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We report numerical results of quantum oscillations of the specific heat in the vortex state of
a dx2

−y2 -wave superconductor in the presence of loop current order1,2, which gives rise to Fermi
pockets coexisting with nodal dx2

−y2 -wave superconductivity. Within a lattice tight-binding model,
we find that in an intermediate temperature range, the oscillations seem to approximately follow
Onsager relation with an effective charge comparable to the electric charge. However, the quasipar-
ticle spectrum does not resemble Landau levels. In order to understand the origin of the oscillations,
we also perform Franz-Tesanovic transformation in the presence of the loop order and find that in
addition to scalar and Berry potentials3, one component of the gauge invariant superfluid velocity
couples to the low lying Dirac particles as a component of a vector potential. The magnetic field
associated with this vector potential vanishes on average but is highly non-uniform in the magnetic
unit cell. We attribute the quantum oscillations to this field. We also compare the results with the
model without the loop order but with Zeeman-like coupling which also induces Fermi pockets in
the superconducting state.

PACS numbers:

I. INTRODUCTION

Coexistence of d-wave superconductivity and Fermi pockets in underdoped high temperature cuprate superconduc-
tors has been suggested by recent quantum oscillation experiments4–12. Whether the Fermi pockets are electron-like
or hole-like, and whether there is one or more than one pocket, is still under intense debate. In the present work,
we focus on quantum oscillations of the specific heat, measurements of which have been presented in Ref.11. The
experimental data is shown in Fig.1. With the application of a magnetic field H , the non-oscillatory component of
the Sommerfeld coefficient γ(H) of the ultrapure YB2Cu3O6.56 exhibits

√
H behavior, which is consistent with the

d-wave superconductivity in the vortex state. Remarkably, this field dependence persists well into the resistive state.
In addition, there are several signatures of the existence of Fermi pockets. First, the zero field Sommerfeld coefficient,
γ(0) ∼ 1.9mJ/(mol K2), is finite, indicating finite density of states at zero energy in zero field. Note that the low
energy quasiparticles (QP’s) of dx2−y2 -wave superconductors are characterized by the linear Dirac-like dispersion near
four nodal points. This results in linearly vanishing density of states at zero energy. Although the finite density of
states may in principle be induced by impurity disorder, the YBCO samples under study11 are believed to be too
pure to account for the measured value of γ(0). The high purity is consistent with the observation of the quantum
oscillations as well as the extracted values of the Dingle temperature. Therefore, the physical origin of the nonzero
γ(0) is most likely intrinsic to this system. Second, the oscillatory component of γ(H) exhibits quantum oscilla-
tions in high magnetic fields, periodic in 1/H , which can be well fitted4–12 by Lifshitz-Kosevich (LK) formula. Such
phenomenology is quite remarkable. On the one hand, the quantum oscillations appear to be due to Landau level
quantization of the electron orbits, and indicate the existence of Fermi pockets, while on the other, γ(H) ∼

√
H is a

signature of dx2−y2-wave superconducting gap and the vortex state.
The origin of Fermi pockets in the superconducting state has been under debate. One possible scenario is that

the Fermi pockets arise from the one-dimensional CuO chains hybridized into the BaO layers11. If not gapped by a
proximity effect down to the lowest temperatures (∼1K) at which γ(0) was extracted, such Fermi pockets could result
in a finite γ(0), as well as quantum oscillations of γ(H). This would account for the main experimental features.
In this paper we critically examine another scenario in which loop current order induces Fermi pockets in the

dx2−y2 superconductor13,14. In such an ordered phase, charge currents circulate within each unit cell (as shown in
Fig.2), breaking time reversal symmetry and inversion symmetry, but not their product or the discrete translational
symmetry of the lattice. Two Fermi pockets of Bogoliubov quasiparticles, one electron-like and one hole-like, are
formed, giving rise to nonzero density of states at zero energy13. This may account for the finite γ(0) and the question
is whether it can also cause quantum oscillations of γ(H) in high fields. In a superconductor, the Bogoliubov QP’s
are linear combinations of electrons and holes, and therefore do not carry definite charge. On the other hand, the
QP’s in Fermi liquids do carry definite charge15. Therefore, it is not a priori obvious whether there are any quantum
oscillations at all, and if yes, whether the oscillations obey Onsager relation as in Fermi liquids. In this paper, we show
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FIG. 1: γ(H)− γ(0) for YB2Cu3O6.56 (courtesy of S. Riggs). Discrete data points (red circles) are C(T,H)/T extrapolated to

T = 0 in fixed magnetic fields, with γ(0) subtracted. Green curve is Ac

√
H , where Ac = 0.47mJ/(mol K2 T1/2).

that the effective magnetic field experienced by the Dirac quasiparticles in the loop order state vanishes on average
and does not lead to Landau quantization. As such any oscillations do not follow the detailed LK phenomenology.
Nevertheless, the effective magnetic field experienced by the Dirac quasiparticles is highly non-uniform and in an
intermediate temperature range the quantum oscillations of the specific heat appear to approximately obey Onsager
relation, with an effective charge comparable to the electric charge.
We investigate the oscillations of the specific heat in both the tight-binding lattice formulation and in the continuum

formulation. We assume that the vortices form a square Abrikosov lattice. In the tight-binding lattice formulation,
we take the vortices to sit inside the plaquettes of the two-dimensional CuO2-like plane. In each magnetic unit cell,
there are two singly quantized vortices with flux hc/2e. Since the vortices are placed at the centers of the plaquettes,
the vortex lattice has to be commensurate with the underlying tight-binding lattice. This prevents us from sweeping
the magnetic field continuously. Instead, in this case, we sweep the (Bogoliubov) Fermi pocket area by varying the
overall magnitude of the loop current order in fixed magnetic fields, and investigate the dependence of the density
of states and the specific heat on the Fermi pocket area. The results for the density of states are shown in Fig.10,
where we also show that they clearly differ from the density of states of Landau quantized anisotropic Dirac fermions.
Nevertheless, as shown in Figs.(5-9), we find that in an intermediate, magnetic field dependent, temperature window,
the specific heat exhibits oscillations as a function of Fermi pocket area for the four values of the magnetic field
studied, ranging from 7.7T to 35.6T. At the same time, the non-oscillatory component of γ(H) does not follow

