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The quantum O(N) model in the infinite N limit is a paradigm for symmetry-breaking. Qualita-
tively, its phase diagram is an excellent guide to the equilibrium physics for more realistic values of
N in varying spatial dimensions (d > 1). Here we investigate the physics of this model out of equi-
librium, specifically its response to global quenches starting in the disordered phase. If the model
were to exhibit equilibration, the late time state could be inferred from the finite temperature phase
diagram. In the infinite N limit, we show that not only does the model not lead to equilibration
on account of an infinite number of conserved quantities, it also does not relax to a generalized
Gibbs ensemble (GGE) consistent with these conserved quantities. Instead, an infinite number of
new conservation laws emerge at late times and the system relaxes to an emergent GGE consistent
with these. Nevertheless, we still find that the late time states following quenches bear strong sig-
natures of the equilibrium phase diagram. Notably, we find that the model exhibits coarsening to
a non-equilibrium critical state only in dimensions d > 2, that is, if the equilibrium phase diagram
contains an ordered phase at non-zero temperatures.

I. INTRODUCTION

The study of the out of equilibrium dynamics of closed
quantum systems has intensified greatly in recent years
inspired in considerable measure by advances in the ex-
perimental study of cold atomic systems1–5 (see Ref. 6–8
for recent reviews). One important theme in this work is
the presence and nature of equilibration starting from a
non-equilibrium state and its relationship to integrabil-
ity. An interesting stream of work has postulated and
examined the notion of a generalized Gibbs ensemble
(GGE) in which an integrable system relaxes to a max-
imum entropy state consistent with all of its constants
of motion9,10. A second important theme is the inter-
play between non-equilibrium dynamics and phase struc-
ture which goes under the moniker of the Kibble-Zurek
problem11,12, wherein the system is driven out of equilib-
rium by non-adiabatic changes of parameters, typically
between values in different phases or between a phase
and a critical point, see e.g. Refs. 13–15.

A large fraction of this work has concerned itself, for
natural reasons of tractability, to systems in spatial di-
mension d = 1 where analytic16–21 and computational
power22,23 can be readily brought to bear. This restric-
tion to d = 1 however does not allow the study of the
impact of dimensionality, known to be important for
equilibrium behavior. In this paper, we study a model
where one can move between dimensions while retain-
ing tractability—the quantum O(N) vector model in the
infinite N limit (see Ref. 24 for a comprehensive intro-
duction). This model has much to commend it. It yields
an equilibrium phase diagram in the Gibbs ensemble in
various dimensions whose topology is correct for N ≥ 3.
It also yields critical exponents which incorporate cor-
rections beyond Gaussian critical behavior in d < 3 and
correctly locates the lower and upper critical dimension
at d = 1 and d = 3 respectively.

The above results assume that the Gibbs ensemble is
reached. In this paper we study the late time states of the

model starting out of equilibrium and ask to what extent
the equilibrium phase diagram is a guide to the late time
behavior. We note that the model has certainly been the
object of prior study, in the first instance from a cosmol-
ogy inspired interest in non-equilibrium field theory25–28

and more recently from the condensed matter/statistical
mechanical viewpoint29–31. We build on this work but
find that there are still new things to say on this prob-
lem, largely due to asking some fresh questions from the
condensed matter/statistical mechanical perspective.

Our results organize themselves naturally into the two
themes we noted at the outset. First, we revisit the ques-
tion of equilibration in the infinite N vector model. If the
model were to exhibit equilibration, the late time state
could be inferred from the finite temperature phase di-
agram. In the infinite N limit, we show that not only
does the model not lead to equilibration on account of
an infinite number of conserved quantities, it also does
not relax to a generalized Gibbs ensemble (GGE) consis-
tent with these conserved quantities. Instead, an infinite
number of new conservation laws emerge at late times
and the system relaxes to an emergent GGE consistent
with these. The emergent GGE has the same conserved
quantities as a non-interacting, purely Gaussian, vector
model32–34. Second, we examine spatially homogenous
quenches starting from ground states in the disordered
phase to the critical coupling and into the couplings in
the ordered phase. For the latter, we show that the late
time state exhibits coarsening in the sense of a diverg-
ing equal time correlation length in d > 2 for sufficiently
gentle quenches. Our numerics further suggest that the
system coarsens towards a non-equilibrium critical state
as t → ∞. For larger quenches in d > 2 or for any
quenches in d ≤ 2, we find that no coarsening is possible.
Instead, the late time state is disordered. For quenches
to the critical point, we find no coarsening for all d but
coarsening in the scaling limit for d ≥ 3 consistent with
the lack of scattering at the Gaussian fixed point and
previous results on the Gaussian theory32. Interestingly,



2

rrc

T

me↵ > 0

Disordered

Ordered

1 < d  2

Disordered

me↵ = 0

FIG. 1. Topology of the equilibrium phase diagram of
the O(N) model in the infinite N limit in spatial dimen-
sions 1 < d ≤ 2. The dashed lines indicate the different
quenches that we study.
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FIG. 2. Topology of the equilibrium phase diagram of the
O(N) model in the infinite N limit in spatial dimensions
d > 2. The dashed lines indicate the different quenches
that we study.

the results on quenches are qualitatively what one would
predict assuming equilibration following an injection of
energy density and yet they hold for a system that does
not equilibrate.

