of strong
oscillations in this region. Surrounding a gyroelectric cluster with mirrors substantially confines the one-way modes.
This shifts the poles of the scattering matrix toward the real axis therefore their quality factors are substantially
higher and the one-way modes become ‘visible’ in the LDOS plot as well developed oscillations. By increasing the size
of the cluster more poles move closer to the real axis leading to more oscillatory behavior of the LDOS. In the limit of
the semi-infinite photonic crystal these oscillations form the band of the chiral Hall edge states (see Ref.19). Likewise
decreasing the cluster size reduces the number of the LDOS oscillations and broadens their width. The LDOS for
the interface point of these two finite clusters can be four orders of magnitude greater than the free space value (see
Fig. 4).
As reported in Ref.19 the one-way Hall edge states exist for wavelengths in between these four bands (see Fig. 2(b))

of the corresponding infinite photonic crystals. These bands are represented as four peaks of the LDOS in Fig. 4 for
a finite cluster. Therefore the scattering matrix S (15) must have poles for wavelengths in between these four peaks.
We have searched for the poles of the scattering matrix for the cluster with Nc = 770 cylinders (see Fig. 1(a)) and
have found a number of poles in this region. In particular there is a pole at the wavelength λ/d = 4.436 + i0.015 for
the cluster shown in Fig. 1(a).
In Fig. 5 we plot the spatial profile of the magnetic field intensity |Hz|

2 of this mode. The energy flow of this
mode is clockwise and a substantial part of the energy is leaked from the right hand side of the cluster as the mode
propagates clockwise. The quality factor of this mode is Q = 140. The field intensity |Hz|

2 of this one-way mode is
localized at the right edge of the cluster. In contrast, the one-way mode for the corresponding semi-infinite photonic
crystals is localized at their interface, which for this finite cluster is at y/d = 11.3.
To reduce the energy loss of this mode at the right edge of the cluster we have placed an additional ‘mirror’ (with a

band gap at these wavelengths) consisting of five layers of a hexagonal photonic crystal at the right-hand side of the
cluster. We have found a chiral Hall edge state for this enlarged cluster of Nc = 810 cylinders at λ/d = 4.439+ i0.009.
We have observed that now the leakage of the one-way edge mode is taking place from the bottom edge of the cluster
(the plot is not provided). The quality factor of this mode is Q = 245. These high losses of the one-way modes
in Fig. 5 and for a cluster with an additional ‘mirror’ at the right-hand side, occur because these modes exist for a
frequency above the light line and therefore they need the support of ‘mirrors’ to confine their energy. This support
occurs for semi-infinite photonic crystals where the one-way mode is localized at their interface19.
In Fig. 6 we plot |Hz |

2 as a function of position for a gyroelectric cluster surrounded by mirrors at all four edges.
There are Nc = 1007 cylinders in this cluster. The one-way edge mode is confined at the interface of the gyroelectric
cluster and ‘mirrors’ (see Fig. 6), and the quality factor is substantially higher for this mode Q = 48022. The blue
curve in Fig. 4 is the LDOS for this cluster and for the top black source point in Fig. 1(a). The LDOS is highly
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FIG. 5: (Color online) The intensity of the magnetic field distribution |Hz|
2 of the chiral Hall edge state in a logarithmic scale

for the gyroelectric cluster depicted in Fig. 1(a) at λ/d = 4.436 + i0.015.