√
H

behavior (see Fig.7).
To further understand the origin of this effect, we complement the tight-binding calculations with an approximate

continuum formulation. To this end, we linearize the Hamiltonian in the vicinity of the four nodal points, perform the
Franz-Tesanovic transformation3, calculate the quasiparticle spectrum numerically using plane-wave diagonalization
and calculate the specific heat. While we are well aware of the subtleties with the large gauge invariance16 we are
merely interested in the overall qualitative aspects of the results and their dependence on the strength of loop order
and magnetic field. We find that the result obtained using this second method is consistent with the one obtained in
the tight-binding lattice formulation. The second method offers an additional advantage in that the external magnetic
field can be changed continuously; the resulting oscillations of specific heat are shown in Figs.(13-14).
Finally, we compare these results with the results obtained by varying the Zeeman energy but without loop current

order. The Zeeman term shifts all four nodal points, resulting in four Fermi pockets. In this case, the oscillations do
not obey Onsager relation at all.
Our paper is organized as follows. In Sec.II, we set up both the lattice and the continuum Hamiltonians, and

calculate the zero field spectrum. In Sec.III, we present the numerical results for the quantum oscillations of specific
heat as a function of the loop current order and Zeeman energy, and the density of states in the lattice formulation. In
Sec.IV, we present the numerical results for the oscillations as a function of the loop current order and the magnetic
field in the linearized problem. In Sec.V, we discuss our results.
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II. FORMALISM: BDG HAMILTONIAN AND SINGULAR GAUGE TRANSFORMATION WITH LOOP

CURRENT ORDER

A. Lattice formulation

We model the CuO2 plane in YBCO as a tight-binding lattice with lattice constant a, which may be set to 1 for
convenience. (When converting to real units, we use a = 0.38nm.) When an external magnetic field H in the range
Hc1 < H < Hc2 is applied, the d-wave superconductor enters vortex state and the vortices form an Abrikosov lattice.
We assume that a square vortex lattice is formed with magnetic unit cell ℓB × ℓB, where the magnetic length ℓB
is defined through the flux quantum φ0 = hc/e as ℓB =

√

φ0/H. In each magnetic unit cell, there are two singly
quantized vortices, each of which carrying flux hc/2e. Our starting point is the Hamiltonian with nearest neighbor
hopping, d-wave pairing and loop current order on the underlying tight-binding lattice in the presence of a magnetic
field,

H = H0 +HJ (1)

where17

H0 = −t
∑

〈rr′〉σ

(

e−iA
rr′ c†rσcr′σ + h.c.

)

+
∑

〈rr′〉

(

∆rr′(c
†
r↑c

†
r′↓ + c†r′↑c

†
r↓) + h.c.

)

(2)

and the Hamiltonian for loop current order is13

HJ =
∑

rr′σ

(−iJrr′c†rσcr′σ + h.c.). (3)

In Eq.(2), the sums are over nearest neighbors 〈rr′〉, and σ denotes the spin. In the symmetric gauge, the magnetic
flux Φ through an elementary plaquette enters the Peierls factor via Arr+x̂ = −πyΦ/φ0 and Arr+ŷ = πxΦ/φ0. The
d-wave pairing field in the vortex lattice is ∆rr′ = ηr−r′∆0e

iθ
rr′ , where ηδ = +(−) if δ||x̂(ŷ), and the Ansatz for the

pair phases is17

eiθrr′ ≡ eiφ(r) + eiφ(r
′)

|eiφ(r) + eiφ(r′)| , (4)

where ∇ × ∇φ(r) = 2πẑ
∑

i δ(r − ri) and ∇ · ∇φ(r) = 0 where ri denotes the vortex positions. In Eq.(3), the
connectivity of the loop current network Jrr′ is determined according to Fig.2, and in zero field all the nonzero
currents have the same magnitude J1,2,13. In a finite magnetic field, we have, explicitly,

HJ = −iJ
∑

r

(

e−iArr+x̂c†rσcr+x̂σ + e−iAr+ŷrc†r+ŷσcrσ

+e−iAr+x̂,r+ŷc†r+x̂σcr+ŷσ

)

+ h.c. (5)

where Ar+x̂,r+ŷ = −π(x+ y + 1)Φ/φ0. We perform the particle-hole transformation,

c†r↑ = d†r↑, (6)

c†r↓ = dr↓. (7)

Then the diagonalization of the Hamiltonian is equivalent to the solution of the Bogoliubov-de Gennes (BdG) equation

Ĥψr = Eψr where the lattice operator

Ĥ =

(

Êr + Ĵr − µ ∆̂r

∆̂∗
r −Ê∗

r + Ĵ ∗
r + µ

)

. (8)
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FIG. 2: (Upper) The connectivity of the loop current network. (Lower) The dispersion of d-wave superconductor with loop
current order in the first Brillouin zone. For clarity, the anisotropy is set to 1, and the strength of loop current order J=0.5.
The dashed line indicates the zero energy.