In the following, we document these claims. We be-
gin with a review of the infinite N vector model and the
equations that must be solved to determine its dynamics
in Section II. In Section III, we discuss the issue of er-
godicity or equilibration. In Section IV, we describe our
results on global quenches into the ordered phase. In Sec-
tion V, we discuss global quenches to the critical point
and show that the stability of the Gaussian fixed point for
d ≥ 4 when it comes to equilibrium behavior also shows
up in the behavior of non-equilibrium quenches provided
one takes a scaling limit discussed in Ref 14. We finish
with some concluding remarks in Section VI and relegate
some technical material to an appendix.

II. THE MODEL

The Hamiltonian of the quantum O(N) model in d
spatial dimensions is

H =
1

2

∫
ddx

(
|~Π|2 + |~∇~Φ|2 + r|~Φ|2 +

λ

2N
|~Φ|4

)
, (1)

where ~Φ and ~Π are canonically conjugate N -component
fields,

[Φi(~x),Πj(~x
′)] = iδd(~x− ~x′)δij . (2)

In the limit N → ∞, the equilibrium physics is soluble.

In the disordered phase, 〈~Φ〉 = 0, the ground state of H is
well-approximated by the ground state of a free field the-

ory with mass meff that is determined self-consistently:

m2
eff = r + λ

〈
|~Φ|2
N

〉
(3)〈

|~Φ|2
N

〉
=

∫ Λ ddk

(2π)d
1

2
√
|~k|2 +m2

eff

, (4)

where Λ is the cutoff. The effective mass meff is propor-
tional to the single-particle gap and controls the phase
diagram (Figs. 1, 2). In the disordered phase, meff > 0,
while in the ordered phase, when suitably re-defined, meff

is the mass of the Goldstone bosons and equals zero. We
describe the phase diagram in greater detail in Sec. IV.
The solubility in equilibrium can be traced to two related
sources: 1) The ground state is a (Gaussian) symmetric
product state over component indices, and 2) the expec-
tation value:〈

|~Φ|2
N

Φi

〉
=

〈
|~Φ|2
N

〉
〈Φi〉+O

(
1

N

)
(5)

factorizes to leading order in 1/N . These two features of
the infinite N model in equilibrium make the dynamical
problem tractable as well.

Now consider preparing the system at t = 0 in a prod-
uct state symmetric in the component indices35:

|ψ(0)〉 =

N∏
i=1

|β〉i. (6)

The wavefunction of each component, |β〉, can be freely
chosen. In particular, |ψ(0)〉 need not be Gaussian or be
a ground state of the infinite N model anywhere in the
disordered phase. In general, it does not satisfy Wick’s
theorem. The evolution of the state |ψ(0)〉 for t > 0 is
generated by H. The Heisenberg equations of motion
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are:

dΦi
dt

= Πi

dΠi

dt
= ∇2Φi − rΦi −

λ

N
|~Φ|2Φi. (7)

For the rest of this article, we work in the Heisenberg
picture. Remarkably, the factorization in equilibrium in
Eq. (5) holds out-of-equilibrium as well:〈
|~Φ(t)|2
N

Φi(t)

〉
=

〈
|~Φ(t)|2
N

〉
〈Φi(t)〉+O

(
1

N

)
. (8)

As in equilibrium, this factorization leads to an effec-
tive mass in a free field theory that is determined self-
consistently. However, the effective mass is now time-
dependent. More formally, consider the Hamiltonian for
a free field theory with the time-dependent mass meff(t)
determined self-consistently at each t:

Heff(t) =
1

2

∫ Λ ddk

(2π)d

[
|~Π~k|2 + ( |~k|2 +m2

eff(t) )|~Φ~k|2
]
(9)

m2
eff(t) ≡ r + λ

〈
|~Φ(t)|2
N

〉
. (10)

Above, Φj~k =
∫
ddxΦj(~x)e−i

~k·~x and Πj~k =∫
ddxΠj(~x)ei

~k·~x so that [Φi~k,Πj~k′ ] = i(2π)dδd(~k−~k′)δij .
We evolve the state |ψ(0)〉 with Heff . We also evolve
|ψ(0)〉 with H in the limit N → ∞. The formal state-
ment is that all correlation functions involving a finite
number of components are identical in the two cases at
any fixed t. Thus, to determine observables and correla-
tion functions, we need only solve for the dynamics in a
free field theory with mass meff(t). As in equilibrium, the
infinite N model out-of-equilibrium goes beyond the free
field theory through the single self-consistency condition
on meff(t) (Eq. (10)). Henceforth, we suppress the com-
ponent index when an expectation value is independent

of it. Specifically, we replace 〈|~Φ(t)|2〉/N by the expecta-
tion 〈Φ2(t)〉 of a single component. When not indicated,
all operators in a correlation function are assumed to
have the same component label.

