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We investigate the finite-temperature phase diagram of the classical Kitaev-Heisenberg model
on the hexagonal lattice. Due to the anisotropy introduced by the Kitaev interaction, the model
is magnetically ordered at low temperatures. The ordered phase is stabilized entropically by an
order by disorder mechanism where thermal fluctuations of classical spins select collinear magnetic
states in which magnetic moments point along one of the cubic directions. We find that there is an
intermediate phase between the low-temperature ordered phase and the high-temperature disordered
phase. We show that the intermediate phase is a critical Kosterlitz-Thouless phase exhibiting
correlations of the order parameter that decay algebraically in space. Using finite size scaling
analysis, we determine the boundaries of the critical phase with reasonable accuracy. We show that
the Kitaev interaction plays a crucial role in understanding the finite temperature properties of
A2IrO3 systems.

I. INTRODUCTION

Recently spin-orbit coupling (SOC) effects have be-
come a subject of intense research across many different
disciplines in condensed matter physics. These effects
are especially pronounced in 4d and 5d transition-metal
compounds whose significant atomic SOC is due to their
large atomic weight.
The strongly entangled, spin-orbital nature of the lo-

calized states are characterized by an effective angular
momenta, Jeff . The interactions among the components
of Jeff are determined by the combination of spin and
lattice symmetries. This combination creates unconven-
tional anisotropic exchange interactions that give rise to
various novel properties.1–3 For example, breaking the
spin rotation symmetry permits magnetic Hamiltonians
that contain terms that are products of different compo-
nents of spin operators. Such terms, not allowed in the
traditionally studied SU(2) symmetric models, introduce
a new source of frustration4 and might drive the system
towards quantum spin liquid states.
A prominent model exemplifying these kinds of highly

anisotropic interactions is the Kitaev model on the hon-
eycomb lattice.5,6 The ground state of the Kitaev model
is known exactly; it is a spin liquid characterized by
anyonic excitations with exotic fractional statistics. Re-
cently, Jackeli and Khaliullin1 suggested that the Ki-
taev model could actually be realized within the hon-
eycomb iridates with general formula A2IrO3, since the
anisotropic part of the interactions among Ir-ions has the
same form as the Kitaev coupling. This suggestion has
triggered a lot of experimental7–11 and theoretical12–18

activity in the study of Na2IrO3 and Li2IrO3 compounds.
In A2IrO3 materials, Ir4+ ions are in a low spin 5d5

configuration with an effective angular momentum of
Jeff = 1/2 due to strong SOC. The low-energy Hamilto-
nian describing the interaction between Jeff iridium mo-
ments is called the Kitaev-Heisenberg (KH) model since

it contains both the isotropic antiferromagnetic (AF)
Heisenberg interaction, JH , and the anisotropic ferro-
magnetic (FM) Kitaev interaction, JK . The Kitaev ex-
change interaction is generated through the 90◦ Ir-O-Ir
hopping path between Jeff Kramers doublets and is non-
zero only in the presence of finite Hund’s coupling. The
isotropic exchange via the 90◦ Ir-O-Ir is canceled due to
a destructive interference among multiple superexchange
paths. At the same time, the isotropic AF Heisenberg in-
teraction is suppressed and the only non-vanishing con-
tribution is from the superexchange interaction arising
from the direct overlap of the Ir 5d orbitals.

The ground state of the KH model can be a spin liq-
uid despite the presence of the direct isotropic exchange.
This is because the Kitaev spin liquid is rather stable
with respect to the Heisenberg interaction2,12,14,18; it re-
mains the ground state of the KH model for a wide range
of strengths of the Heisenberg interaction. Exact diag-
onalization studies2,12,14 suggest a stability of the spin
liquid phase for the model parameter α in the range
(0.8, 1), where α is determined such that JK = 2α and
JH = 1−α. Even so, the Kitaev spin liquid in honeycomb
iridates has not been observed yet; in both Na2IrO3 and
Li2IrO3, magnetic order has been observed at low tem-
peratures.7–9 Moreover for Na2IrO3, the KH model in its
original form does not appear to be sufficient to account
for neither the zigzag magnetic order nor the spectrum of
magnetic excitations that have been measured in neutron
scattering experiments.8,9,11

To explain the experimental observations in Na2IrO3,
three different modifications of the super-exchange model
have been proposed.19–21 In the first approach,19 it was
shown that the zigzag magnetic order may be stabilized
within the KH model by including substantial second and
third neighbour antiferromagnetic interactions. The sec-
ond approach21 extends the KH model to its full parame-
ter space by including additional hopping processes based
on the t2g − eg hopping along the 90◦ Ir-O-Ir paths. The
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FIG. 1: Four possible magnetic configurations: (a) FM order-
ing; (b) two-sublattice, AF Néel order; (c) stripy order; (d)
zigzag order. Open and filled circles correspond to up and
down spins.

main difference between these two approaches is that the
role of the Kitaev interaction is minor in the first ap-
proach while it still plays the dominant role in the sec-
ond one. The third approach assumes that Na2IrO3 is
significantly distorted from the ideal structure; here, the
trigonal distortion is the dominant interaction while the
SOC is subdominant. This third model actually does
not contain the Kitaev term at all, but it does retain
the zigzag ground state as one of its magnetic ground
states.20 Thus, the importance of the Kitaev term in the
low-energy physics of the A2IrO3 compounds remains an
open question.

In this paper, we continue to examine the role of the
Kitaev interaction in the magnetic properties of A2IrO3

systems using the KH model defined in both the orig-
inal2 and the extended21 parameter space. We argue
that the Kitaev interaction’s main effect is the reduc-
tion of the symmetry of the system from the continu-
ous SU(2) symmetry to a discrete Z6 symmetry. The
latter is crucial for the finite temperature properties of
quasi two-dimensional (2D) iridates since by the Mermin-
Wagner theorem22 the 2D magnetic systems with contin-
uous symmetry do not exhibit long-range magnetic order
at any finite temperature. However, there is no such con-
straint on spin systems with discrete symmetry. Thus, we
argue that the Kitaev term is responsible for the presence
of the long range magnetic order.