A

B

ℓB

FIG. 3: Magnetic unit cell ℓB × ℓB containing A and B vortex joined by a branch-cut with ℓB = 6a.

with µ being the chemical potential. The BdG Hamiltonian acts on the two component Nambu spinor ψr = [ur, vr]
T ,

and Ê , Ĵ and ∆̂ are defined through their action on a lattice function fr as

Êrfr = −t
∑

δ=±x̂,±ŷ

e−iArr+δfr+δ, (9)

Ĵrfr = −iJ
∑

δ=x̂,−ŷ,ŷ−x̂

e−iArr+δfr+δ, (10)

∆̂rfr = ∆0

∑

δ=±x̂,±ŷ

eiθrr+δηδfr+δ, (11)

The Hamiltonian is invariant under discrete translations followed by a gauge transformation (magnetic translations).
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As shown in Ref.3, it can be transformed into a periodic Hamiltonian by a singular gauge transformation

U =

(

eiφe(r) 0
0 e−iφh(r)

)

(12)

where φe(r) and φh(r) satisfy φe(r) + φh(r) = φ(r). The vortices are divided into two groups A and B, and each
magnetic unit cell contains one A and one B vortex, as shown in Fig.3. Then two phase fields φA(r) and φB(r) are
identified with φe(r) and φh(r), respectively. If we choose φA(r) = φB(r) = φ(r)/2, then the transformation becomes
U = exp i

2σ3φ(r). Connecting pairs of vortices in one magnetic unit cell by a branch cut as shown in Fig.3, we have

eiθrr′ e−
i
2φ(r)e−

i
2φ(r

′) = z2,rr′ , (13)

where as discussed in detail in Ref.17, the Z2 field z2,rr′ = 1 on each bond except the ones crossing the branch cut

where z2,rr′ = −1. Then the transformed Hamiltonian H̃ = U−1ĤU is

H̃ = σ3(Ẽr − µ) + σ1∆̃r + J̃r1, (14)

where the transformed lattice operators satisfy

Ẽrψr = −t
∑

δ=±x̂,±ŷ

z2,rr+δ × eiσ3Vrr+δψr+δ, (15)

J̃rψr = −iJ
∑

δ=x̂,−ŷ,ŷ−x̂

z2,rr+δ × eiσ3Vrr+δψr+δ, (16)

∆̃rψr = ∆0

∑

δ=±x̂,±ŷ

z2,rr+δ × ηδψr+δ, (17)

σ’s are Pauli matrices and 1 is the identity matrix, and

eiVrr′ =
1 + ei(φ(r)−φ(r′))

|1 + ei(φ(r)−φ(r′))|e
−iA

rr′ . (18)

The resulting Hamiltonian is invariant under magnetic translations by ℓB in both directions, so it can be diagonalized
in the Bloch basis. The transformed Hamiltonian H(k) = e−ikrH̃eikr becomes

H(k) = σ3(Ẽr(k) − µ) + σ1∆̃r(k) + J̃r(k)1 (19)

where

Ẽr(k)ψr = −t
∑

δ=±x̂,±ŷ

z2,rr+δ × eiσ3Vrr+δeik·δψr+δ, (20)

J̃r(k)ψr = −iJ
∑

δ=x̂,−ŷ,ŷ−x̂

z2,rr+δ × eiσ3Vrr+δeik·δψr+δ, (21)

∆̃r(k)ψr = ∆0

∑

δ=±x̂,±ŷ

z2,rr+δ × ηδe
ik·δψr+δ. (22)

B. Zero-field spectrum

In the absence of a magnetic field, the phase factors eiArr′ and eiVrr′ become 1, and the Hamiltonian can be easily
diagonalized, with eigenenergies

Ek = ±
√

ξ2k +∆2
k + 2J [sinkx − sinky + sin(ky − kx)] (23)

where ξk = 2t(cos kx + cos ky) − µ and ∆k = 2∆0(cos kx − cos ky). In the case with J = 0, the four nodes of the
spectrum are located at (±kD,±kD) where

kD = arccos (
µ

4t
). (24)
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In the vicinity of each node, the dispersion can be linearized

Ek =
√

v2F δk
2
⊥ + v2∆δk

2
‖, (25)

where δk⊥(δk‖) is the displacement of the momentum from a node in the direction perpendicular (parallel) to the
Fermi surface, and the velocities are

vF = 2
√
2

√

1− (
µ

4
)2t, (26)

v∆ = 2
√
2

√

1− (
µ

4
)2∆0, (27)

where µ’s are in units of t. In the case J 6= 0, the last term in Eq.(23) near the ±(kD, kD)-nodes is expanded as

√
2

2
(4− µ)Jδk‖ (28)

and near the ±(kD,−kD)-nodes

±J0 − vJδk⊥, (29)

where J0 = J(1− µ
4 )
√

16− µ2 is the energy shift of the nodes, and vJ =
√
2
4 J(−µ2 +2µ+8). As a result of the shift,

two Fermi pockets are induced, as shown in Fig.2, giving a finite density of states at zero energy.

C. Continuum formulation and the linearized Hamiltonian

In the low temperature specific heat measurement, only the low energy excitations contribute to the result. QP’s
near the ±(kD, kD) nodes may be expected to result in the

√
H behavior of the Sommerfeld coefficient γ(H). On the

other hand, the low energy QP’s near the Fermi surfaces at ±(kD,−kD) may be expected to give rise to the finite zero
field Sommerfeld coefficient γ(0) and perhaps even the quantum oscillations in high fields. To test this, we formulate
the continuum version of the BdG Hamiltonian in the presence of loop current order, and linearize it near the four
nodal points.
In the absence of loop current order, the continuum Hamiltonian reads16

H =

(

Ĥe ∆̂

∆̂∗ −Ĥ∗
e

)

, (30)

with Ĥe = 1/2m(p̂− e/cA)2 − µ, p̂ = −i~∇ the momentum operator, and ∇×A = Hz. In the following, we choose
the x-axis along the (kD, kD) nodes and the y-axis along the (−kD, kD) nodes. Then the gauge invariant d-wave
pairing operator has the form