A convenient way to determine correlation functions
from Heff(t) is to expand Φ~k(t) and Π~k(t) in a fixed basis
at t = 0:

Φ~k(t) =
f~k(t)√

2
a~k +

f∗−~k(t)
√

2
a†−~k

Π~k(t) =
dΦ†~k(t)

dt
. (11)

Above, the (a~k, a
†
~k
) and (a−~k, a

†
−~k) are two independent

sets of fixed ladder operators with the usual commuta-
tion relations. The f~k(t) are complex-valued coefficients

known as mode functions. The commutation relations
stipulate that:

f~k(t) = f−~k(t)

Im[f~k(t) ḟ∗~k (t)] = 1. (12)

Given an initial state, we may choose any fixed basis to
decompose the field operators in. This is a coordinate
choice; in this article, we pick the particular fixed basis
in which:

〈a~ka~k′〉 = 0, f~k(0) = f∗~k (0). (13)

It is then easy to see that f~k(0) and |ḟ~k(0)| fix all the
coefficients in Eq. (11) at t = 0. For example, Eq. (12)

determines the phase of ḟ~k(0) etc. Both functions follow
from the two-point functions in the initial state:

〈Φ~k(0)Φ†~k′(0)〉 =
f~k(0)2N~k

2
(2π)dδd(~k − ~k′)

〈Π~k(0)Π†~k′(0)〉 =
|ḟ~k(0)|2N~k

2
(2π)dδd(~k − ~k′)

Re[〈Φ~k(0)Π~k′(0)〉] = Re[ḟ~k(0)]f~k(0)N~k (2π)dδd(~k − ~k′).
(14)

if we substitute for the phase of ḟ~k(0) from Eq. (12). N~k
above is related to the sum of the occupations of the ±~k
modes in the initial state:

N~k ≡ 1 + n~k + n−~k , 〈a†~ka~k′〉 = n~k(2π)dδd(~k − ~k′).

Finally, from Heff(t), the definition of m2
eff in Eq. (10),

and Eq. (11) , we obtain the equations of motion for the
mode functions:(

d2

dt2
+ |~k|2 +m2

eff(t)

)
f~k(t) = 0 (15)

m2
eff(t) = r +

λ

2

∫
ddk

(2π)d
|f~k|2N~k. (16)

Given the correlation functions in Eq. (14) and the con-
dition in Eq. (12), we can propagate this system of cou-
pled second-order differential equations forward in time
to solve for f~k(t). We may then compute any correla-
tion function of interest by means of Eq. (11) and the
solutions for the mode functions.

III. ERGODICITY

To determine the nature of the late time state, we need
to identify all the quantities that are conserved in the dy-
namics (Eq. (15,16)). First, as the evolution is generated
by a Hamiltonian, the total energy is conserved. This
would be true for any isolated quantum system. Addi-
tionally at infinite N , the operators Lz~k defined below also

commute with H in the class of states in Eq. (6).

Lz~k ≡
Φ†~kΠ†~k − Φ~kΠ~k

i
. (17)
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Thus,

d〈Lz~k〉
dt

= 0. (18)

We use ~k > 0 to denote half the momenta; each ~k in

the set labels the pair (~k,−~k). Note that the component
label has been suppressed in the definition of Lz~k; there

is actually one conserved quantity for every ~k > 0 and
component label. However, for our class of initial states
(Eq. (6)), 〈Lz~k〉 is the same for every component and we

can safely drop the label. The conserved quantity 〈Lz~k〉
has two interpretations. One is the angular momentum

of the 2d harmonic oscillator at ~k > 0 in Heff(t). The sec-
ond is in the fixed basis in which 〈Lz~k〉 = n~k − n−~k. This

difference is conserved as the scattering processes that
lead to exchange of momenta between pairs of bosons
is suppressed at infinite N . Finally, observe that Lz~k is

not a local operator in real space. However, a suitable

linear combination of the Lz~k at different ~k is. Defining

I−(~n) =
∫

ddk
(2π)d

Lz~k sin(~k · ~n) and using Eq. (17), we see

that I−(~n) =
∫
ddx (Φ(~x)Π(~x− ~n)− Φ(~x)Π(~x+ ~n)). As

promised, I−(~n) is a sum of local conserved densities. It
is non-zero only if the system is not inversion symmetric.
It is worth noting that there is a similar conserved quan-
tity in the free Majorana field theory/ transverse field
Ising model36–38.

There are therefore half as many conserved quantities
as the number of degrees of freedom. This is reminiscent
of an integrable system in which the number of conserved
quantities equals the number of degrees of freedom. For
example, the free field theory (λ = 0) is integrable and

has two conserved quantities for each (~k,−~k) pair: the
energy in the 2d oscillator and the angular momentum
Lz~k. In such systems, the correlations in the late time

state are conjectured to be reproduced by the generalized
Gibbs ensemble (GGE)7,9 :

ρGGE = exp(−
M∑
i=1

µiOi),

where the Oi commute with the Hamiltonian and the µi
are fixed by 〈Oi〉 in the initial state. In the free field the-
ory, for some classes of initial states (including the ground
states of the free theory at any r > 0), this conjecture
can be directly checked.

The collection of conserved quantities in the O(N)
model at infinite N suggests that the system relaxes to
the following GGE at late times:

ρGGE = exp

(
−βH −

∫
~k>0

µ~kL
z
~k

)
. (19)

We argue in two (possibly related) ways below that the
dynamics fails to relax to this GGE.