FIG. 6: (Color online) The intensity of the magnetic field distribution |Hz|
2 of the chiral Hall edge state for the gyroelectric

cluster in the logarithmic scale at λ/d = 4.435 + i4.617 × 10−4. The quality factor of this mode is Q = 48022.

oscillatory in this case and each resonance corresponds to a one-way edge mode. To show the one-way nature of this
mode in Fig. 7 we plot the distribution of the Poynting vector at the bottom right corner of the cluster. This plot shows
the clockwise nature of the field propagation. Interestingly the energy flow inside of the cylinders is anticlockwise.
Such behavior might be determined by the geometry of the cluster but more calculations are needed before a general
conclusion can be made. The field is concentrated more inside the gyroelectric cylinders. To excite this one-way mode,
it is sufficient to place a radiating source close to the interface between these two clusters. We have calculated the
field distribution for a source located at (0.5, 11.65). The field distribution is very similar to the modal distribution
(see Fig. 6) and we do not provide them here. Interestingly the field values inside of the gyroelectric cylinders and for
a source oriented along the x axis are two orders of magnitude greater than for a y source orientation. This behavior
can be explained by the fact that the x-oriented source matches the edge state field value and excites the edge state
more easily than the y-oriented source at this source position.
In Fig. 8 we plot the spatial distribution of the LDOS for the chiral edge mode wavelength λ = 4.435 and for a

cluster with Nc = 1007 cylinders. The LDOS is more than two orders of magnitude greater at the interfaces of the
gyroelectric cluster and ‘mirrors’. The value of the LDOS is similar along the cluster’s zigzag edges and armchair
edges. Inside of the cluster ρ diminishes and for this cluster it is two orders of magnitude smaller than the free space
value.
The results shown demonstrate that the maximum value of the field intensity of chiral modes for finite clusters

is not necessarily localized at the interface of photonic clusters (see Fig. 5). This information is important for the
utilization of chiral edge modes in waveguiding, switching and other applications. Surrounding a gyroelectric cluster
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FIG. 8: (Color online) The LDOS ρ in the logarithmic scale versus position for one-way Hall state wavelength λ = 4.435.

with mirrors can create suitable conditions for photon storage and manipulation, which can be achieved by changing
the strength of an external magnetic field.

B. The LDOS and chiral Hall edge modes in ferrites clusters

In this section we study the properties of the LDOS and the chiral Hall edge modes in ferrite clusters. Here we use
the parameters and geometry reported in reference,12 where it was shown that the one-way Hall states exist at the
edge of the semi-infinite honeycomb ferrite photonic crystal and free space.
The honeycomb ribbon cluster (see Fig. 9(a)) is composed of a honeycomb lattice of yttrium-iron-garnet cylinders

located in free space with radii a = 0.2d, where d = 10mm is the lattice constant. The magnetic permeability tensor
has the form26 with

µ⊥ = 1 +
ω0ωm

ω2
0 − ω2

, µxy =
ωωm

ω2
0 − ω2

, (16)

where ωm = 4πγMs and ω0 = γH0. Here H0 is the applied static magnetic field, 4πMs is the saturation magnetization
and γ is the gyromagnetic ratio. Following Ref.12 we have used the following values for these parameters 4πMs =
1750G, H0 = 500Oe with dielectric permittivity ε = 15. These are typical parameters for yttrium-iron-garnet ferrites
(see Ref.26). It is shown that the one-way Hall edge state can be excited at the wavelength λ/d = 3.937. This mode
lies below the light line and is confined to the edge of the semi-infinite photonic crystal. Without magnetization
(µ⊥ = 1, and µxy = 0) this infinite crystal has a degenerate Dirac point at the K point of the Brillouin zone. After
magnetization the degeneracy at the K point is lifted and a band gap is opened. So the mechanism of the creation of
the chiral Hall edge states is similar here to that for the gyroelectric example.
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FIG. 9: The geometry of the ferrite clusters; (a) honeycomb ribbon, (b) honeycomb hexagonal flake.