∆̂ =
1

p2F
{p̂x, {p̂y,∆(r)}} + i

4p2F
∆(r)(p̂xp̂yφ), (31)

with pF the Fermi momentum and φ the phase of the superconducting gap ∆(r). The curly bracket represents
symmetrization, {a, b} = 1/2(ab+ ba). After the singular gauge transformation (12), the Hamiltonian becomes3,16

(

1
2m (p̂+mvA

s )
2 − µ D̂

D̂ − 1
2m (p̂−mvB

s )
2 + µ

)

, (32)

where D̂ = ∆0/2p
2
F [p̂x+ax][p̂y+ay]+(x ↔ y) and vµ

s = 1/m(~∇φµ−e/cA) for µ = A,B. The Berry vector potential3

a = m/2(vA
s −vB

s ) = ~/2(∇φA−∇φB). The linearized approximation in the vicinity of one of the ±(kD,−kD) nodes
results in

HN = H0 +H′, (33)

where

H0 =

(

vF p̂y v∆p̂x
v∆p̂x −vF p̂y

)

(34)
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is the free Dirac Hamiltonian and

H′ =

(

mvF v
A
sy v∆ax

v∆ax mvF v
B
sy

)

. (35)

In the above vF is the Fermi velocity and v∆ = ∆0/pF is the slope of the gap at the node. HN can be written as

HN = vF (p̂y + ay)σ3 + v∆(p̂x + ax)σ1 +mvF vsy, (36)

where vs = (vA
s + vB

s )/2 = 1/m(~/2∇φ− e/cA) is the superfluid velocity. From HN it is readily seen that a couples
to the Dirac fermions as a vector potential while vs results in a Doppler shift. The magnetic field produced by a

consists of a set of ±π-flux delta function spikes at the vortex cores and vanishes on average. It does not lead to
Landau level quantization3.
It is expected that physical quantities should be independent of the choice of A and B sublattices, since there should

be no physical distinction between A and B vortices. However, as discussed in Ref.16, two distinct choices of A-B
sublattices as illustrated in Fig.2 of Ref.16 result in qualitatively similar but still somewhat different band structures
and densities of states, particularly at higher energies. Despite significant effort18 this problem remains a bit of a
challenge: while the large gauge invariance is easily restored by judicious enforcement of boundary conditions at vortex
locations, the interference among the nodes in a perfect vortex lattice obscures the ultimate choice for these boundary
conditions18. At any rate, these mathematical subtleties are inherent only to the linearized BdG Hamiltonian and
they do not arise at all in the tight-binding lattice formulation.
The linearized Hamiltonian associated with loop current order can be derived from Eq.(19). Near one of the Fermi

pockets, it reads

HJ = (−vJ p̂y + J0)1. (37)

In a magnetic field, after the singular gauge transformation, it becomes

−vJ(p̂y + ay)1 −mvJvsyσ3 + J01. (38)

Therefore, the full linearized Hamiltonian near one of the Fermi pockets is

H = vF (p̂y + ay)σ3 + v∆(p̂x + ax)σ1 +mvF vsy

− vJ (p̂y + ay)−mvJvsyσ3 + J0, (39)

from which it is seen that the superfluid velocity couples to the Bogoliubov QP’s, in part, as a vector potential through
loop current order,

(vF p̂y −mvJvsy)σ3 = vF (p̂y −
vJ
vF

(
~

2
∂yφ− e

c
Ay))σ3. (40)

The effective vector potential aeff has a zero x-component, while the y-component is (vJ/vF )(c/e)mvsy . The associated
effective field, beff = ∇ × aeff , vanishes on average in the magnetic unit cell. The linearized Hamiltonian near the
±(kD, kD)-nodes, which are not shifted by the loop order, resembles Eq.(39), but with J0 = 0.

III. NUMERICAL RESULTS

At low temperature, the non-oscillatory part of the specific heat C(T,H) is linear in the temperature T , for a
Fermi liquid composed of Schrödinger particles with p2/2m dispersion. The Sommerfeld coefficient can be defined

as γ(H) = C(T,H)/T . Experimentally, it has been found that the non-oscillatory part of γ(H) goes as
√
H in low

field, which is consistent with the d-wave vortex state scenario. In the high field γ(H) also develops an oscillatory
component, which obeys LK formula19

Cosc(T,H) =

−AT
∞
∑

p=1

RDJ0(4πp
tw
~ωc

) cos(2πp(
µ

~ωc
− 1

2
))f ′′(x)

(41)
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where A is a constant, RD = exp ((−2π2pkBTD)/(~ωc)) is the Dingle factor, ωc = eH/(m∗c) is the cyclotron frequency
with m∗ the effective mass, x = 2π2pkBT/(~ωc), f

′′(x) = x((1 + cosh2 x)/ sinh3 x− 2 coshx/ sinh2 x), J0 is the Bessel
function of the first kind (not to be confused with the energy shift by loop current order), and tw is the c-axis hopping
energy. In the experiments only the first harmonic with p = 1 is identified. In the presence of loop current order,
J 6= 0, and the Sommerfeld coefficient becomes γ(H, J). We will compare our results with the LK formula and show
that in the vortex state with loop current order the formula does not hold.
In the appendix, we derive the formula for the oscillatory part of the specific heat assuming that Dirac particles

with velocities vF and v∆ couple minimally to the vector potential corresponding to a uniform magnetic field. As we
stressed before, the d-wave Dirac particles do not have such coupling. Nevertheless, we find it useful to contrast our
numerical finding to this analytical formula. In this case, the expression for Cosc is similar to Eq.(41), but there is an
important difference. The effective mass in the above formula is replaced by EF /(vF v∆). As such, the amplitude of
the oscillations also depends on the Fermi energy in addition to the temperature and the magnetic field.
We use realistic values of physical quantities of YBCO as parameters in our Hamiltonian. The Fermi velocity is

taken to be vF = 2.15 × 105m/s, the lattice constant a = 0.38nm, the doping 15%, and the Dirac cone anisotropy
α = 14. We first get µ = 0.297t from the doping, and then derive the nearest neighbor hopping energy t = 0.132eV
using Eq.(26). Within our method, we are not able to sweep the magnetic field continuously as mentioned in the
introduction. Instead, we sweep the Fermi pocket area by varying the loop current order or Zeeman energy in a fixed
magnetic field. From this viewpoint, Onsager relation reads15