First, note that Eq. (16) depends on a c-number as-
sociated with the initial state. A reasonable expectation

would be that correlation functions at late times also de-
pend on this c-number. However, correlation functions
derived from the GGE do not. This suggests that the
GGE is not the correct description of the late-time dy-
namics. In Appendix A, we sharpen this intuition by
showing that the structure factor at late times depends
on N~k. It follows that two-point function in real-space is
also a function of the N~k, thus proving the claim that the
system does not relax to the GGE for all local observ-
ables. We note that Ref. 27 arrived at the same conclu-
sion by constructing a particular non-linear combination
of equal-time correlation functions that were independent
of time and involved N~k.

The second argument hinges on the numerical obser-
vation that m2

eff(t) generically approaches a non-negative
constant, m2

f , as t → ∞. This implies that the different
~k modes decouple and the theory is effectively free at
late times. Thus, an extensive set of conserved quanti-
ties (equal to the number of angular momenta) emerges
at late times:

E~k = |~Π~k|2 + ( |~k|2 +m2
f )|~Φ~k|2 , ~k > 0 (20)

and the system appears integrable. As these extra con-
served quantities are independent of 〈Lz~k〉, it is clear that

the system does not relax to the strict GGE in Eq. (19).
However, the system does relax to an emergent GGE
with the E~k and Lz~k as conserved quantities. The argu-

ment for the emergent GGE hinges on the theory being
free once m2

eff ≈ m2
f . Define tf so that m2

eff ≈ m2
f for

t > tf . If the state of the system at t = tf lies within
the class of initial states that relaxes to a GGE under the
evolution of the free theory, then we are guaranteed that
the emergent GGE is the correct description for t � tf .
The state of the O(N) model at t = tf is physical; thus
the system always relaxes to the emergent GGE. In par-
ticular, in the sudden quenches that we discuss in the
following section, the late time state is described by an
emergent GGE whenever it is disordered. Whenever we
do not qualify the GGE, we are referring to the one de-
fined in Eq. (19). The other GGE will always be referred
to as emergent GGE.

This leaves open the possibility that there is a more
restrictive GGE that includes some unknown additional
conserved quantities that will describe the late time
states. While we cannot rule this out, we (and previ-
ous workers on this problem) have not been able to find
such quantities.

IV. QUENCHES TO THE ORDERED PHASE

1. Problem, methods and background

We now turn to the late time behavior of proto-
cols starting from ground states in the disordered phase
wherein the coupling is changed to a value in which the
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ground state is ordered (see Figs. 1 and 2). For speci-
ficity and because our interest here is primarily in the
late time behavior, we will take these protocols to be
sudden quenches, i.e. the coupling will be changed in-
stantly to its new value. Our conclusions will generalize
mutatis mutandis to more elaborate protocols such as
those of interest in the Kibble-Zurek problem. Right af-
ter the quench, the system is in an excited state for the
new Hamiltonian, i.e. one with a non-zero energy den-
sity. For a system which thermalizes, the late time state
can be read off from the equilibrium phase diagram by
converting the energy density into an equivalent temper-
ature. Interestingly, despite the lack of relaxation in the
quantum O(N) model at infinite N , we will find that the
phase diagram is still a good heuristic for the late time
behavior when the system is quenched, in a sense we will
shortly make precise.

But first, let us describe the setup of the problem more
precisely. Recall that the mode functions are constrained
by Eqs. (12) and (13). Polar coordinates make these
constraints more transparent. Define f~k ≡ |f~k| exp(iθ~k).
Eq. (12) then provides a relation between the amplitude
and the phase of the mode function:

θ̇~k =
−1

|f~k|2
. (21)

Together with the initial condition θ~k(0) = 0, this allows
us to reconstruct the mode function at all t from |f~k(t)|
alone. The equation of motion for |f~k(t)| follows from
Eq. (15,16):(

d2

dt2
+ |~k|2 +m2

eff(t)

)
|f~k| −

1

|f~k|3
= 0 (22)

m2
eff(t) = r +

λ

2

∫
ddk

(2π)d
|f~k|2N~k. (23)

It suffices to solve these equations subject to the initial
conditions discussed below to determine f~k(t).

We pick the initial state of the system for t < 0 to be
the ground state in the disordered phase. That is, we
prepare the system in the ground state of H (Eq. (1))
with bare coupling r = r0 greater than the critical cou-
pling rc. This state is the ground state of a free field
theory with the effective mass m0. The relation between
m0 and r0 is given by Eq. (4). In this state:

N~k = 1, Ωk0 =

√
|~k|2 +m2

0

f~k(t < 0) =
1√
Ωk0

, ḟ~k(t < 0) = −i
√

Ωk0. (24)

Ωk0 above is the frequency of the harmonic oscillator at
~k. At t = 0, we suddenly quench to the ordered phase
(r < rc). We note that in terms of our discussion earlier,
the conserved angular momenta are all zero so that the
associated chemical potentials µ~k in the GGE are all also
zero.

For the most part we will rely on numerical solutions
of the dynamical equations. Specifically, we numerically

solve Eqs. (22,23) subject to the initial conditions in
Eq. (24). We sample |f~k| on a grid of points in momen-
tum space with the infra-red spacing 1/L and the ultra-
violet cut-off Λ; we present data only for the largest sys-
tem sizes L in which the finite-size effects are minimal39.
We have checked that the qualitative results in this arti-
cle, for example when the effective mass is non-zero etc.,
are robust to the choice of the infra red and ultraviolet
cutoff. We have also ascertained that the average energy
is conserved at least to one part in 104. The dimensional
dependence of the late time physics is easily accessible
as the spatial dimension d can be varied continuously in
these simulations. As we employ a lattice in momentum
space, we drop the delta function factors in the contin-
uum theory from this point on. Correlation functions
that appear in the rest of the article should rightly be
thought of as structure factors.

