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We report evidence of large, nonlocal correlations between two spatially separated normal met-
als in superconductor/normal-metal (SN) heterostructures, which manifest themselves as nonlocal
voltage generated in response to a driving current. Unlike prior experiments in SN heterostructures,
the nonlocal correlations are mediated not by a superconductor, but by a proximity-coupled normal
metal. The nonlocal correlations extend over relatively long length scales in comparison to the
superconducting case. At very low temperatures, we find a reduction in the nonlocal voltage for
small applied currents that cannot be explained by the quasiclassical theory of superconductivity,
which we believe is a signature of new long-range quantum correlations in the system.

PACS numbers: 74.45+c, 03.67.Mn, 74.78.Na

I. INTRODUCTION

Electrons in spatially separated normal metals in
mutual contact with a superconductor show corre-
lations that are evidence of quantum entanglement
due to their interaction with the Cooper pairs in
the superconductor.1–8 Experimentally, the correlations
manifest themselves as a nonlocal voltage that devel-
ops on one normal metal in response to a current in-
jected from another normal metal into the superconduc-
tor. In such a hybrid structure, three processes that con-
tribute to the nonlocal voltage have been investigated.
Two, crossed Andreev reflection (CAR) and elastic co-
tunneling (EC), arise from the interaction of quasiparti-
cles in the spatially separated normal metals that are
mediated by the Cooper pairs in the superconductor,
and decay spatially on the scale of the superconduct-
ing coherence length ξS , typically about 100 nm for
Al.4,6 The third process, charge imbalance,9,10 is asso-
ciated with the conversion of a quasiparticle current into
a supercurrent in the superconductor, and decays over
the charge imbalance length ΛQ∗ , which is of the or-
der of a few microns.11–13 None of these three nonlo-
cal processes are expected in a normal metal with an
induced superconducting proximity effect, where there
is no superconducting order parameter. Consequently,
it comes as a surprise that large nonlocal signals can
indeed be observed when a quasiparticle current is in-
jected into a normal metal that is proximity coupled
to two superconductors. The experimental manifesta-
tion of these nonlocal signals is very similar to that
observed in normal-metal/superconductor/normal-metal
(NSN) structures,11–18 although their origin appears to
be quite different.

II. EXPERIMENT

The samples measured in this work were fabricated
by using conventional electron beam lithography. We
selected Au as the normal metal and Al as the super-

conductor. O2 plasma etching was performed prior to
the deposition of Al on top of Au to ensure transpar-
ent interfaces. Figure 1(a) shows an example which in-
volves two different measurement configurations. The
left side of the sample corresponds to a NSN structure
similar to that measured in previous experiments.16,17 In
the configuration on the right side of the sample, the
superconductor between the two normal metals is re-
placed by a proximity-coupled normal metal. The length
L of the normal metal wire between the two supercon-
ductors was designed so that the two superconductors
were Josephson-coupled in the temperature range of in-
terest. Given the multiprobe nature of the sample, we
shall use the notation Rij,kl = dVkl/dIij to denote the
four-terminal differential resistance, where the ac and dc
currents are applied between contacts i and j, and the
resulting ac voltage measured between contacts k and
l, with the contacts numbered as in Fig. 1(a). Figure
1(b) shows the local differential resistance R18,47 and
demonstrates that the two superconductors are indeed
Josephson-coupled through the normal metal arm, with
a critical current Ic ∼ 3.6 µA at T = 24 mK.