A(ξν+1)−A(ξν) = A0 (42)

where ξν is νth energy level when a magnetic field is applied. This means that the period of oscillations, which is
the difference between the areas enclosed by the orbits of adjacent energy levels in k-space, equals the area of the

magnetic Brillouin zone A0 ≡ 2πeH
~c = 4π2H

φ0
= ( 2πℓB )2. We study the specific heat in four different magnetic fields, with

magnetic length ℓB = 60a, 40a, 36a and 28a. For a = 0.38nm this corresponds to field strengths 7.7T, 17.4T, 21.5T
and 35.6T, respectively. Being fully aware of the caveat that for Dirac particles the amplitude of the oscillations of the
specific heat may also depend on the Fermi pocket area, and therefore strictly speaking does not follow the Onsager
relation, we investigate whether such relation holds in the d-wave superconducting state with loop current order.
We use Arnoldi algorithm to diagonalize the Hamiltonian (19). Only the low energy bands need to be taken into

account since the high energy bands give negligible contribution to the low temperature specific heat. Using t = 1580K,
all bands below 100K are considered. This gives us enough accuracy to determine the specific heat up to ∼10K. We
find that a 40× 40 mesh in the first magnetic Brillouin zone (corresponding to a system with 40× 40 magnetic unit
cells) gives convergent results, showing little difference from that with a 80 × 80 mesh at the temperatures under
study.
In what follows, we present results for the Sommerfeld coefficient with loop current order γ(H, J) in fixed magnetic

fields H while J is continuously swept, which are later compared with the results from sweeping the Zeeman energy.

A. Oscillations as a function of loop current order

1. Frequency of oscillations

In the presence of loop current order J , two Fermi pockets appear in the (kD,−kD) direction of the Brillouin zone13,
as shown in Fig.2. At small J , the area of each Fermi pocket AF is quadratic in J since the dispersion has a Dirac
cone structure. Fig.4 shows numerically calculated AF vs. J for the tight binding model. The interval between two
adjacent horizontal lines is A0 ≡ (2π/ℓB)

2, with the magnetic length ℓB = 40a. We vary the Fermi pocket area by

choosing J = t
√
0.042 + 0.5× 10−4n, with the integer n ranging from 1 to 70. Then J ranges approximately from

0.04t to 0.07t, within which there are about 8 intervals of A0.
Fig.5 shows γ(H, J) vs. J at low temperature for the four different finite fields and zero field. All the curves are at

2K except the one in the lowest field (green) which is at 1K. The zero field γ(0, J) is calculated using the dispersion
Eq.(23). For this temperature, the frequency of the oscillations basically obeys Onsager relation Eq.(42), i.e. the
frequency (or the number of periods) of oscillations is proportional to the inverse of the magnetic field. A comparison
of the oscillations at two different fields as a function of the rescaled Fermi pocket area is shown in Fig.6, where the
zero field background has been subtracted. There are about 1.4 periods between two adjacent vertical lines for both
fields, suggesting that the Onsager relation holds approximately, albeit with an effective charge e∗ ≈ 0.7e.
The experimental results show that the background on top of which the oscillations reside has a

√
H behavior11.

In Fig.7 we show γ(H, J) vs. J for the four finite fields and zero field at 5K. Although increasing with H , the high
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0.07t, marked by the vertical lines. (Inset) The electron-like and hole-like Fermi pockets in the 1st Brillouin zone at J = 0.05t.
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FIG. 5: The Sommerfeld coefficient γ(H,J) as a function of loop current order J in a d-wave superconductor, in four different
finite fields with magnetic length ℓB = 28a (red), 36a (purple), 40a (blue) and 60a (green) and zero field (black). All curves
are at 2K except that the ℓB = 60a curve is at 1K.

temperature γ(H, J) deviates from
√
H behavior, as shown in the inset of Fig.7. As J increases, the finite field curves

become closer to each other, but farther from the zero field curve.

2. Temperature dependence of the oscillations

The temperature dependence of the quantum oscillation of γ(H, J) is shown in Fig.8 for ℓB = 40a ⇒ H ≈ 17.4T.
At T & 5K, no oscillations appear. As the temperature is lowered, the oscillations arise and the amplitude grows
with decreasing temperature. A phase shift is observed at 1K. In LK formula Eq. (41), a phase shift for p = 1 occurs
at f ′′(x) = 0, where x = 2π2kBT/(~ωc). Here ωc = eH/(m∗c). If we had charged Dirac particles, m∗ should be
replaced by EF /(vF v∆). If the oscillations obey LK formula, then with different parameter configurations, the phase
shift should occur at x ≈ 1.6. Plugging in the parameters T = 1K and H = 17.4T, using EF = J0 where J0 is defined
in Eq.(29), and e∗ = 0.7e, we find that the phase shift should be located at J ≈ 0.05t. This basically agrees with the
numerical result in Fig.8.
At small J , x ∼ JT/H . Therefore, for a fixed magnetic field H , the phase shift should occur at the value of J

proportional to 1/T . Similarly at different magnetic fields H , if T is fixed, the phase shift should occur at the value
of J proportional to H . However, the phase shift can not be well identified in all the cases, thus we are not able to
accurately test whether this relation holds.
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FIG. 6: The Sommerfeld coefficient γ(H,J) as a function of the rescaled Fermi pocket area AF/A0, for ℓB = 40a (blue) and
28a (red) at 2K after the zero field background is subtracted.
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FIG. 7: The Sommerfeld coefficient γ(H,J) as a function of loop current order J , for four different finite fields with magnetic
length ℓB = 28a (red), 36a (purple), 40a (blue) and 60a (green) and zero field (black) at temperature 5K. In the inset, the four
dots correspond to the intersection of the four finite field curves and the vertical dashed line in the main figure. For comparison,
the solid line in the inset shows

√
H dependence; the units of the vertical axis are the same as in the main figure.