As advertised, we are looking to use the equilibrium
phase diagram to rationalize the behavior of our solu-
tions. To this end, we quickly review the properties of
the finite T equilibrium phases (see Figs. 1 and 2). First,
in d < 2, the system is always disordered for all T > 0.
Correlations decay to zero exponentially with distance
and the inverse of the effective mass, 1/meff plays the
role of the correlation length. meff > 0 in this phase. In
d > 2, there are two phases for r < rc (rc is the zero
temperature quantum critical point). For T > Tc(r), the
system is disordered. As we just discussed, meff > 0 in
this phase. For T < Tc(r), the system is ordered. The

magnetization 〈~Φ〉 is non-zero and the two-point func-

tion 〈~Φ(~x) · ~Φ(0)〉 decays as a power law 1/|~x|d−2 to the

positive constant |〈~Φ〉|2. A numerically useful property
of such a two-point function is that the volume under

the curve on long length scales |~r| scales as ∼ |〈~Φ〉|2|~r|d.
The effective mass squared is zero in this phase and is,
physically, the mass of the (N − 1) Goldstone modes. At
the critical temperature Tc, m

2
eff = 0 and the two-point

function decays to zero as 1/|~x|d−2.

2. Results

Our first result is the one that we alluded to in Sec. III:
the late time effective mass squared tends to a non-
negative constant, m2

f ≥ 0. This is observed in all our

numerical solutions. Certainly, m2
f < 0 is ruled out on

grounds of stability. Heuristically, the result follows from
the averaging over many momentum modes which oscil-
late at different frequencies. Once the effective mass set-
tles, the density matrix in the eigenbasis of H dephases
and is effectively diagonal.

The limiting behavior of the effective mass divides into
two classes with very different physical content.

In the first case, the effective mass squared tends to
a positive constant (m2

f > 0). It is easily checked that
this implies a finite correlation length at late times. The
late time behavior is then qualitatively the same as that
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of the equilibrium disordered state. We emphasize that
we are not implying relaxation to the GGE: m2

f is not
a function of the excess energy density and the angular
momenta 〈Lz~k〉 = 0 alone. It depends on many properties

of the initial state. Similarly, the form of the late time
correlations are not given by the appropriate GGE.

In the second case, m2
eff tends to zero as t → ∞ and

the correlation length diverges in the same limit. We
shall refer to this behavior as coarsening. This case sub-
sumes two cases—that of strict coarsening and that of
coarsening to a critical state. By strict coarsening, we
mean the analog in our system of the process in an er-
godic system in which the system is quenched from the
disordered to the ordered phase and the symmetry is only
broken locally40. The domains of broken symmetry grow
with time; their characteristic size at late times, lco(t),
grows as t1/zd , where zd is a dynamic exponent. Within
each bubble, the two point function heals to its equilib-

rium value |〈~Φ〉|2 on a length scale ξ � lco(t). On the
longer length scale lco(t), it decays to zero. In contrast,
by coarsening to a critical state, we mean the analog
of the the system approaching a critical state with no
length scale except lco(t) and hence no domains exhibit-
ing equilibrium magnetization. In either case, the system
is self-similar on the scale lco(t) and a dynamical scaling

theory emerges in the limit t→∞, |~k| → 0 holding |~k|zdt
fixed. In this limit, the equal time structure factor has
the scaling form:

〈Φ~k(t)Φ†~k(t)〉 ∼ 1

|~k|δ
G(|~k|zdt), (25)

where G is the scaling function. When the system is
strictly coarsening, the volume under the two-point func-
tion should grow as lco(t)

d. That is, the structure factor
at zero momentum should as lco(t)

d. Thus, δ = d for
strict coarsening. On the other hand, when the system is
coarsening to a critical state, the growth of the volume
under the two-point function with time is slower. Thus,
δ < d.

To numerically confirm that the system is coarsening,
we will ask that the structure factor at late times have
the scaling form predicted by Eq. (25). We will then
use the value of δ to differentiate between the two pos-
sibilities. Let us now turn to the amplitude and spatial
dimension dependence of the late time behavior of our
sudden quenches.

Consider first sudden quenches in d ≤ 2. Relatively
small system sizes are sufficient to determine the late-
time behavior near d = 1 rather than at d = 2. We there-
fore work at d = 1+ε. Fig. 3 showsm2

eff(t) for d = 1.1; the
inset contains the longest time behavior. Observe that
m2

eff can be negative in the course of the evolution. This
is not alarming because it is not the steady state behavior
and does not imply instantaneous imaginary correlation
lengths. The negative values of m2

eff merely indicates
that 〈Φ2(t)〉 < (−r). The mode functions then grow
exponentially, causing m2

eff to become positive. This ex-
plains the initial oscillatory behavior of m2

eff . However,

0 2 4 6 8 10 12 14

t

−3

−2

−1

0

1

m
2 e
ff

(t
)