Figure 1(c) shows a nonlocal measurement on the left
part of the sample of Fig. 1(a) at 20 mK, correspond-
ing to the NSN configuration measured previously,16,17

and it can be seen that the resulting curves are also sim-
ilar to what was observed earlier: at Idc = 0, there is
a small but finite resistance, of the order of a few mil-
liohms. This contribution arises from the difference be-
tween EC and and CAR. EC is expected to give rise to
a positive differential resistance, while CAR is expected
to give rise to a negative contribution. The positive sign
of the zero bias resistance implies that the EC contribu-
tion is larger than the CAR contribution, as was seen in
earlier experiments.16,17 At larger values of |Idc| (∼ 10
µA), a peak in resistance is observed that is associated
with charge imbalance.16,17 This is followed by a sharp
dip down to negative values in the differential resistance.
Similar negative resistance dips are seen in a variety of NS
and ferromagnet-superconductor (FS) structures at dc
currents near the critical current of the superconductor.17
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FIG. 1: (a) False color scanning electron micrograph of the
sample discussed in the text. Light areas are Au; the darker
lines are Al. The numbers mark the contacts used for four-
terminal differential resistance measurements. The size bar
is 500 nm. (b) Local differential resistance as a function of
the applied current Idc. (c) Nonlocal resistance of the NSN
configuration of sample shown in (a) as a function of Idc.
Inset: Expanded view of the zero bias region. (d) Nonlocal
resistance of the proximity-coupled normal metal shown in
(a) as a function of Idc. Inset: Expanded view of the zero
bias region. All the measurements shown here are performed
at 24 mK.

The origin of this negative differential resistance is not
entirely clear: the fact that they are seen at values of Idc
close to the critical current, and they do not scale with
length as expected from EC/CAR17 suggest that they
are associated with nonequilibrium effects rather than

nonlocal EC or CAR, a point of view also supported by
theoretical calculations.19

Figure 1 (d) shows the corresponding nonlocal resis-
tance measurements on the configuration on the right
side of the sample of Fig. 1(a); the difference again is that
in this configuration, the superconductor that forms the
bridge between the two normal metal parts in the conven-
tional NSN configuration is now replaced by a proximity-
coupled normal metal. The overall shape of the curves
is very similar to the curve in Fig. 1(c), with a finite
positive differential resistance at Idc = 0, a peak in dif-
ferential resistance at |Idc| ∼ 8 µA, followed by a drop in
differential resistance to negative values at higher |Idc|.
As was found for conventional NSN devices,16 the non-
local differential resistance also decreases as the length
of the V+ voltage lead from the current path increases.
However, there are some significant differences between
the data of Fig. 1(d) and Fig. 1(c). First, the magni-
tude of the zero bias differential resistance is larger in
Fig. 1(a) in comparison to the NSN configuration of Fig.
1(c), and also in comparison to previous work on NSN
devices16. Second, and more significant, there is small
dip in the differential resistance near Idc = 0 in the non-
local measurements that is absent in the conventional
NSN measurements. The inset to Fig. 1(d) shows that
this dip also scales with the distance of the V+ nonlocal
voltage probe from the current path. The dip is evidence
of new nonlocal correlations that exist in this system.

In order to perform a more detailed examination of the
length dependence of the nonlocal differential resistance
in this new sample configuration, we fabricated devices
with multiple terminals. An image of one of these devices
is shown in Fig. 2(a). While a number of samples were
measured and showed similar results, for the remainder
of the paper, we shall concentrate on this sample, for
which we have the most complete data.

For this sample, the electronic diffusion coefficient
D = (1/3)vF ` = 110 cm2/s, as determined from resis-
tance measurements of the normal metal wires above the
critical temperature Tc ∼ 1.15 K of the Al (here vF is the
Fermi velocity and ` is the elastic scattering length in the
gold). The distance L= 0.75 µm between the two NS in-
terfaces in Fig. 2(a) gives a Thouless energy Ec = ~D/L2

(the relevant energy scale for the superconducting prox-
imity effect) of 11.7 µeV, with a corresponding Thouless

length LT =
√

~D/kBT = 293 nm/
√
T . This corre-

sponds well with the fact that a finite supercurrent was
observed below T ∼ 0.7 K.