In Fig. 10(a) we plot the LDOS ρ as a function of wavelength for three different points located in free space, for
a honeycomb ribbon with Nc = 854 cylinders plotted in Fig. 9(a). The bottom red solid curve is for a point at the
centre of the cluster (see the top black dot in Fig. 9a). The LDOS ρ is three orders of magnitude lower than the
free space value for this point. These low values for the LDOS are in accord with the existence of the band gap for
a corresponding infinite photonic crystal. The middle blue dashed curve in Fig. 10 is the LDOS for the bottom left
point in Fig. 9(a) and the green dotted top curve is for the bottom right point in Fig. 9(a). Although these points are
located close to each other the difference between the LDOS values can be as high as two orders of magnitude. This
implies that the LDOS is a sensitive function of position. The LDOS value for the point located at the zigzag edge
inside of the cylinder (not plotted here) is very similar to the LDOS value of the green dotted curve, except that it is
an order of magnitude higher due to the higher value of the refractive index of the cylinders.
We have also calculated the LDOS for a honeycomb ribbon as in Fig. 9(a) but with twice the width. The qualitative

behaviour of the LDOS is very similar to Fig. 10 except for the point at the centre where the LDOS is two orders of
magnitude lower than in Fig. 10.
The LDOS values for the top green curve in Fig. 10 are nearly flat for the band gap wavelengths 3.65 < λ/d < 3.95,

while the LDOS gradually increases for the middle blue curve. The chiral Hall edge states should exist within the
band gap where we observe only very minute oscillations of the LDOS. We have searched for the poles in the complex
plane for band gap wavelengths and located one at λ/d = 3.928 + i0.0177. The real part of this pole is close to the
edge state wavelength λ/d = 3.937 of a semi-infinite photonic chrystal12. The Q factor of this chiral Hall edge state
is Q = 110.
In Fig. 11 we plot the logarithm of the electric field intensity |Ez|

2 distribution of this chiral Hall edge mode. The
electric field of this mode is concentrated at the edges of the cluster and is maximal at the lower right corner and
the upper left corner. The main ‘leakage’ of the energy of this mode appears to be taking place at these corners.
The values of |Ez |

2 diminish toward the centre of the cluster and they are six orders of magnitude lower than at the
edges of the cluster. The modal intensity is slightly stronger at the zigzag edges of the honeycomb ribbon than at the
armchair edges for this configuration.
To show the unidirectional flow of energy in Fig. 12 we plot a fragment of the Poynting vector distribution for the

bottom right corner of the ribbon which shows the way the chiral edge Hall mode propagates at the corner. When
we swap the external magnetization to the opposite direction we find the pole at the same location as it should be
but now the energy propagates in the clockwise direction and the maximum values of the electric field intensity are
reached at the top right and the bottom left corners of the ribbon.
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FIG. 10: (Color online) The LDOS ρ on a logarithmic scale versus wavelength λ/d for an observation point at the centre of the
cluster (0, 0) (red solid curve), for the zigzag edge points at (0,−5.8) (blue dashed curve) and for the point (0.5,-6.0) (green
dotted curve). All points are located in free space.
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FIG. 11: (Color online) The intensity of the electric field distribution |Ez|
2 in the logarithmic scale of the chiral Hall edge state

for the honeycomb ribbon plotted in Fig. 9(a).

To excite this one-way Hall edge state we used a point source located close to the zigzag edge of the cluster. In
Fig. 13 we present the electric field intensity distribution showing the anticlockwise flow of energy. The wavelength
of the radiation is equal to the real part of the corresponding pole wavelength value λ′/d = 3.928. The quality factor
of this mode is not high and nearly all energy leaks out after one loop around the edge of the ribbon. If we change
the direction of the magnetization then the energy flow will reverse, giving a convenient handle with which to control
the direction of the propagation.
In Fig. 14, we plot the distribution of the LDOS for the chiral edge mode wavelength λ′/d = 3.928 as a function

of position. The density of states is two orders of magnitude greater closer to the edges of the ribbon and diminishes
toward the centre of the ribbon. The values of the LDOS along the zigzag edges, and along the armchair edges, of
the ribbon are comparable.
Now we consider the honeycomb hexagonal flake geometry (see Fig. 9(b)). This cluster is composed of Nc = 486