We also show that the finite temperature properties
of the KH model are similar to those of the six-state
clock model.23,24 The KH model undergoes two continu-
ous phase transitions as a function of temperature. This
gives rise to three different phases: a low-T ordered phase
with a spontaneously broken Z6 symmetry, an intermedi-
ate critical phase, and a high-T disordered phase. Finite
size scaling analysis of our Monte Carlo (MC) simula-
tions confirmed that the intermediate phase is a critical

FIG. 2: Classical energy as a function of α: in the FM phase
(EM

cl = 3 − 5α, dot-dashed green line), in the zigzag phase
(EZ

cl = −3α+ 1, dotted black line), in the Néel phase (EN
cl =

5α− 3 solid blue line), and in the stripy phase (ES
cl = −α− 1

dashed red line).

Kosterlitz-Thouless (KT) phase with floating exponents
and algebraic correlations.

The rest of the paper is organized as follows. We start
our discussion with Sec. II which contains a brief sum-
mary of known facts about the classical KH model that
will be used in the rest of the paper. In Sec. III, we dis-
cuss in detail the results of our numerical simulations. We
analyze the discreteness of the low-temperature phase,
and then we discuss the criticality of the intermediate
phase and show how the finite-size scaling analysis al-
lows us to determine the boundary of the critical phase.
We show that the phase transitions are driven by the
order by disorder mechanism, in which thermal fluctua-
tions of classical spins select collinear spin configurations
where the magnetic moments all point along one of the
cubic directions. We also demonstrate that at particular
points of the phase diagram, for which the continuous
symmetry is preserved, the ordered state is destroyed at
any non-zero temperature. The section ends with a dis-
cussion of the finite temperature phase diagram of the
classical KH model.

In Sec. IV, we analyze the finite temperature properties
of the KH model in its extended parameter space. We
show that for the parameters relevant to the Na2IrO3 and
Li2IrO3 compounds, the model exhibits a zigzag mag-
netic order in agreement with experimental findings. In
Sec.V, we show that there is a significant difference be-
tween the KH model and the Heisenberg model with a
cubic anisotropy. While the later model also exhibits two
phase transitions, its intermediate phase is not critical;
it is nematic like. Using finite-size scaling analysis, we
show that in this case the phase transitions are of the
three-states Potts and Ising universality classes. Sec. VI
contains a summary of the obtained results and conclu-
sions.
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FIG. 3: A low-T distribution of the projections of the vector order parameter on the (111) plane. a) Néel order parameter for
α = 0; b) Néel order parameter for α = 0.25; c) stripy order parameter for α = 0.5; d) stripy order parameter for α = 0.75.

II. THE CLASSICAL KH MODEL

The classical version of the KH model is

H = −JK
∑

〈ij〉γ

Sγ
i S

γ
j + JH

∑

〈ij〉

SiSj . (1)

Following the notation of Ref. 2, we denote the effective
degrees of freedom of Ir4+ ions as S, and take the quan-
tization axes along the cubic axes of the IrO6 octahedra.
γ = x, y, z denotes the three bonds of the honeycomb
lattice. The two couplings, JH and JK , are opposite in
sign; JH is the AF isotropic exchange and JK is the FM
anisotropic exchange.
The exchange constants corresponding to the Kitaev

and the Heisenberg interactions in the KH model (1) can
be conveniently described by one parameter, α, such that
JK = 2α and JH = 1− α. The model then reads as

H = −2α
∑

〈ij〉γ

Sγ
i S

γ
j + (1− α)

∑

〈ij〉

SiSj . (2)

Let us briefly describe possible magnetically ordered
states of model (2). For this we need to introduce four
sublattices: A,B,C, and D. For 0 < α < 1/3, the clas-
sical ground state is the simple two-sublattice AF Néel
order (Fig.1 (b)) characterized by the order parameter

N =
1

N
∑

i

(SiA − SiB). (3)

N denotes the number of sites. The stripy AF order
(Fig.1 (c)) describes the classical ground state of the
model for 1/3 < α < 1 and is given by

S =
1

N
∑

i

(SiA − SiB − SiC + SiD) . (4)

For α = 1.0, the stripy AF state is classically degener-
ate with other magnetically ordered states (see Fig.2).
For example, it is degenerate with FM order (Fig.1 (a))
described by the total magnetization

M =
1

N
∑

i

SiA, (5)

and with zigzag AF spin order (Fig.1 (d)) described by

Z =
1

N
∑

i

(SiA + SiB − SiC − SiD) . (6)

The classical degeneracy of the point corresponding to
the classical Kitaev model is macroscopic and is known
exactly; asymptotically, it has (1.662)N spin configura-
tions. This was computed by Baskaran et al25 by map-
ping ordered states of the classical Kitaev model to a
certain dimer covering of the honeycomb lattice whose
total number is known.27

Because of the presence of the anisotropic Kitaev in-
teraction term, the KH model has discrete spin-rotation
symmetry for all of α except at two points, α = 0 and
α = 0.5. At α = 0, the KH model reduces to the anti-
ferromagnetic Heisenberg model with continuous SU(2)
symmetry. At α = 0.5, the stripy phase becomes an ex-
act ground state of the model; it corresponds to a fully
polarized FM state in a rotated basis. This basis can be
seen by fixing the spin’s direction on sublattice A and ro-
tating the spins on sublattices B,C, and D by the angle
π about the x, y, and z axis, respectively (see Fig. 1(c)).2

It is evident that the FM state has true SU(2) symme-
try. Away from these special points, the symmetry of the
KH model is discrete; it combines the cubic symmetry of
both the spin and the lattice space.