Figure 2(b) shows a measurement of the local differ-
ential resistance R19,28 as a function of Idc at various
temperatures, corresponding to the differential resistance
of the SNS junction. The position of the peaks in this
curve identify the critical current Ic. The blue circles in
Fig. 2(c) show the T dependence of Ic, and the solid line
is a fit to the functional form, Ic = BT 3/2 exp(−A/LT )
(where A and B are constants), the form expected for
a SNS junction in the long junction limit20 (∆ >> Ec,
where ∆ is the gap in the superconductor). Although the



3

R
19

,2
8 

(Ω
)

−5

0

5

10

15

20

25

30

Idc (μA)
−2 0 2

  20 mK 
  40 mK
  60 mK 
  80 mK  
120 mK
160 mK
200 mK
240 mK
280 mK
320 mK

cr
it

ic
al

 c
ur

re
nt

 (μ
A

)

0.5

1

1.5

1

2

3

4

5

Temperature (K)
0 0.1 0.2 0.3

(a)

(b)

(c)

 local
 nonlocal

FIG. 2: (a) False color scanning electron micrograph of the
sample discussed in the text. Light areas are Au; the darker
lines are Al. The numbers mark the contacts used for four-
terminal differential resistance measurements. The size bar is
500 nm. (b) Local differential resistance R19,28 as a function
of the applied current Idc. (c) Blue circles show the measured
critical current, determined by the position of the peak in the
differential resistance in (b), as a function of temperature T .
The solid line shows a fit to the expected temperature depen-
dence for a long SNS junction of length L.20 Open red circles
are the finite values of Idc at which the nonlocal differential
resistance R31,49 (Fig. 3(a)) has its minimum.

fit is quite good, Ic at base temperature is smaller than
the value Ic0 = 10.82Ec/eRN predicted for a simple SNS
junction20 (RN is the normal state resistance). For this
sample, Ic0eRN/Ec ∼ 0.56, with RN = 4.56 Ω. In multi-
terminal structures, Ic is expected to be suppressed due
to a modification of the induced minigap.21 If we assume
that the measured Ic0 is related to an effective Thouless
energy E∗

c by the same theoretical prediction for a simple
SNS junction, we obtain E∗

c =(0.56/10.82)×11.7 = 0.60
µeV.

We now discuss the nonlocal measurements. Figure
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FIG. 3: (a) Nonlocal resistances as a function of dc current
bias for 4 nonlocal configurations, R31,49, R31,59, R31,69 and
R31,79. (b) Data of (a), with the curves for R31,49, R31,59,
R31,69 and R31,79 scaled so that their normalized peaks at
±2.3 µA match. (c) Nonlocal resistances R31,79, R41,79 and
R51,79, where the current injection terminal is changed, but
the voltage contacts remain the same. (d) Data of (c), with
the curves for R31,79, R41,79, and R51,79 with both x and y
axes scaled as described in the text.
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3(a) shows the nonlocal dV/dI at 20 mK for four differ-
ent configurations, each with the current sourced through
normal electrode 3 and drained through a superconduct-
ing electrode 1. (For the electrode numbers, please refer
to Fig. 2(a).) The overall shape of the resulting traces
is similar to what was observed in the first sample (Fig.
1(d)): at Idc = 0, nonlocal dV/dI is finite and grows with
current, resulting in a peak at a finite current of ∼ 2.3
µA, after which there is a sharp drop to negative values
before it goes to zero at high bias. The nonlocal dV/dI
also decreases as the distance of the V+ contact from the
current path increases. Finally, there is a sharp dip in
dV/dI near Idc = 0 that is not present in NSN samples.