3. Dependence of the oscillations on the configuration of the vortex lattice

We also study the oscillations in a vortex lattice with the two vortices placed at different positions in a magnetic
unit cell, while the size of the magnetic unit cell is kept the same. We choose ℓB = 40a. The comparison is shown
in Fig.9. The blue curve is the result with vortices distributed uniformly, with the separation ℓB/2 = 20a in both
the horizontal and the vertical directions(see Fig.3), the same as the blue one in Fig.5; the red curve is the result
with the two vortices in the same magnetic unit cell placed much closer, with the separation 4a in both directions.
The same frequency of oscillations is observed, excluding the possibility that the oscillations are from Bragg plane
reflections due to specific vortex configurations. There is a difference between the phases of the two configurations,
which suggests that in the resistive state with creeping vortices, the phase difference may smear out the oscillations.

4. Density of states

At zero temperature, the oscillations of the Sommerfeld coefficient simply corresponds to the oscillations of the
density of states (DOS) at zero energy. We now investigate whether the DOS resembles that of Dirac fermions
minimally coupled to an external magnetic field H . This can help us to illustrate the difference between the two
systems. The DOS as a function of Fermi pocket area in the field H with ℓB = 40a is shown in Fig.10. The mesh
shows the DOS of Dirac fermions with the same anisotropy and Fermi velocity minimally coupled to the same field H .
Clearly, to a large extent, the d-wave superconductor with loop current order in the vortex state does not resemble
Dirac fermions minimally coupled to a magnetic field. Therefore, the LK formula, which is derived for systems with
Landau level quantization, does not hold in this case. Nevertheless, an oscillatory feature of the DOS is seen. Due
to finite size effects, the zero energy DOS does not show smooth oscillations, but at intermediate temperatures,
involvement of thermally activated modes with energy ∼ O(kBT ) makes the oscillations of the specific heat smooth.
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FIG. 8: The Sommerfeld coefficient γ(H,J) as a function of loop current order J at temperature from 5K to 1K with step 1K,
in the field with magnetic length ℓB = 40a. The phase shift basically agrees with that predicted by LK formula.
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FIG. 9: Oscillations of Sommerfeld coefficient, for different configurations of the vortex lattice. The separation between two
vortices within a magnetic unit cell in both directions is 20a (blue) and 4a (red), in the field with ℓB = 40a.

It is this feature which is responsible for the oscillations of the specific heat at intermediate temperatures presented
in Figs.(5-9).

B. Oscillations as a function of Zeeman energy

Up to now, we have neglected the Zeeman splitting due to the external magnetic field, since it only affects the results
in an insignificant way and the conclusions do not change. We imagine changing the Zeeman term while holding the
magnetic field and the pairing term fixed. This will also induce Fermi pockets in the d-wave superconducting state,
even in the absence of the loop current order. In zero field, the dispersion with such a term is

Ek = ±
√

ξ2k +∆2
k + EZ (43)

where the Zeeman term EZ shifts the energies, resulting in four Fermi pockets(see Fig.11). Since at small energies
the pockets are ellipses, the area of each one AF is easily calculated, and varies quadratically with Zeeman energy as
shown in Fig.11. We use the same parameters as in the loop current order case, and sweep EZ from 0.02t to 0.16t, for
two magnetic fields with ℓB=28a and ℓB=40a. In Fig.12 we show γ(H) vs. AF /A0. If Landau levels are formed and
Onsager relation holds, the frequency of the two oscillations should be the same, regardless of the magnitude of the
magnetic field. Nevertheless, the frequency is doubled when the field is doubled, which is consistent with QP’s forming
Bloch bands instead of Landau levels3. Comparing this result with the oscillations induced by the loop current order,
we conclude that the latter has a more intricate nature whose effects can not be accounted merely by the presence
of the Fermi pockets. Rather, we believe, the special nature of the coupling between the loop current order and the
nodal dx2−y2 QP’s is essential to account for the observed oscillations obeying Onsager relation.
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oscillate smoothly, but at finite temperatures, states with nonzero energy are involved, making the oscillations in the specific
heat smooth.
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Fermi pockets at EZ = 0.02t (black) and EZ = 0.16t (red). The parameters are the same as in Fig.4.

IV. THE LINEARIZED PROBLEM

In the continuum formulation we diagonalize the linearized Hamiltonian Eq.(39) in the plane wave basis3,18, and
repeat the calculations above for two values of the magnetic field. The Fermi pocket area AF = πE2

F /(vF v∆), where
EF = J0 given below Eq.(29). We find that the two pockets give the same contribution to oscillations of the specific
heat, while the nodes do not contribute to the oscillations. Fig.13 shows the oscillations of γ(H, J) in fields with
ℓB = 28a and ℓB = 40a from one of the pockets. With the same range of J as in Sec. III, the same frequency is found
for both curves, which confirms our findings above. The effective charge e∗ ≈ e here.
The linearized formulation enables us to sweep the external magnetic field continuously at a fixed J , and to verify

Onsager relation, which reads15

∆(
1

H
) =

2πe

~cAF
(44)

where ∆(1/H) is the period of oscillations if AF is fixed and H is varied. This is equivalent to ∆(ℓ2B) = (2π)2/AF .
We take J = 0.05t and sweep ℓ2B, the result of which is shown in Fig.14. The period is ∆(ℓ2B) ≈ 200. Using Eq.(26),
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FIG. 13: The Sommerfeld coefficient γ(H,J) as a function of J in fields with ℓB = 28a(red) and ℓB = 40a (blue) at 5K resulting
from one Fermi pocket in the linearized formulation.