50 150 250
0.00

0.01
m2

GGE/10

FIG. 3. Plot of m2
eff(t) vs t for a sudden quench from the

disordered phase to the ordered phase in d = 1+ε. The green
line shows m2

GGE , the effective mass squared predicted by the
GGE. Inset shows late time. System parameters: ε = 0.1,
L = 1200, Λ = π, r0 = rc + 2, r = rc − 1, λ = 1.

at late times, m2
eff settles to the positive value m2

f (see

inset). The green line in both plots is the effective mass
squared predicted by the GGE, m2

GEE . The system def-
initely does not relax to the GGE as m2

GGE is almost
two orders of magnitude larger than m2

f . The equal time
structure factor is plotted in Fig. 4 at different times. By
the Riemann-Lebesgue lemma, only the time-averaged
structure factor contributes to the two-point function in
real-space. Thus, the green curve is sufficient to under-
stand the behavior of correlations in real-space. All three
structure factors lead to exponential correlations in real-
space.

The positivity of m2
f is not specific to our choice of

initial conditions. Recall that stability arguments dictate
that m2

f ≥ 0 if the effective mass goes to a constant

as t → ∞. We now show analytically that m2
f = 0 is

physically impossible in d ≤ 2. To this end, suppose
m2
f = 0. Then, the solution for f~k(t):

f~k = A~k cos(|~k|t) +
B~k

|~k|
sin(|~k|t), (26)

where A~k and B~k are complex valued functions that de-
pend on the initial conditions. Whatever the detailed
form, their amplitude must be finite and non-zero and
Im[A~kB

∗
~k
] = 1 (from Eq. (12)). The above solution has

to be consistent with m2
f determined through Eq. (16)

(or Eq. (23)). For d < 2, this is impossible as the RHS
is different from zero by an amount divergent in the long
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14

〈Φ
~ k
(t

)Φ
† ~ k(t

))
〉

t = 0

t > 50, time-averaged
GGE

FIG. 4. Plots of 〈Φ~k(t)Φ†~k(t)〉 vs |~k| at different times for

a sudden quench from the disordered phase to the ordered
phase in d = 1 + ε. System parameters: ε = 0.1, L = 1200,
Λ = π, r0 = rc + 2, r = rc − 1, λ = 1.

time limit:

r +
λ

2

∫
ddk

(2π)d
|f~k|2N~k ∼ t2−d. (27)

Therefore, m2
f > 0 for d < 2 and the late time state is

disordered. The argument at d = 2 is more delicate; it
involves showing that the RHS is different from zero by
a finite quantity.

The above proof suggests that for d > 2 different
quenches can lead to a vanishing m2

f and hence coars-
ening. Indeed, our numerical results for d > 2 confirm
this expectation and show two kinds of late time behav-
iors. Shown in Fig. 5 is the plot of m2

eff(t) at late times
for a sudden quench of “small amplitude” to the ordered
phase in d = 3. We define a “small amplitude” quench to
be a sudden quench in which the injected energy density
is smaller than that in the critical ensemble at r. At late
times, the effective mass is seen to oscillate about zero
with a decaying amplitude. Thus, m2

f is indeed zero.

In Fig. 6, we plot various structure factors: 1) at t = 0,
2) the averaged structure factor at late times and 3) the
connected structure factor predicted by the GGE. We
compute the averaged structure factor only for the wave

numbers |~k| & 0.1. For t > 25, their amplitudes, |f~k|,
oscillate about the green curve. Again, by the Riemann-
Lebesgue lemma, the green curve is sufficient to compute
the late time two-point function in real-space at distances

40 50 60 70 80 90 100

t

�0.015

0.000

0.015

m
2 e
↵
(t

)

t

m
2 e
↵
(t

)

FIG. 5. Plot of m2
eff(t) vs t for a sudden quench of small

amplitude (see text for definition) from the disordered phase
to the ordered phase in d = 3. The ratio of the injected excess
energy density to the critical energy density is approximately
0.7. System parameters: L = 700, Λ = π, r0 = rc + 2,
r = rc − 4, λ = 1/2.

. 2π/0.1 in lattice units. Observe that despite the lack
of relaxation to the GGE, the tail of the green curve falls

off as 1/|~k|2, just like the curve computed from the GGE
(black). In the inset in Fig. 6, we plot |f0(t)| as a function
of t. At early times, |f0(t)| is order one as in the initial
state. At late times, it grows linearly with t. This implies
that the volume under the two point function |f0|2 grows
as t2. This is consistent with the scenario of coarsening
to a non-equilibrium critical state, as we will show now.

We now check if the structure factor has the scaling
form predicted in Eq. (25). Shown in Fig. 7 is the plot

of the scaling function G vs |~k|t. The curves at different

|~k| collapse when zd = 1, δ = 2. As δ < d, the system is
coarsening to a non-equilibrium critical state, as opposed
to strict coarsening (in agreement with Ref. 31). Physi-
cally, when zd = 1, the size of a correlated region at time
t is set by the horizon. This is the fastest possible growth
and is possibly too fast to establish long-range order. An
interesting avenue for future work is to investigate the
nature of the coarsening process in the O(N) model at
infinite N limit in different spatial dimensions. Prelim-
inary results show that the system always coarsens to a
non-equilibrium critical state. However, the critical state
itself varies with dimension41.