III. FINITE TEMPERATURE PHASE

DIAGRAM AND CRITICAL PROPERTIES OF

THE CLASSICAL KH MODEL

In this section we study the behavior of the classical
KH model (2) at finite temperature using MC simula-
tions based on the standard Metropolis algorithm. In
our simulations, we treat the spins as three-dimensional
(3D) vectors, Si = (Sx

i , S
y
i , S

z
i ), of unit magnitude with

(Sx
i )

2 + (Sy
i )

2 + (Sz
i )

2 = 1. At each temperature, more
than 107 MC sweeps were performed. Of these, 106 were
used to equilibrate the system, and afterwards only 1 out
of every 5 sweeps was used to calculate the averages of
physical quantities. We present all energies in units of
JH and assume kB = 1. The simulations were performed
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FIG. 4: Snapshots of spin configurations in the low-T phase computed for a) α = 0, b) α = 0.25 c) α = 0.5 and d) α = 0.75.
Each figure represents a single snapshot taken at a particular MC step. Each color corresponds to one of the two or four
different sublattices describing the Néel or the stripy order parameters, respectively.

on different systems with a total number of sites equal
to 2 ∗ L ∗ L. The systems are spanned by the primi-
tive vectors of a triangular lattice a1 = (1/2,

√
3/2) and

a2 = (1, 0) with a 2-point basis using periodic boundary
conditions.
In our simulations we compute the following observ-

ables: four different order parameters O = {N,S,M,Z}
defined in Eqs.(3-6), corresponding susceptibilities

χO = N (〈O2〉 − 〈O〉2)/T , (7)

the Binder’s cumulants

BO = 1− 〈O4〉/3〈O2〉2 , (8)

and the specific heat

C = (〈E2〉 − 〈E〉2)/NT 2 . (9)

A. Low-temperature ordered phase

At low temperatures, the KH model magnetically or-
ders in either a Néel state, N, or in a stripy state, S, de-
pending on the relative strengths of the Kitaev and the
Heisenberg interactions. The presence of long range order
at finite temperatures requires a discreteness of the order
parameter, which means that the direction of the order
parameter must also be selected. This, however, does
not happen on the level of non-interacting spin waves.
For both the Néel state and the stripy state, the linear
spin-wave spectrum has a quasi-Goldstone mode at the
ordering vector simulating the spontaneous breaking of
the continuous symmetry.2 The discrete symmetry of the
order parameter only appears due to the contribution
of higher order anharmonic modes of spin fluctuations.
These fluctuations lower the energy of the states whose
order parameter points along cubic directions2 and thus
removes the accidental degeneracy of the classical ground

states. This gives a six-fold degeneracy of the order pa-
rameter manifold which corresponds to the six degener-
ate minima in free energy. This is a well known order by
disorder mechanism in which spin fluctuations (quantum
or thermal) remove the accidental degeneracy and select
the true ordered state.

The discreteness of the order parameter at all but spe-
cial points can be revealed from the histogram method
in which we record two-dimensional distributions of the
projections of the vector order parameter on the (111)
plane. We use the projection of the order parameter on
the (111) plane because it preserves the cubic symmetry
of the model and shows that its degeneracy is related to
the orientation of the order parameter with respect to
the directions in a cubic crystal. In Fig. 3 (a), (b), (c),
and (d) we present, respectively, the low-T distributions
of the projection of the vector order parameter on the
(111) plane for four different values of α: 0, 0.25, 0.5,
and 0.75. The six-fold peak structure is observed in the
distribution function of the Néel and the stripy order pa-
rameters for α = 0.25 (Fig. 3 (b)) and α = 0.75 (Fig. 3
(d)). The peaks correspond to the ordered spin config-
urations whose order parameter points along one of the
cubic axes. In Figs. 4 (b) and (d) we present snapshots of
the spin configurations that contribute to the histograms
in Figs. 3 (b) and (d). In the snapshot of the spin con-
figuration shown in Fig. 4(b), the spins that are pointing
along the y− direction are antiparallel on the two sub-
lattices. This state corresponds to the Néel phase with
the order parameter directed along y−axis. In the spin
configuration of Fig. 4 (d), spins are pointing parallel to
the z− direction on two sublattices and antiparallel on
the other two. This state corresponds to the stripy phase
with the order parameter directed along z−axis.

The projections and snapshots of the order parameter
for the two special points α = 0 and α = 0.5 are pre-
sented in Figs. 3 (a) and (c) and Figs. 4 (a) and (c),
respectively. These are the points with continuous sym-
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FIG. 5: Histograms of the order parameter mN(S), obtained for the system with 2*84*84 spins in the ordered phase, (a) and
(e), in the intermediate phase, (b)-(c) and (f)-(g), and in the disordered phase, (d) and (h). Histograms (a)-(d) are computed
for α = 0.25, and (e)-(h) are for α = 0.75. The histograms are presented on the complex plane (Re |mN(S)|, Im |mN(S)|). The
color on the histograms indicates an arbitrary linear density scale with red being the highest and blue the lowest.

metry. As expected, we see that the projections of the
order parameter on the (111) plane (3 (a) and (c)) are
more or less equally distributed along a circle. Note that
the multiple ”quasi”-peaks appear because the computa-
tions are performed on a finite size system. The snapshot
for α = 0 (4 (a)) shows that a certain direction is chosen
in this particular spin configuration but it is not along
one of the cubic axes. This is not in contradiction with
the Mermin Wagner theorem which only precludes the
appearance of long range magnetic order at finite tem-
perature. Indeed, there is no long range order for α = 0.0
because the spins that belong to the same sublattice are
orientated both parallel and antiparallel to the chosen
axis. A similar situation is observed at α = 0.5. Here,
spins on each sublattice point along a certain direction
which is not along any cubic axes; thus there is no long
range magnetic order at α = 0.5 as well.

Finally, there is no additional degeneracy of the order
parameter related to its real-space structure. Though
both the stripy and the zigzag order can have three dif-
ferent bond orderings due to the 120◦ rotational symme-
try of the honeycomb lattice, the direction of the order
parameter in spin space is chosen once the pattern of the
bond ordering is chosen. The three types of bond order-
ing in real space immediately imply three different types
of spin ordering in spin space. For example, in the verti-
cal stripy state shown in Fig. 1(c), the spins are directed
along the z axis just like in the snapshot shown in Fig. 4
(c). Due to SOC, the absence of the additional degener-
acy can be understood from the fact that the symmetry
transformations act simultaneously on both the spins and

the lattice.