(44) and the expression of J0, we determine that the effective charge e∗ ≈ e, which agrees with what is derived above
for the tight-binding formulation.

V. DISCUSSIONS AND CONCLUSIONS

We have shown that the Fermi pockets induced by loop current order can give rise to quantum oscillations of
the specific heat within a limited temperature range which seem to obey Onsager relation, with an effective charge
comparable to the electric charge.
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FIG. 14: γ(H,J) as a function of ℓ2B at J = 0.05t and T =2K, resulting from one Fermi pocket in the linearized formulation.
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Here we derive J0 in two ways and compare them. We used the anisotropy α = 14 in our calculations, but the
anisotropy of YB2Cu3O6.56 studied in Ref.11 is α ≈ 8. To do the comparison, we assume that we would get quantum
oscillations with the same effective charge for YB2Cu3O6.56. Firstly, applying the standard formula of the specific
heat in the absence of magnetic fields14,20, we find J0 ≈ 20meV for γ(0) ≈ 2mJ/(mol K2). Secondly, using Onsager
relation Eq.(A35) and the frequency 531T11, we find J0 ≈ 50meV from quantum oscillations. They are of the same
order, but differ by a factor of 2.5.
In the theory of metals, Onsager relation is established from arguments that in a uniform magnetic field, semiclas-

sically, electrons move in constant energy surfaces with quantized energies15. In a d-wave superconductor with loop
current order, however, such a argument does not work. Suppose that Bogoliubov QP’s circulate the Fermi surface
which is an ellipse. Although the Fermi surface is still a constant energy surface, the charge of a Bogoliubov QP varies
with its position as it moves around the Fermi surface, and the average charge over the Fermi surface is zero14, which
makes the argument for metals invalid here.
We trace the origin of the oscillations observed in our numerical calculation to the highly inhomogeneous fictitious

magnetic field experienced by the d-wave Dirac particles in the presence of the loop order. Such coupling is absent
if the Bogoliubov QP Fermi pockets are due to Zeeman effect only. Indeed in the temperature range where the
oscillations appear, the Onsager relation holds approximately in the case with the loop order but does not hold if only
the Zeeman shift is included.
One disadvantage of this picture is that the contribution from the loop current order induced Fermi pockets is

at odds with the experimentally confirmed
√
H behavior of the background on top of which the oscillations occur.

Another disadvantage is that the full Lifshitz-Kosevich relation ceases to hold since ultimately there is no Landau
quantization as shown in Fig.10.
Recently, a paper Ref.20 with a similar concern was published. Comparing with their work, we agree that there are

no quantized Landau levels near the Fermi pockets of Bogoliubov QP’s. Nevertheless, we do find quantum oscillations
of the specific heat in a small temperature range, while, by analyzing the density of states at the Fermi level, they
conclude that no quantum oscillations should appear unless spin stripe order coexists with loop current order.
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Appendix A: Quantum oscillations of the specific heat of Dirac fermions

In this appendix we consider a hypothetical problem, the two-dimensional anisotropic Dirac fermions moving in
a perpendicular magnetic field Hẑ. We use it to set up a contrast with the results found for the physical system
considered in the main text. The Hamiltonian reads

H = vF

(

0 Πx − i
αD

Πy

Πx + i
αD

Πy 0

)

(A1)

where

~Π = ~p+
e

c
~A,∇× ~A = Hẑ (A2)

and αD is the anisotropy. Since

[Πx,Πy ] = −i~eH
c

= −i ~
2

ℓ2B
(A3)

where ℓB =
√

~

eH (defined differently from that in the main text), if we define the annihilation and creation operator
as

a =

√
αDℓB√
2~

(Πx − i

αD
Πy), (A4)

a† =

√
αDℓB√
2~

(Πx +
i

αD
Πy), (A5)
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then

[a, a†] = 1 (A6)

and the Hamiltonian can be written as

H =

√
2~vF√
αDℓB

(

0 a
a† 0

)

. (A7)

The eigenenergies of this Hamiltonian are

ǫn = ±
√
n

√
2~vF√
αDℓB

= ±ζ
√
n (A8)

where ζ =
√
2 ~vF√

αDℓB
. We consider only the positive eigenenergies ǫn = ζ

√
n which are connected to the negative

eigenenergies by particle-hole symmetry.
The grand potential is then

Ω = −TD
∞
∑

n=0

ln(1 + e−(ǫn−µ)/T ) (A9)

= −TD
∫ ∞

0

dǫ

∞
∑

n=0

δ(ǫ − ǫn) ln(1 + e−(ǫ−µ)/T ) (A10)

where D = gHL2/φ0 is the degeneracy of one Landau level, g the number of species of fermions. Since

∞
∑

n=0

δ(ǫ −
√
nζ) =

∞
∑

n=0

δ(n− ǫ2

ζ2
)
2ǫ

ζ2
, (A11)

then

− Ω

TD
= ln(1 + e

µ
T )

+

∫ ∞

0+
dǫ

2ǫ

ζ2

∞
∑

n=0

δ(n− ǫ2

ζ2
) ln(1 + e−

ǫ−µ
T ). (A12)

Using

∞
∑

n=0

δ(n− ǫ2

ζ2
) =

∞
∑

p=−∞
e
2πip ǫ2

ζ2 , (A13)

we have

− Ω

TD
= ln(1 + e

µ
T )