On injecting an energy density greater than that in
the critical ensemble at r, the late time behavior is qual-
itatively the same in Figs. 3,4. Again, as was the case
for d ≤ 2, the GGE does not reproduce the late time
behavior.

3. The step approximation

The dimensional dependence of the late time physics is
well captured by the step approximation, first introduced
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FIG. 6. Plots of 〈Φ~k(t)Φ†~k(t)〉 vs |~k| at different times for a

quench of small amplitude from the disordered phase to the
ordered phase in d = 3. The green curve is the averaged
structure factor for t > 25 (see text). Inset: The amplitude

of the mode function at |~k| = 0, |f0(t)|, vs t. See the label of
Fig. 5 for system parameters.

10�1 100
100

101

102

|~k|t

|~ k
|2 h

�
~ k
(t

)�
† ~ k
(t

))
i

FIG. 7. The structure factor multiplied by |~k|2 vs |~k|t for
the quench of small amplitude from the disordered phase to
the ordered phase in d = 3. The six curves that exhibit the
scaling collapse predicted by Eq. (25) are at the six smallest

values of |~k|, |~k| = 2πm/L, where m = 1, . . . 6 and L = 700.
We conclude that zd = 1, δ = 2.

in Ref. 29. Here, one approximates m2
eff(t) by a step

function:

m2
eff(t) ≈

{
m2

0, t < 0

m2
s, t > 0.

(28)

The initial state fixes m2
0. This approximation is quite

coarse in that it ignores the intricate early-time behavior
of m2

eff(t) visible in Fig. 3. However, it builds in the late-
time constancy of m2

eff(t), a key feature of the infinite
N dynamics. Within this approximation, the equations
of motion can be solved analytically as the dynamical
problem is equivalent to a sudden quench in a free field
theory. m2

s is a free parameter in this solution. It is fixed
by requiring that the self-consistency relation in Eq. (23)
hold at late times. For further details of the method, see
Ref. 29.

Although ms is numerically not equal to the actual
late time effective mass, mf , the two share qualitative
features. Specifically, the dimensional dependence of mf

discussed in the previous subsection is reflected by ms.
First, we find that for d ≤ 2, m2

s is always positive for
any m0. Thus, the final state is always disordered. Sec-
ond, for d > 2, the value of m2

s depends on m2
0. For deep

quenches or “large” m0, ms > 0 and the final state is
disordered. On decreasing the amplitude of the quench,
the value of m2

s decreases, until m2
s = 0. After this point,

we find no solutions to the self-consistency relation and
the approximation breaks down. This breakdown is in-
dicative of the new physics of coarsening at late times.
Note though that coarsening cannot be captured within
this approximation as the precise way in which m2

eff(t)
approaches zero is important.

To summarize, the step approximation leads to a dis-
ordered state in d ≤ 2 for any quench and in d > 2 for a
deep quench. For shallow quenches in d > 2, the approx-
imation breaks down, indicating new late-time behavior.

V. SCALING AND QUENCHES TO THE
CRITICAL POINT

Thus far we have focused on the dimensional depen-
dence of the late time physics upon quenching to the or-
dered phase. Now we turn to the question of scaling for
such quenches due to proximity to the critical point sepa-
rating the ordered and disordered phases. This aspect of
the physics has an interesting dimensional dependence of
its own which is the non-equilibrium analog of the varia-
tion of equilibrium critical behavior with dimension. We
will specifically be interested in the reversion to Gaussian
critical behavior in d ≥ 3. We will focus almost entirely
on quenches to the critical point and note at the end the
generalization to quenches into the ordered phase.

As before, we prepare the system in the ground state
in the disordered phase at some r0 > rc. The initial
conditions are once again as detailed in Eq. (24). At
t = 0, we quench the system to the critical point.
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A first observation is that in any dimension the late
time state is disordered, i.e. m2

f > 0 for an initial non-
zero m0. This is observed in our numerical solutions
but it can also be argued, on analytic grounds parallel-
ing our demonstration that coarsening is impossible upon
quenching into the ordered phase. For d < 2, our pre-
vious argument already suffices and for d > 2, one can
extend it via a consideration of a larger set of momenta41

at the critical coupling. We note that this result is again
consistent with reasoning based on the equilibrium phase
diagram—injecting a non-zero energy density at the crit-
ical coupling should lead to a finite correlation length.
However, this result hides an important difference be-
tween d < 3 and d ≥ 3 to which we now turn. This
difference is most sharply visible if we consider a scaling
limit for sudden quenches, formulated in Ref. 14 which
makes their universal physics manifest.

Let us first consider 1 < d < 3 where the critical point
is interacting even in the infinite N theory. When the
initial state is in the vicinity of this critical point, its cor-

relation length, 1/m
1/z
0 , diverges as (r0−rc)−ν , where the

critical exponents are ν = 1/(d− 1), z = 1 at infinite N .
On the length/time scale 1/m0, the equilibrium physics
is universal. On the same scale, the dynamics following a
sudden quench is also universal in an appropriate scaling
limit. This is the limit of r0 → rc when lengths/times are
measured in units of the initial correlation length/time,
1/m0. In this limit, the one and two point functions of
an operator O have the scaling forms:

〈O(~x, t)〉m0
∼ m∆

0 GO(tm0) (29)

〈O(~x, t)O(0, 0)〉m0
∼ m2∆

0 GOO(|~x|m0, tm0), (30)

where ∆ is the scaling dimension of the operator O and
we have used the translational and rotational invariance
of the system. The out-of-equilibrium physics in this
limit is conjectured to be universal because the quench
is very shallow – only the universal low-energy long-
wavelength part of the energy spectrum at the critical
point is excited for t > 0. Those readers familiar with
the Kibble-Zurek mechanism will notice that the above
scaling limit is very similar to the one in slow ramps. The
correlation length and time in the initial state play the
roles of the Kibble-Zurek length and time.