B. The critical nature of the intermediate phase.

Finite size scaling analysis.

Regardless of the specific kind of magnetic order, the
low-T ordered phase is separated from the high-T para-
magnetic phase by the intermediate phase. In our re-
cent study, we have shown that the intermediate phase
is a critical phase with two finite-temperature bound-
aries that correspond to Berezinskii-Kosterlitz-Thouless
(BKT) phase transitions.16

To describe the finite temperature properties of the
KH model, we use a projection of the vector order pa-
rameter on the (111) plane. The vector is character-
ized by both the absolute value and the azimuthal angle
of |mN(S)|. This projection is equivalent to the Z6 or-
der parameter, and we write it in a complex form via
mN(S) =

∑6
i=1 |mi,N(S)|eıθi . We chose the phase θ such

that the minimal-energy states of the order parameter,
which point along the cubic axes, will be labeled by the
values θi = πni/3, ni = 0, ..5. Observing the critical
phase proved to be challenging for several reasons. First,
within the vicinity of the BKT transition, the critical be-
havior gives rise to a very slow, logarithmic convergence
to the thermodynamic limit. We thus had to perform the
finite size scaling analysis of our simulations on rather
large systems with L = 84, 96, 108, 120, 144, 168, 204.
Second, contrary to the Ising-like spin systems in which
all previous studies of the six-state clock model’s critical
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FIG. 6: The log-log plots of the order parameter mN(S) as
a function of system size L at various temperatures. The
solid curves indicate the linear behavior that corresponds to
a power-law dependence, mN(S) ∼ L−η/2, corresponding to
the intermediate critical phase. The errors on the linear fit
for the critical exponents η are (a) η(T = 0.154) = 0.12 ±
0.002, η(T = 0.156) = 0.16 ± 0.006, η(T = 0.158) = 0.18 ±
0.007, and η(T = 0.160) = 0.21 ± 0.007 for α = 0.25, and (b)
η(T = 0.1250) = 0.13 ± 0.002, η(T = 0.1255) = 0.15 ± 0.003,
η(T = 0.1260) = 0.16 ± 0.002, η(T = 0.1265) = 0.19 ± 0.006
and η(T = 0.1270) = 0.23 ± 0.01 for α = 0.75. The dashed
curves show deviation away from the linear behavior outside
the critical phase.

phase have been performed, the magnetic degrees of free-
dom in the classical KH model are 3D Heisenberg spins
which are more strongly affected by thermal fluctuations.
As a result, a large number of sweeps is needed to aver-
age out the thermal fluctuations and capture the critical
behavior.
Evidence of the three-phase structure is clear from the

histogram plots of the complex magnetization, mN(S)

(see, Fig.5). As we move from low to high temperature,
we observe a transition from an ordered phase (6 iso-
lated spots) through an intermediate critical phase (ring
distribution) to the disordered phase (uniform distribu-
tion around zero). The critical phase has an emergent,
continuous U(1) symmetry,28 which is reminiscent of the
intermediate phase of the six-state clock model.23 Both
inside the critical phase and at the boundaries, the order
parameter exhibits a power law dependence on system
size of the form, mN(S) ∼ L−η/2. From renormaliza-

tion group analysis,23 it is known that the lower Tc1 and
the upper Tc2 transitions in the six state clock model
are characterized by the critical exponents η1 = 1/9 and
η2 = 1/4, respectively.
Fig. 6 shows the log-log plots of the order parameter

mN and mS as a function of system size L for different
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FIG. 7: The Binder cumulant as a function of temperature
for (a) α = 0.25 and (b) α = 0.75. From the crossing points
of different Binder’s curves, we estimate Tc1 = 0.152± 0.0005
and Tc1 = 0.124 ± 0.001 for α = 0.25 and α = 0.75, respec-
tively.

temperatures. In accordance with the power law behav-
ior of the order parameter, the data points of the log-log
plot show a linear behavior inside the critical phase. For
α = 0.25 (Fig. 6 (a)), the log-log plots of the order param-
eter as function of L show a linear behavior in the tem-
perature interval between Tc1 ≃ 0.152 and Tc2 ≃ 0.162,
with the boundaries characterized by the critical expo-
nents η1 = 0.13 and η2 = 0.21. For α = 0.75, we detected
the critical phase in the temperature interval between
Tc1 ≃ 0.125 (η1 = 0.13) and Tc2 ≃ 0.127 (η2 = 0.22). For
both α = 0.25 and α = 0.75, our estimates for the criti-
cal exponents of the boundaries are in a good agreement
with theoretical values for the six state clock model.

We can verify our estimates for the BKT transition
temperatures using the Binder cumulants method and
further finite-size scaling analysis.34 The Binder cumu-
lants BmN(S)

, defined in Eq.(8), have a scaling dimension
of zero; the crossing point of the cumulants for differ-
ent lattice sizes provides a reliable estimate for the value
of the critical temperature Tc1 at which the long range
order is destroyed. The results for the Binder cumu-
lants BmN(S)

are presented in Fig. 7. The crossing points
for α = 0.25 and α = 0.75 are at Tc1 = 0.153 and at
Tc1 = 0.125, respectively, and are in good agreement with
estimates obtained from the log-log plots in Fig. 6.