cylinders and the cylinders are located at the honeycomb lattice points; the edges of the cluster itself have a hexagonal
symmetry. The rest of the parameters are the same as in the previous example of the honeycomb ribbon. It is reported
in Ref.12 that such a cluster has a one-way edge state at λ/d = 3.926.
First in Fig. 15 we plot the LDOS as a function of wavelength. The red solid curve is for a point close to the centre

of the flake at (0.05, 0.0) while the green dotted curve and the blue dashed curve are for points close to the bottom
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FIG. 12: (Color online) The fragment of the Poynting vector plot of the chiral edge mode plotted in Fig. 11 showing the
unidirectional counter-clockwise flow of energy at the bottom right edge of the ribbon.
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FIG. 13: (Color online) The spatial dependence of the Green’s function, |G|2 = |Ez|
2 in a logarithmic scale for a chiral edge

state wavelength λ/d = 3.928 and for a source located at (0.0,-5.8) (black dot in the plot) showing the excitation of the one-way
Hall edge mode.

zigzag edge of the flake located at (0.0,−7.75) and (0.5,−7.75) respectively. In this case there are some resonances
of the LDOS for gap wavelengths 3.65 < λ/d < 3.95, even for an observation point near the centre of the cluster.
The oscillations are more pronounced for the point (0.0,−7.75) which is located between the cylinders at the bottom
zigzag edge and the resonances are very well developed for the point at (0.5,−7.75). The number of resonances are
the same for the top two curves. This is in strong contrast to the honeycomb ribbon case where the LDOS resonances
inside the band gap are very weak (see Fig. 10). Such strong dependence of the LDOS on the shape of the cluster
has been reported also for conventional clusters28, where the effects of the shape of the cluster on the Lamb shift and
LDOS have been considered.
We searched for poles and as expected we found poles close to these LDOS resonance wavelengths. In Fig. 16 we

plot the one-way Hall edge mode for the pole value λ/d = 3.927 + i6.875× 10−4. The quality factor of this mode is
Q = 2856 which is much higher than the mode for the honeycomb ribbon. Overall the spatial behavior of this mode
is very similar to the mode of the honeycomb ribbon. The field mainly concentrates at the edges of the cluster and its
value diminishes toward the centre of the flake. The energy flow for this mode is anticlockwise. To excite this mode
it is sufficient to place a point source with a radiation wavelength equal to the real part of the corresponding pole
wavelength near the flake edge12.
Finally in Fig. 17 we plot the LDOS map as a function of position in the logarithmic scale for chiral edge wavelength
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FIG. 14: (Color online) The LDOS map in the logarithmic scale versus position for the chiral Hall edge state wavelength
λ′/d = 3.928.
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FIG. 15: (Color online) The LDOS ρ in the logarithmic scale versus wavelength λ/d for an observation point at the centre of
the cluster (0, 0) (top black dot in Fig. 9(b)) (red solid curve), for the zigzag edge points at (0,−7.75) bottom left black dot in
Fig. 9(b) (green dotted curve) and for the point (0.5, -7.75) bottom right black dot in Fig. 9(b) (blue dashed curve). All points
are in free space.

λ/d = 3.927. The LDOS is two orders of magnitude greater at the edges of the flake and it diminishes toward the
centre of the flake. This behaviour of the LDOS is similar to the honeycomb ribbon case. Such a spatial distribution
of ρ is reminiscent of topological insulators which have metallic surfaces (high density of states) and insulating bulk
(low density of states) although they have different topological invariants29.
One of the intrinsic properties of the chiral Hall edge states is their immunity to disorder. We have introduced

radial disorder in which the radii of all honeycomb flake cluster cylinders are disordered (Fig. 9(b)). In our calculation
the radii of cylinders have been uniformly distributed in the range [0.13d, 0.2d] which corresponds to a 35% degree of
disorder from the initial value a = 0.2d. In such strong radial disorder guiding is no longer taking place in conventional
photonic crystal waveguides30. Here however the resonances of the LDOS representing chiral Hall edge states largely
withstand such strong disorder (see green dotted line in Fig. 18). The resonances are broadened and their maximum
values are reduced and shifted toward shorter wavelengths while the number of peaks are essentially preserved. We
have also considered radial disorder in which only the radii of the bottom row of the honeycomb flake cluster cylinders
are disordered (Fig. 9(b)). In this calculation the radii of the cylinders have been uniformly distributed in the range
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FIG. 16: (Color online) The intensity of the electric field distribution |Ez|
2 in the logarithmic scale of the chiral Hall edge state