In earlier nonlocal NSN experiments,16,17 it was found
that the zero bias differential resistance Rnl(0) and the
peak at finite Idc decayed with the distance from the cur-
rent injection electrode, but with different length scales:
While the zero bias resistance decayed exponentially with
ξS as expected from CAR/EC, the peak was associated
with charge imbalance and found to decay linearly with
ΛQ∗ . In the current experiments, Rnl(0) and the peak re-
sistance also scale differently with distance. Figure 3(b)
shows the curves of Fig. 3(a) scaled along the y-axis so
that their peaks at finite bias match. With this scal-
ing, the curves match over most of the range of current,
except near zero bias. (The inset to Fig. 3(b) shows an
expanded version of the zero bias nonlocal differential re-
sistance.) This shows clearly that Rnl(0) and the finite
bias resistance scale differently with length, as was found
for the NSN samples. In the NSN case, Rnl(0) decayed
exponentially on a length scale of ξS : Here one might
expect that Rnl(0) should decay exponentially with LT .
Contrary to expectation, both Rnl(0) and the peak re-
sistance scale linearly with the distance from the current
injection point, although the slopes are different (data
not shown), reflecting the different scaling evident in Fig.
3(b).

Similar behavior is observed if one keeps the voltage
contacts the same, but moves the contact used to inject
the current. Figure 3(c) shows these data. As before, the
magnitude of the nonlocal differential resistance increases
with decreasing distance from the V+ probe to the cur-
rent path. Unlike the data in Fig. 3(a), however, the
position of the negative resistance dips at finite dc bias
also changes. As we discuss later, injecting a dc current
through a normal contact into the proximity-coupled nor-
mal metal wire induces a supercurrent between the two
superconductors. The negative differential resistance is
associated with exceeding the critical current of the SNS
junction: by changing the current path, the fraction of
the injected current that is converted into supercurrent
changes, and hence the position of the negative resis-
tance dips in terms of the injected current also changes.
However, if we scale the x-axis so that the position of
the dips match, and independently scale the y-axis so
that the magnitude of the resistance peaks at finite bias
match, we obtain the curves shown in Fig. 3(d). Again,
this demonstrates clearly that the resistance dip at zero
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FIG. 4: (a) Schematic of the current separation model. The
injected quasiparticle current Iqp splits into two currents, Iqp1
and Iqp2, which go towards the two superconducting contacts
S1 and S2 respectively. Iqp2 is compensated by a counterflow-
ing supercurrent Is that flows from S2 to S1. (b) Results of
the numerical simulations based on the quasiclassical theory
of superconductivity for the nonlocal resistances for the ge-
ometry of (a) as a function of Iqp. The distance L′ between
the normal probe (on the normal metal) and S1 is 0.451L,
0.578L, 0.696L and 0.843L, where L is the length of normal
metal between S1 and S2. The position of N1 is fixed at
0.196L from S1. These values are chosen to match the sam-
ple geometry. (c) Calculated zero bias resistance as a function
of temperature.

bias scales differently with length in comparison to the
finite bias part of the differential resistance.

III. THEORETICAL ANALYSIS

What is the origin of this behavior? In SNS structures
with Josephson coupling between two superconducting
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electrodes, supercurrents and quasiparticle currents can
coexist in a proximity-coupled normal metal over dis-
tances much longer than ξS .22–24 As the superconduct-
ing electrodes S1 and S2 are Josephson-coupled at low
enough temperatures, they are at the same electrochem-
ical potential, which we take to be 0 here for simplicity.
A finite potential V applied to the current injection elec-
trode N1 will drive a quasiparticle current Iqp into the
proximity-coupled normal metal as shown in Fig. 4(a).
Since S1 and S2 are both at zero potential, this quasi-
particle current will split into two components: Iqp1 will
flow towards S1, and Iqp2 will flow towards S2, the ra-
tio Iqp1/Iqp2 being determined by the inverse ratio of the
resistances of the normal sections between the current
injection point and S1,2. As S2 is a voltage probe, no net
current can flow into it. Hence, Iqp2 must be balanced
by a counterflowing supercurrent IS that flows from S2