Another way to check the nature of the critical phase
boundaries is by using the data collapse method based
on finite size scaling arguments. In the BKT transition,
the order parameter and its susceptibility exhibit power
law behavior, mN(S) ∼ ξ−η/2 and χN(S) ∼ ξ2−η, while
the correlation length near the critical temperature, Tc,
diverges as ξ ∼ exp(at1/2), where a is a non-universal
constant and t = |T − Tc|/Tc is the reduced tempera-
ture.35 The finite size scaling analysis is based on the
assumption that the singular part of the free energy is
a homogeneous function of system size, L, and of corre-
lation length, ξ, and only depends on their ratio, L/ξ.
Based on this assumption, the finite size scaling behav-



7

T0 0.1 0.2 0.30

0.2

0.4

0.6

0.8

1

Nm

L = 36
L = 48
L = 60
L = 84
L = 96
L = 108
L = 120
L = 144
L = 168
L = 204

(a)

T0 0.1 0.20

0.2

0.4

0.6

0.8

1

Sm

L = 36
L = 48
L = 60
L = 84
L = 96
L = 108
L = 120
L = 144
L = 168
L = 204

(b)

T0.15 0.20

2

4

6

310×

Nm
χ

L = 36
L = 48
L = 60
L = 84
L = 96
L = 108
L = 120
L = 144
L = 168
L = 204

(c)

T0.1 0.150

2

4

6

310×

Sm
χ

L = 36
L = 48
L = 60
L = 84
L = 96
L = 108
L = 120
L = 144
L = 168
L = 204

(d)

)
C1

-T)/T
C1

(Texp(a/-1L
1 10

0.8

0.85

0.9

0.95
(e)

bLNm

L = 204
L = 168
L = 144
L = 120
L = 108
L = 96
L = 84
L = 60

)
C1

-T)/T
C1

(Texp(a/-1L

-110 1 10

0.8

0.9

1

1.1

1.2
(f)

bLSm

L = 204
L = 168
L = 144
L = 120
L = 108
L = 96
L = 84
L = 60

)
C2

)/T
C2

(T-Texp(a/-1L

-110 1 10
0

1

2
(g)

-cL
Nm

χ

L = 204
L = 168
L = 144
L = 120
L = 108
L = 96
L = 84
L = 60

)
C2

)/T
C2

(T-Texp(a/-1L

-110 1 10
0

0.5

1

1.5 (h)

-cL
Sm

χ

L = 204
L = 168
L = 144
L = 120
L = 108
L = 96
L = 84
L = 60

FIG. 8: Thermodynamic quantities and finite size scaling analysis. (a) and (b): The order parameters mN and mS as functions
of T for α = 0.25 and α = 0.75, respectively. (c) and (d): The susceptibility, χmN(S)

(defined in Eq.(7)) plotted as a function of

T for α = 0.25 and α = 0.75, respectively. (e) and (f): Finite-size scaling of the order parameter data in the low-temperature
region (T < Tc1) for α = 0.25 and α = 0.75, respectively. (h) and (g): Finite-size scaling of the high-temperature susceptibility
data ( T > Tc2) for α = 0.25 and α = 0.75, respectively.

ior of the order parameter and the susceptibility have the
following functional forms

mN(S) = L−bMN(S)

(

L

ξ

)

(10)

χmN(S)
= LcΞmN(S)

(

L

ξ

)

,

where the scaling constants b = η/2, and c = 2 − η, and
MN(S) and ΞmN(S)

are unknown universal functions. We
plot the variation in temperature of the order parameter
in Fig.8 (a) and (b) and the susceptibility vs temperature
in Fig.8 (c) and (d). In Fig.8 (e) and (f) and Fig.8 (h)
and (g), we show the scaling plots for mN(S)L

b as a func-

tion of L−1 exp(a/
√

(Tc1 − T )/Tc1) and χmN(S)
L−c as a

function of L−1 exp(a/
√

(T − Tc2)/Tc2), respectively.
The finite-size effects in both the order parameter and

its susceptibility are striking. Both the significant finite-
size tail of mN(S) that extends into the intermediate re-
gion for T > Tc1 , and a strong dependence of the posi-
tion and the height of the susceptibility peak are due to
the finite size system. These effects are a consequence
of an infinite correlation length in the intermediate criti-
cal region that looks like quasi long range order in finite
size systems. Nevertheless, the data points for different
system sizes plotted in their scaled form collapse reason-
ably well onto universal curves that correspond to the
universal functions MN(S) and ΞmN(S)

. The best data
collapse was obtained for the following scaling parame-
ters: a = 1.9, b = 0.056 and c = 1.45 and transition
temperatures Tc1 = 0.153 and Tc2 = 0.1615 for α = 0.25;

a = 1.55, b = 0.056 and c = 1.55 and transition tem-
peratures Tc1 = 0.125 and Tc2 = 0.127 for α = 0.75.
The values obtained for b and c give the following crit-
ical exponents for the lower and the upper boundary of
the critical phase: η(Tc1) = 0.11, η(Tc2) = 0.275, and
η(Tc1) = 0.11, η(Tc2) = 0.225 for α = 0.25 and α = 0.75,
respectively.

To summarize the discussion of the numerical data pre-
sented above, we can say that we definitely observe the
critical intermediate phase in the classical KH model al-
though it slightly deviates from the standard BKT crit-
icality. We believe that the imperfect data collapse is
caused by the presence of three dimensional spin fluctu-
ations of Heisenberg spins and finite sized systems. Nev-
ertheless, the smallness of the discrepancy and overall
high quality of the scaling indicate that this effect is sub-
dominant in the temperature range where the critical be-
haviour occurs.

C. The finite temperature phase diagram

In Fig.9 we present the finite temperature phase dia-
gram of the KH model (2). We obtained this by tracking
the dependance of the transition temperatures, Tc1 and
Tc2 , on the strength of the KH model parameter, α. As
discussed in detail in the previous section, we have used
the Binder’s cumulant method and finite size scaling ar-
guments in order to determine critical temperatures.