for the honeycomb flake with λ/d = 3.927 + i6.875 × 10−4.
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FIG. 17: (Color online) The LDOS map in the logarithmic scale versus position for chiral Hall edge state wavelength λ/d = 3.927.

[0.05d, 0.2d] which corresponds to a 75% (one-sided) degree of disorder. The resonances of the LDOS withstand such
strong disorder also (see the red solid line in Fig. 18). The resonances are simply shifted toward short wavelengths
but their number is preserved and their quality factors do not change substantially.

IV. CONCLUSIONS

We have constructed the Green’s tensor using a multipole approach and have calculated the LDOS of chiral Hall
edge states for finite photonic gyrotropic clusters. The multipole method has proven to be very accurate and effective.
Both ferrites and gyroelectric photonic clusters, have been treated.
For a honeycomb ribbon, honeycomb hexagonal flake and square photonic clusters with embedded honeycomb

gyroelectric resonators we have calculated the LDOS as a function of wavelength, position, shape and the size of the
cluster. It is shown that the LDOS is a sensitive function of the position and the shape of the cluster. The LDOS
at the edges of the ferrite clusters can have low values even at the chiral edge state wavelengths. For the ferrite
honeycomb ribbon these low values of the LDOS are located between the cylinders at either the armchair edges or at
the zigzag edges of the ribbon or at the zigzag edges of the honeycomb flake (see Fig. 14 and Fig. 17). The LDOS along
the zigzag edges and armchair edges of both gyroelectric and ferrite clusters are similar at one-way edge wavelengths.
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FIG. 18: (Color online) The LDOS ρ on the logarithmic scale as a function of wavelength λ/d for the bottom right point on
Fig. 9(b); the blue dashed curve is the same blue dashed curve as in Fig. 15, the green dotted line is for 35% degree of radial
disorder for all cluster cylinders, while the red solid line is for a cluster with the 75% degree of radial disorder of the bottom
row of cylinders only in Fig. 9(b).

The LDOS value at the one-way edge state wavelengths can be orders of magnitude higher at the edges of the
cluster compared with its free space value, while its value diminishes toward the centre of the cluster. This property
of the LDOS at one-way edge state wavelengths ensures high edge transmission (conductance) and insulating bulk in
such clusters. Therefore the conductance properties of such clusters have some resemblance to those of topological
insulators29.
The spatial distribution of chiral Hall modes and their quality factors have been calculated for both gyroelectric

and ferrites clusters. The spatial distribution of these modes is not necessarily localized at the edges of the cluster.
The modal field can be localized at the ‘leaking edges’ of the cluster rather than at the interface of two clusters as in
the semi-infinite photonic crystals case. We have observed such behaviour for gyroelectric clusters.
For ferrites clusters the chiral modes are localized uniformly at the edges of the honeycomb hexagonal flake while

for the honeycomb ribbon the modes are localized more at two diagonally opposite corners and their modal intensity
distribution depends on the direction of the external magnetic field. We have also observed strong immunity of the
LDOS to disorder. Strong radial disorder blue-shifts the LDOS resonances but does not change their number and
their quality factors substantially.
The results presented here are important for designing chiral edge state based waveguide interconnects, delay waveg-

uides as well as in photon storage and manipulation applications. These findings can also be used for understanding
chiral mode excitations and the characterization of radiation dynamics of sources embedded in such clusters. The
results for the spatial distribution of chiral Hall edge modes may also be useful in electronic systems given that the
photonic chiral modes are the direct analogue of the electronic Hall edge states.
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