to S1 such that IS = −Iqp2 and IS + Iqp1 = Iqp, in turn
giving rise to a phase difference φ between S1 and S2.
This situation will persist until IS exceeds Ic of the junc-
tion. Since Iqp1 is always less than Iqp, the injected dc
current Iqp at which this occurs is always greater than
the critical current Ic. Evidence for this model can be
seen by examining the value of current at which this oc-
curs. The red open circles in Fig. 2(c) show the value
of Idc as a function of T at which the minimum in the
resistance at finite bias is observed in the nonlocal mea-
surement as shown in Fig. 3(a). The ordinate axis has
been scaled so that the data points lie on top of the mea-
sured Ic (blue circles) at high temperatures. At lower
temperatures, however, they show a weaker temperature
dependence. This latter behavior has been observed pre-
viously by other groups,24 and arises from the reduction
of Ic due to the nonequilibrium quasiparticle distribution
introduced by Iqp.

22

Iqp2 will result in a finite “nonlocal” voltage between
the normal voltage contacts N2,3 and the second super-
conductor S2 that will be proportional the resistance of
the normal wire between N2,3 and S2, plus the resistance
of the interface NS2. Thus, one would expect to see
the linear scaling mentioned earlier. In addition, as the
current injection point is moved closer to S2, one would
expect to see an increase of the nonlocal voltage (and
hence differential resistance) and decrease of Idc where
minimum in the resistance appears as the ratio Iqp2/Iqp
increases. Figure 3(c) which shows the nonlocal differen-
tial resistance for a fixed voltage lead but different cur-
rent injection points, confirms this.

Hence, it appears that the current separation model
describes well the nonlocal resistance that we observe.
However, closer analysis of the current bias and temper-
ature dependence of the nonlocal resistance reveals some
significant discrepancies. Quantitative predictions for the
differential resistance can be obtained by simultaneously
solving numerically the Usadel equations and the kinetic
equations26 to obtain the nonlocal dVnl/dIqp as a func-
tion of Iqp, and Rnl(0) as a function of temperature. We
used the public domain numerical solvers developed by

Pauli Virtanen,27 based on the Riccati parametrization
of the quasiclassical equations for superconductors in the
diffusive limit.28,29 The starting point for the simulations
is the equation for the total current

j(R, T ) = eN0D

∫
dE[M33(∂RhT )+QhL+M03(∂RhL)].

(1)
Here N0 is the electronic density of states at the Fermi
energy, D is the diffusion coefficient, hT and hL are
the tranverse and longitudinal quasiparticle distribution
functions, which in equilibrium at energy E in reservoirs
at a potential V have the form

hL,T =
1

2

[
tanh

(
E + eV

2kBT

)
±
(
E − eV
2kBT

)]
, (2)

the spectral supercurrent Q is given by

Q = <
(
2N2[γ∇γ̃ − γ̃∇γ]

)
, (3)

and the dimensionless diffusion coefficients M by

M33 = |N |2(|γ|2 + 1)(|γ̃|2 + 1) (4)

and

M03 = |N |2(|γ̃|2 − |γ|2), (5)

where N = (1+γγ̃)−1. γ, γ̃ are the Riccati parametriza-
tion parameters that satisfy the coupled equations

D∇2γ − 2Nγ̃|∇γ|2 + 2iEγ = 0

D∇2γ̃ − 2Nγ|∇γ̃|2 + 2iEγ̃ = 0 (6)

in the normal metal wires. The boundary conditions for
the differential equations are that γ and γ̃ are zero at a
normal reservoir, while on a superconducting reservoir

γR = − ∆

E + i
√
|∆|2 − (E + iδ)2

γ̃R =
∆∗

E + i
√
|∆|2 − (E + iδ)2

, (7)

where ∆ = |∆|eiφ is the complex order parameter in
the superconducting reservoir, φ being the phase of the
superconductor.