As expected, only two low-T magnetically ordered
phases are present on the phase diagram - the Néel phase
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FIG. 9: Phase diagram of the classical KH model (2). The
regions designated by, “N”, and “S”, are the regions of the
phase diagram where the Néel, and the stripy order persist.
The vertical line between the Néel and the stripy phase at
α = 1/3 denotes the first order phase transition. Each red
circle designates the lower critical temperature, Tc1 , for the
value of α for which the model was explicitly simulated; the
red line extrapolates between these points. For each α, the
critical value of Tc1 was determined through the crossings
of Binder’s cumulant curves. The critical phase is shown in
blue. The upper boundary of the blue critical region was
determined by finding the temperature, Tc2 , for which the
value of the critical exponent η exceeds 0.25. The blue line
extrapolates between each computed point. The error bars
of the calculated quantities are smaller than the size of the
circles representing the data points.

at α < 1/3 and the stripy AFM phase for 1/3 < α < 1.
The vertical line that separates the Néel and the stripy
AFM phases corresponds to a first-order phase transi-
tion. Our numerical results show that the critical phase
is present for all values of α except at the special points
α = 0 and α = 0.5 where the model has continuous
symmetry. Thus in accordance with the Mermin-Wagner
theorem, the ordered state is destroyed at any non-zero
temperature.22 As we discussed above for α = 1, the
classical Kitaev model is frustrated. Its classical ground-
state structure has a macroscopic degeneracy, and the
excitation spectrum of classical spin excitations has zero-
modes.25,26 Thermal fluctuations of spins are ineffective
to remove this degeneracy, and as a result, the Kitaev
model with classical spins shows no order-by-disorder.
at finite temperatures.

Finally, we note that the way the width of the critical
phase disappears in the vicinity of α = 0 and α = 0.5
is different than for α = 1. In Fig.9, we can see that
the critical phase narrows very rapidly in the vicinity of
α = 0, 0.5. This behavior is related to the fact that at
these particular points the anisotropy either does not ex-
ist as at α = 0 or cancels out as at α = 0.5. In the vicinity
of these points, the local minima of the free energy that
corresponds to different directions of the order parameter
are still separated by finite energy barriers. These bar-
riers allow finite temperature ordering through the order
by disorder mechanism. At the same time, the width

of the critical phase slowly decreases when we approach
the Kitaev limit and is extremely small in the vicinity of
α = 1. In this limit, the difference between the classical
energies of the stripy, zigzag and ferromagnetic phases is
decreasing with the critical temperature tending to zero.
At α = 1, all of the phases are degenerate (see also Fig. 2)
and, as we discussed above, there is no order-by-disorder.

IV. FINITE TEMPERATURE PHASE

DIAGRAM OF THE EXTENDED CLASSICAL

KH MODEL

Here we explore the finite temperature phase dia-
gram of the KH model extended to its full parameter
space. This extension takes into account all of the super-
exchange processes leading to the coupling between Ir
ions and potentially explains the zigzag magnetic order
observed in the A2IrO3 compounds.8,9

There are three physically distinct processes that de-
termine the ratio between the Kitaev and the Heisenberg
terms in the original KH model. Two of the processes
involve the virtual hopping of t2g electrons through the
nearest two oxygen ions. As it was shown by Jackeli and
Khaliulin2, the processes via the upper and lower oxy-
gen ions interfere destructively and the isotropic part of
the Hamiltonian exactly vanishes. Exchange couplings of
neighboring Kramers states on iridium ions appear due
to the multiplet structure of the excited levels on an Ir
ion induced by Hund’s and Coulomb couplings. The third
process involves a direct hopping between NN t2g orbitals
that gives a finite Heisenberg term in the KH model. All
of these processes involve only t2g electrons. However,
there is another possible process:21 the intersite t2g ↔ eg
hopping along the 90◦ Ir-O-Ir paths. This is the domi-
nant pathway in a 90◦ geometry since it involves strong
tpdσ overlap between the p−orbitals on oxygen and the
eg orbitals on iridium ions. Remarkably, these hopping
processes also introduce the Kitaev interaction, but with
a different sign.
Following Ref.21, we consider the most general exten-

sion of the KH model; both the Kitaev and the Heisen-
berg interactions can change sign. The Hamiltonian of
the extended model is

H = A(2 sinφ
∑

〈ij〉γ

Sγ
i S

γ
j + cosφ

∑

〈ij〉

SiSj), (11)

where the relative strengths of the effective interaction
between Ir magnetic moments are described by the phase
angle, φ, defined in the interval (0, 2π), and the overall

energy scale, A =
√

J2
K + J2

H . The phase space of the
original KH model is covered by the values of φ from
3π/2 to 2π.
Using MC simulations, we investigate the finite tem-

perature properties of this extended model (11) and
present the finite temperature phase diagram in Fig.10.
In its full parameter space, the extended KH model ac-
commodates four different classical phases. In addition
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to the Néel and the stripy phases present in the phase
diagram (Fig.9), the FM and the zigzag phases appear
in Fig.10 in a wide range of values of φ. The previously
missing zigzag magnetic order is found to occupy almost
a quarter of the phase space of the extended model. Our
findings are in agreement with the ground state phase
diagram of the quantum model (11) obtained by ex-
act diagonalization.21 However, as we already discussed
above, the classical model does not support the spin liq-
uid phases present in the quantum model.

The finite temperature properties of the extended
model are very similar to the finite temperature prop-
erties of the original KH model. Both the transition be-
tween the zigzag and the FM order and the transition be-
tween the Néel and the stripy order are first order phase
transitions. In the extended parameter space, the points
with a continuous symmetry are φ = 0, 3π/4, π, 7π/4.
The intermediate phase is present for the whole param-
eter space of the extended model except for the points
where the continuous symmetry is restored and at the
special points φ = π/2 and 3π/2 because of frustra-
tion. The similarities between the finite temperature
properties of the original and the extended KH model
are not surprising. The above mentioned 4-sublattice
spin transformation,2 permits a mapping of the AF stripy
phase to the FM phase and of the AF Néel phase to the
zigzag phase.