+

∞
∑

p=−∞

1

ζ2

∫ ∞

0+
dǫ2ǫe

2πip ǫ2

ζ2 ln(1 + e−
ǫ−µ
T ). (A14)

Integrating by parts, we have

− Ω

TD
= ln(1 + e

µ
T ) + ln(1 + e−

ǫ−µ
T )

1

2πip
e
2πip ǫ2

ζ2

∣

∣

∣

∣

∞

0

+

∫ ∞

0

1

2πip
e
2πip ǫ2

ζ2
1

T

1

1 + e
ǫ−µ
T

dǫ

= ln(1 + e
µ
T )− 1

2πip
ln(1 + eµ/T ) +

∫ ∞

0

1

2πip
e
2πip ǫ2

ζ2
1

T

1

1 + e
ǫ−µ
T

dǫ. (A15)
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(blue) and Eq.(A21) (red), with T/ζ = 0.1.

The first two terms are non-oscillatory. Integrating by parts again for the third (oscillatory) term, we get

−Ωosc

TD
=

1

2πip

1

4T 2

∫ ∞

0

dǫΦ(ǫ)
1

cosh2 ǫ−µ
2T

(A16)

where

Φ(ǫ) =

∫ ǫ

0

dye
2πip y2

ζ2 . (A17)

Let x = (ǫ− µ)/T , then

−Ωosc

TD
=

1

8πip

1

T

∫ ∞

− µ
T

dx
1

cosh2 x
2

∫ Tx+µ

0

dye
2πip y2

ζ2 .

(A18)

Let y = µξ, then

−Ωosc

µD
=

∑

p6=0

1

8πip

∫ ∞

− µ
T

dx

cosh2 x
2

∫ 1+T
µ
x

0

dξe
2πip µ2ξ2

ζ2 .

(A19)

Using the formula

∂

∂z

∫ y(z)

dxf(x)g(z, x) =
∂y(z)

∂z
f(y(z))g(z, y(z))

+

∫ y(z)

dxf(x)
∂g(z, x)

∂z
, (A20)

and differentiating the grand potential twice with respect to T , we arrive at the oscillatory part of the Sommerfeld
coefficient

Cosc

TL2
=

gH

2φ0

µ

ζ2

∑

p6=0

e
2πipµ2

ζ2

∫ ∞

− µ
T

dx
x2

cosh2 x
2

e
4πip µ

T
T2

ζ2
x
e
2πipT2

ζ2
x2

(1 +
T

µ
x). (A21)

The first exponential accounts for the quantum oscillations of the Sommerfeld coefficient with the Fermi pocket area
and the magnetic field, and the integral determines the amplitude as well as the phase shift of the oscillations.
At the low-temperature limit, µ/T ≫ 1, we can extend the lower limit of the first integral to −∞ since the difference

is exponentially small. Also, in the integral, the first exponential oscillates much faster than the second one since x

16



is bounded by 1/ cosh2 x
2 to ∼ 1. Thus we drop the second exponential as well as the last factor,

Cosc

TL2
=

gH

2φ0

µ

ζ2

∑

p6=0

e
2πipµ2

ζ2

∫ ∞

−∞
dx

x2

cosh2 x
2

e
4πip Tµ

ζ2
x

(A22)

The integral has the analytical form

∫ ∞

−∞
dx

x2

cosh2 x
2

ei
λ
π
x = −4π2f ′′(λ)

(A23)

where

f(λ) =
λ

sinhλ
. (A24)

Now,

Cosc

TL2
= −4π2 gH

2φ0

µ

ζ2

∑

p6=0

e
2πipµ2

ζ2 f ′′(z) (A25)

= −4π2 gH

φ0

µ

ζ2

∞
∑

p=1

cos

(

2πp
µ2

ζ2

)

f ′′(z) (A26)

where

z = 4π2p
Tµ

ζ2
. (A27)

The Fermi pocket area is

AF =
αDπµ

2

~2v2F
, (A28)

and the cyclotron ”mass” is

m∗ =
~
2

2π

∂A

∂E

∣

∣

∣

∣

E=µ

=
αDµ

v2F
. (A29)

So the combinations appearing in the Sommerfeld coefficient are

µ

ζ2
=

αDµ

2v2F~eH
=

m∗

2~eH
=

1

2~ωc
, (A30)

µ2

ζ2
=

αDµ
2

2v2F~eH
=

AFh

4π2eH
=
AFφ0
4π2H

, (A31)

thus

Cosc

TL2
= −πgm

∗

~2

∞
∑

p=1

cos

(

p
AFφ0
2πH

)

f ′′(z) (A32)

with

z = 2π2p
T

~ωc
. (A33)

The coefficient is exactly the same as in the Schrödinger case, except that m∗ has a different definition and depends
on µ now. In the Schrödinger case, Cosc/T is strictly periodic in the Fermi pocket area since the amplitude has no
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dependence on µ, but for Dirac fermions it is different. Because z depends on µ, the amplitude, as well as the phase
shift, depend not only on the temperature and the magnetic field, but also on the Fermi pocket area.
From the first harmonic p = 1, we can deduce the Onsager relation: the period of the cosine as a function of AF

and 1/H , respectively, is

∆(AF ) =
4π2H

φ0
, (A34)

∆(
1

H
) =

4π2

φ0AF
. (A35)

To compare the approximate expression of the amplitude obtained in the limit µ/T ≫ 1 with the expression valid to
any µ/T , in Fig.15 we plot the integral in Eq.(A22) and that in Eq.(A21) as a function of µ/T , while fixing T/ζ = 0.1.
The two curves basically coincide at µ/T & 10. The position where the phase shift occurs, i.e. where the integral
changes sign, is different for the two curves. At a smaller T/ζ, the phase shift occurs at a larger µ/T for both curves,
and the positions where the phase shift occurs become closer.
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