The first term on the RHS in Eq. (1) is the quasipar-
ticle current, the second term is the supercurrent, and
the third term corresponds to conversion of quasiparticle
to supercurrent, and is typically negligible in a normal
metal. At the nodes, the Riccati parameters are con-
tinuous, and their derivatives sum to zero. The spectral
charge and energy currents also sum to zero along a node,
and are conserved in a normal wire.

To calculate the differential resistance as a function of
the current, we use the sample geometry in Fig. 4(a).
This has two superconducting reservoirs and three nor-
mal reservoirs. Using one normal reservoir for current
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injection, the other two normal reservoirs are modeled
as voltage contacts, allowing us to calculate two nonlo-
cal resistances simultaneously. A voltage V is applied to
the normal contact N1 with the superconducting reser-
voirs S1 and S2 being at zero potential, and the result-
ing current Iqp flowing from N1 is calculated under the
boundary condition that no current flows into contacts
N2, N3 and S2. In order to satisfy these boundary condi-
tions, the voltages Vnl1 and Vnl2 on the normal contacts
N2 and N3 and the phase difference φ between the two
superconducting contacts S1 and S2 are adjusted in an
iterative loop. As Iqp increases, a quasiparticle current
Iqp2 flows into S2, which is counterbalanced by a super-
current IS that flows from S2 to S1. As IS approaches
the critical current, the simulations have greater diffi-
culty converging, and we have shown in the figures only
that range of Iqp over which the boundary conditions
are satisfied. For the plot, the nonlocal differential resis-
tances dVnl1/dIqp and dVnl2/dIqp are calculated numer-
ically. Taking the length of the wire between the super-
conducting reservoirs to be L, the nonlocal resistances
shown in the simulations of Fig. 4(b) correspond to the
positions of the normal leads in the actual sample shown
in Fig. 2(a), with the length of each normal reservoir
from the proximity coupled normal wire being 0.75 L.
We have also performed simulations with different values
of this length, and this value most closely resembles the
shape of the experimental curve. The temperature of the
simulations correspond to 20 mK. For the temperature
dependence, a similar simulation was done, but only a
small voltage ±V was applied to N1, and the resulting
values used to calculate the differential resistances as a
function of temperature. Ideally, we would have liked
to have a sufficient number of normal contacts to model
exactly the device of Fig. 3(a). However, the numerical
calculation does not converge fast enough over all val-
ues of dc current with a larger number of reservoirs. In
order to model the length dependence of the experimen-
tal data, we have therefore repeated the calculations with
the normal reservoirs placed at different lengths along the
normal wire, corresponding to the measured dimensions
of the experimental sample.

The resulting curves are shown in Fig. 4(b) and 4(c) re-
spectively. There are some significant differences between
the results of the simulations and our measurements,
but we would first like to emphasize that the results
of the simulations are consistent with previous experi-
mental and theoretical results,30,31 under the assump-
tion that the nonlocal differential resistance we measure
is just the resistance of the appropriate length in Fig.
4(a) of the proximity-coupled normal metal. Consider
first Fig. 4(b), which shows that the nonlocal differential
resistance increases as the injected quasiparticle current
Iqp is increased from zero. As we noted above, injecting a
finite Iqp results in a finite supercurrent flowing between
the two superconductors S1 and S2, corresponding to a
finite phase difference φ between them. At the values
of Iqp in Fig. 4(a), φ < π/2. The resistance of the
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proximity-coupled normal metal metal is a function of φ,
being a minimum at φ = 0. Hence, as Iqp and thus φ
increases, Rnl would be expected to increase, as seen in
Fig. 4(b).