According to the fit of the uniform magnetic suscepti-
bility presented in Ref.21, φ ≃ 111◦± 2◦ ≃ 0.62π± 0.01π
for Na2IrO3 and φ ≃ 124◦ ± 4◦ ≃ 0.69π ± 0.03π for
Li2IrO3. Using these values, we get the following esti-
mates for the Néel temperatures: Tc1 ≃ 0.16 which is
equivalent to about 17.7 K for Na2IrO3, and Tc1 ≃ 0.19
which is equivalent to about 21 K for Li2IrO3. Both
values are close to the experimental value TN ≃ 15 K ob-
tained for both Na2IrO3 and Li2IrO3 compounds.7,9,10

Our estimates for the upper boundary of the critical
phase is Tc2 = 0.18 for Na2IrO3 and Tc2 = 0.22 for
Li2IrO3 which is equivalent to about 20 K and 24.5 K,
respectively. This gives the estimates for the width of the
critical phase to be about 2.3 K and 3.5 K for Na2IrO3

and Li2IrO3, respectively. We also note that our pre-
diction for two phase transitions are in good agreement
with the specific heat data obtained for Na2IrO3 and
Li2IrO3.

9,10 In both works the specific heat data show
the anomaly above the Néel temperature to be at about
T = 18 − 20K, indicating the presence of a higher tem-
perature transition. In addition, just above TN the en-
tropy obtained by integrating the ∆C/T versus T data
for both Na2IrO3 and Li2IrO3 is significantly reduced.7,9.
Both observations are in line with our prediction of the
critical phase above the magnetically ordered phase.
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FIG. 10: Phase diagram of the extended classical KH model
(11). The regions designated by, “N”, “S”, “Z”, and “F”
are the regions of the phase diagram where the Néel, stripy,
zigzag, and FM order persist. Each red circle designates a
lower critical temperature Tc1 for the value of φ for which
the model was explicitly simulated. For each value of φ, the
critical value of Tc1 was determined through the crossings of
Binder’s cumulant curves; the red line extrapolates between
these points. The critical phase is shown in blue. The upper
boundary of the blue critical region was determined by find-
ing the temperature Tc2 , for which the value of the critical
exponent η exceeds 0.25. The blue line extrapolates between
each computed point. The error bars of the calculated quan-
tities are smaller than the size of the circles representing the
data points.

V. CLASSICAL HONEYCOMB HEISENBERG

ANTIFERROMAGNET WITH A CUBIC

ANISOTROPY

To complete this study, we also investigate the nature
of the finite-temperature phase transitions of the hon-
eycomb Heisenberg antiferromagnet in which the cubic
anisotropy is included explicitly. In this case, the model
is defined by the Hamiltonian

Hc = JH
∑

〈ij〉

SiSj −D
∑

i

(

(Sx
i )

4 + (Sy
i )

4 + (Sz)4
)

,(12)

where D denotes the strength of the cubic anisotropy.
The positive sign of the anisotropy, D > 0, determines
that spins tend to align along the cubic axes and not in
the diagonal directions of the lattice which corresponds
to D < 0. Because of the cubic anisotropy, the model
(12) shows no full rotational symmetry. The spin projec-
tions in the (111) plane again will favor six directions as
in the case of the KH model. Here we explore by MC sim-
ulations whether or not the finite temperature properties
of models (1) and (12) are similar.
Let us discuss the thermodynamic properties of the

model (12). At T = 0 and in the absence of the
anisotropy, the ground state of the model (12) is deter-
mined by the Néel order parameter N. In the presence
of the anisotropy, D, the ordered state will survive un-
til some critical temperature. At high temperature, the
thermal fluctuations of spins will destroy the magnetic
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order and the system will be in the disordered paramag-
netic state. As in the KH model, in order to reach the
ordered state from high temperature, the system has to
break the discrete Z6 symmetry of the Heisenberg honey-
comb model with cubic anisotropy. In the case of the KH
model, the Z6 symmetry was broken through the critical
intermediate phase. In our simulations of (12), we did
not observe any critical phase; instead, the Z6 symmetry
is broken in the following two steps. After lowering the
temperature, the Z3 symmetry is broken first at T = Tc2;
the system still remains paramagnetic since the expecta-
tion value of 〈N〉 = 0. In the second step, the remaining
Z2 symmetry is broken at the temperature T = Tc1 < Tc2

and the system acquires long-range magnetic order.
The numerical results computed for the value of the cu-

bic anisotropy D = 0.1 are presented in Figs. 11 (a)-(d).
They display the data for the temperature dependence
of the staggered magnetization N, the cubic parameter
bN , and corresponding susceptibilities. In our simula-
tions, the cubic order parameter bN is expressed as the
expectation value of a doublet given by

bN1 = (N2
x +N2

y − 2N2
z )/

√
6 , (13)

bN2 = (N2
x −N2

y )/
√
2 , (14)

where Nx, Ny, Nz are the components of the Néel order
parameter N. At high temperature, the cubic symmetry
is not broken andN2

x = N2
y = N2

z and 〈bN1〉 = 〈bN2〉 = 0.
As we can see from the Figs. 11, both the order pa-
rameters and their susceptibilities indicate a continuous
phase transition at different temperatures Tc1 and Tc2

for N and bN , respectively. At the higher temperature,
Tc2 , the cubic symmetry is spontaneously broken and
one of the cubic axes is selected, for example, z. Then
〈bN1〉 = −

√

2/3, 〈bN2〉 ≃ 0 and the cubic parameter
〈bN〉 acquires a finite value. Nevertheless, there is still
no long range order as the time reversal symmetry re-
mains unbroken. Thus, we can say that the intermediate
phase is nematic-like. At the lower temperature, Tc1,
the time reversal symmetry is also broken and the sys-
tem acquires long-range magnetic order characterized by
non-zero 〈N〉. We can estimate Tc1 and Tc2 using the
associated Binder’s cumulants, BN and BbN , whose tem-
perature dependencies are presented in Figs.12 (a)-(b).
From their crossing points we estimated the transition
temperatures to be equal to Tc1 = 0.314 and Tc2 = 0.32.
Next, in order to obtain the critical exponents charac-

terizing these two phase transitions we perform a finite-
size scaling analysis. As the Z6 symmetry of the model
(12) is reduced to Z2 symmetry in the intermediate
phase, the high-T transition is expected to be in the
universality class of 3-states Potts model and the low-
T transition to belong to the Ising universality class.
First, using the scaling relation for the Binder cumu-

lants, BN and BbN , we obtained the correlation length
exponents ν1 and ν2 describing the divergence of the cor-
relation length, ξ ∼ |T − Tc|ν(Tc), close to the critical
points Tc = Tc1 and Tc = Tc2 , respectively. In accor-
dance with the theory prediction, the best data collapse

is obtained for ν1 = 0.83 and ν2 = 1.0 which are the
critical exponents of the three-states Potts and 2D Ising
model, respectively.
Second, having found the critical exponents ν1 and ν2,

we can estimate the critical exponents β and γ by per-
forming a scaling fit of the order parameters and suscep-
tibilities (Figs. 11 (e)-(g)). Near the critical tempera-
tures, Tc1 and Tc2 , the cubic order parameter and stag-
gered magnetization are expected to satisfy the scaling
relation bN ≃ L−β1/ν1 and N ≃ L−β2/ν2 , respectively.
The scaling laws for their susceptibilities are given by
χbN ≃ Lγ1/ν1 and χN ≃ Lγ2/ν2 . The best scaling is ob-
tained for the exponents β1 = 1/9 and γ1 = 13/9 – the
exact scaling coefficients for the Pott’s transition, and
β2 = 1/8 and γ2 = 7/4 – the exact scaling coefficients for
the Ising transition.
To conclude this section, in Fig.13 we present a finite

temperature phase diagram for the model (12). We see
that the width of the intermediate phase decreases with
the increase of the value of the cubic anisotropy param-
eter D. At around D ≃ 0.5, the two transitions be-
come indistinguishable and the intermediate phase col-
lapses. The transition between the low-T ordered mag-
netic phase and high-T disordered phase becomes first
order.

VI. CONCLUSION

In this paper we studied finite temperature proper-
ties of the classical, two-dimensional KH model and com-
puted the phase diagram of this model in its full param-
eter space. We started by analyzing the lowest-energy
magnetic configuration and then found that all of the
magnetic phases are accompanied by an accidental con-
tinuous rotational degeneracy which does not correspond
to any symmetry of the Hamiltonian. This pseudo degen-
eracy is lifted by thermal fluctuations of spins giving rise
to an ordering at low temperature as observed by our
MC simulations. Specifically we determined that the low
temperature phase is magnetically ordered at all values
of parameters for which the model has a discrete symme-
try. The direction of the order parameter is chosen by
thermal fluctuations of the spins through the order by
disorder mechanism.
From numerical MC simulations, we have verified that

the classical KH model effectively behaves like the six-
state clock model. At finite temperatures, the model
exhibits two phase transitions and an intermediate phase
between them. Based on the finite size scaling analysis,
we have shown that the intermediate phase is the criti-
cal phase with algebraically decaying correlations of the
order parameter. We found that the phase boundaries of
the critical phase are of the BKT type. We also obtained
that the numerical values of the critical exponent, η,
characterizing these two transitions are compatible with
the theoretical expectations based on the renormalization
group analysis for the six-state clock model.23 It should
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FIG. 11: The magnetization N (a) and the cubic order parameter bN (b) as functions of T . The susceptibilities χN (c) and
χbN (d) as functions of T . (e) and (f): Finite-size scaling of the order parameters N and bN in the low-temperature region
T < Tc1 . (h) and (g): Finite-size scaling of the high-temperature susceptibilities χN and χbN in the high-temperature region
T > Tc2 . The anisotropy constant is considered to be D = 0.1.
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FIG. 12: (a) and (b): The Binder cumulants, BN = 1 −
〈N4〉/3〈N2〉2 and BbN = 1− 〈b4N〉/3〈b2N 〉2, as functions of T .
The Binder’s cumulant crossing points for N (a) and the cubic
order parameter bN give Tc1 = 0.314±0.001 and Tc2 = 0.320±
0.001. (c) and (d): Finite-size scaling of the Binder cumulants
BN and BbN . The anisotropy constant is considered to be
D = 0.1.

be emphasized that the mapping of the KH model onto
the six state clock model is valid only below a certain
temperature which determines the 3D-2D phase tran-
sition, at which the cubic symmetry is already broken.

D
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FIG. 13: Finite temperature phase diagram for the classi-
cal honeycomb Heisenberg antiferromagnet with the cubic
anisotropy (12). The blue line denotes the high-T three
state Pott’s transition, and the red line denotes the low-T
Ising transition. The error bars of the calculated quantities
are smaller than the size of the circles representing the data
points.

The nature of this transition remains to be understood.
At high temperatures, when T is larger than any energy
scale in the system, the effect of thermal fluctuations is to
destroy any kind of order and to put the KH model into
the 3D paramagnetic state. In this regime, the mapping
of the classical KH model to the six state-clock model is
not valid.

We also performed a comparative study of the hon-
eycomb Heisenberg antiferromagnet with the cubic
anisotropy (12). In this case, the continuous symme-
try is explicitly broken, which allows the magnetically
ordered phase to persist up to a finite temperature. We
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have shown that this model has distinct finite tempera-
ture properties and that the low-T ordered phase is de-
stroyed in a different way. The similarity between the
honeycomb Heisenberg antiferromagnet with the cubic
anisotropy, and the KH model is that the ordered phase
is destroyed in two steps. The main differences between
the two is that when the cubic anisotropy is taken into
account explicitly, the intermediate phase is nematic-like
and the phase transitions are in the three-states Potts
and 2D Ising universality classes.
Finally, we consider the implications of our numer-

ical results to Na2IrO3 and Li2IrO3 compounds. We
have shown that finite temperature magnetic properties

of these systems can be captured by the extended KH
model. We found that for the values of the model pa-
rameters relevant to these systems, the model exhibits
zigzag magnetic order. Also, our numerical estimates of
the Néel temperature are close to the experimental val-
ues.
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