Figure 4(c) shows that the zero bias nonlocal differ-
ential resistance Rnl(0) is expected to increase as T de-
creases. This behavior is simply the well-known reen-
trance effect of a proximity-coupled normal metal30: As
the temperature is decreased below the transition tem-
perature of the superconductor, the resistance of the
proximity-coupled normal metal first decreases, but then
reaches a minimum at a certain temperature T0, increas-
ing as the temperature is decreased further. For a single
N wire connected to a S reservoir, T0 ∼ 5Ec/kB .26 For
more complicated geometries, T0 may be modified, and
a self-consistent calculation as we have done is required.
These calculations show that experimentally we are in
the regime T < T0, with the resistance rising as the tem-
perature is decreased, since LT ≥ L in the temperature
regime of interest.

We now compare the simulations to the experimental
data. First, note that the nonlocal differential resistance
in the simulations of Fig. 4(b) appears to saturate as
Iqp → 0. This is in contrast to the experimental data,
which show a sharp dip in the differential resistance at
zero bias. Second, the temperature dependence of the
zero bias nonlocal resistance is exactly opposite that that
predicted by the simulations. Figure 5(a) shows Rnl(0)
for the four nonlocal configurations of Fig. 3(a) in the low
temperature regime. The nonlocal resistance decreases
with decreasing temperature, in direct contrast to the
behavior expected from Fig. 4(c). At higher temper-
atures, the nonlocal resistance eventually goes down to
zero, which is due to the vanishing of the supercurrent
between the superconducting electrodes, without which
no nonlocal signal can be observed.

A clue to the origin of the decrease in Rnl(0) with de-
creasing T can be seen in the temperature evolution of
dV/dI vs. Idc, which is shown in Fig. 5(b) for one non-
local configuration. Apart from the decrease in Ic with
increasing T , the only major difference between the dif-
ferent temperature traces is the growth of the dip at zero
bias. In order to study the temperature dependence of
this feature, we plot −Rnl(0) together with the measured
Ic of the SNS junction in Fig. 5(c), with appropriate
offset and scaling in the y-axis so that the data points
coincide at higher temperatures. −Rnl(0) matches the
exponential behavior of Ic at higher temperatures, but
the two curves diverge at lower temperatures, with Ic
saturating, but −Rnl(0) still showing a strong exponen-
tial dependence. Measurements of the critical current
involve sending a substantial dc current through the sam-
ple, which may cause some heating at the lowest temper-
atures, depending on how the critical current is defined.
In the absence of this heating, -Rnl follows the tempera-
ture dependence of Ic, which is directly related to E∗

c .

Further evidence that the dip near zero bias is related
to the effective Thouless energy E∗

c can be found by in-

tegrating the nonlocal differential resistance to obtain
dV/dI vs Vnl. Figure 5(d) shows the 20, 80 and 160
mK from Fig. 5(b) plotted in this manner. The voltage
at which the 20 mK curve deviates significantly from the
80 and 160 mK curves at low bias– the voltage at which
the zero bias dip starts developing – is approximately 0.6
µV, much smaller than Ec/e, but in very good agreement
with the effective Thouless energy E∗

c /e defined earlier.

IV. CONCLUSION

We emphasize again that the dip in the nonlocal dif-
ferential resistance that we observe at low temperatures
is not described by the conventional quasiclassical theory
of superconductivity. For nonlocal measurements on con-
ventional NSN devices near zero bias, CAR is expected to
give a negative contribution to the nonlocal resistance,2

as two electrons with energies less than ∆, one from each
normal metal, combine to form a Cooper pair. The de-
crease in the nonlocal resistance in our samples suggests
a similar process is happening in these samples, since the
pair coupling in the proximity coupled normal metal is
finite. Thus, two electrons, one from each normal lead,
combine to form a correlated pair in the proximity cou-
pled normal metal. Exactly how this process occurs is not
clear, as it is not described by our current understanding
of nonequilibrium transport in proximity-coupled normal
metals.

In summary, measurements on proximity-coupled nor-
mal metals reveal a signature of long-range nonlocal
quasiparticle correlations that may be related to the for-
mation of pair correlations in the proximity-coupled nor-
mal metal. Further study is required to elucidate the
origin of these correlations.
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