The previous computations of universal correlation
functions in d = 1 are in the scaling limit described
above. For example, the two-point correlation functions
computed by Calabrese and Cardy16,32 using boundary
conformal field theory have the scaling form in Eq. (30).
Finally, the formalism above can be easily generalized to
the cases when (a) the dynamic exponent z 6= 1, (b) when
the system size is finite and (c) when the quench is not
exactly to the critical point.

To test the scaling hypothesis, we consider the one-

point function, 〈|~Φ|2(t)〉m0
/N . Equivalently, consider the

effective mass squared m2
eff . Accounting for the finite

system size L in the numerics, the scaling form of m2
eff
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2 e
↵
/
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2 0

FIG. 8. Plots of m2
eff/m

2
0 vs tm0 at different values of Lm0

in d=2. At each Lm0, we show the behavior for three (small)
values of m0. The scaling collapse provides strong evidence
for Eq. (31). System parameters: Λ = 1, r = rc, λ = 3.
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FIG. 9. M(∞) vs spatial dimension d computed for m−1
0 =

20, 40, 80 with Lm0 = 10. The solid line isM(∞) obtained in
the step approximation (Sec. IV 3) at the same system system
sizes and initial conditions. System parameters: Λ = 1, r =
rc, λ is d-dependent and chosen to ensure that the initial state
is in the equilibrium scaling region.

is:

m2
eff(t, L;m0) ∼ m2

0M(tm0, Lm0). (31)

We discuss the early and late time behavior ofM below.
By construction in the thermodynamic limit,M(0−) =

1. At t = 0+, m2
eff is negative. This reflects the finite

correlations in the initial state, unlike the ground state at
the critical point. Using the form of f~k(0−) in Eq. (23),
it is easy to see that:

M(0+) ∼ −md−3
0 . (32)

Thus, M(0+) is negative and divergent in the scaling
limit.

The full scaling function can be determined numeri-
cally. In Fig. 8, we show M for Lm0 = 6, 20 in d = 2.
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The data collapses for three different values of m0 at each
Lm0, providing strong evidence for Eq. (31). The nega-
tive divergence of M near 0+ is not shown in order that
the late time behavior be visible. Generically, we find
thatM tends to a positive constant at late times. Thus,
the late time state is indeed disordered.

In Fig. 9, M(∞) is plotted as a function of dimen-
sion for different values of m0 at fixed Lm0 = 10. For
all d < 3, the extrapolation to the thermodynamic limit
leads to a positive value of M as tm0 → ∞. The solid
line is M(∞) in the step approximation discussed in
Sec. IV 3. In agreement with Eq. (31), M(∞) is finite
in the dynamic scaling limit. The close agreement with
the numerical data points appears fortunate rather than
principled.

Now consider the case when d ≥ 3 where the fixed
point is Gaussian. If we work directly at the fixed point,
we have a free field theory, and the time-dependent mode
functions can be calculated exactly for the sudden quench
to the critical point (see, for example Ref. 32). In the
language of this article, the computation amounts to ig-
noring the self-consistency equation for the effective mass
and assuming that it is zero at all times. The result is
that the correlation functions at late times have a power-
law behavior in real space at long distances (light cone
effects are irrelevant to this discussion). Now, this is at
odds with the observation of a finite correlation length
in Fig. 9 at any non-zero m0. This discrepancy is re-
solved if we take proper account of the irrelevant quar-
tic term which is dangerously irrelevant already for the
equilibrium behavior, i.e. it cannot be neglected to get
proper asymptotic results. The same is true for the non-
equilibrium dynamics. This is easy to see in the step
approximation. The dependence of the late time (finite)
correlation length, ξf , on the initial correlation length
1/m0 is given by:

ξfm0 ∼ m−(d−3)/2
0 as m0 → 0. (33)

In the marginal d = 3 case, ξf is only logarithmically
greater than m0. Thus, if we take the scaling limit keep-
ing distances on the order of 1/m0 fixed as described in
Ref. 14, we will indeed find Gaussian behavior but this
will no longer be a good description of the truly long time
asymptotics on the longest time and length scales. As in
typical problems with dangerously irrelevant variables,
there are now two divergent scales to contend with—a
phenomenon likely to be much more common in the non-
equilibrium setting as has been noted already with a dif-
ferent example involving string-net coarsening in Ref. 42.
Finally, we note that the dangerous irrelevance of in-
teractions is also germane to quenches into the ordered
phase where again a scaling limit can be defined as above.
Again, we will find that in d ≥ 3 Gaussian results hold
in the scaling regime, which will exhibit an exponential
growth of the local order parameter before being cutoff at
the parametrically longer scale by the coarsening physics
we described previously.

VI. CONCLUDING REMARKS

In our current understanding, as sketched in this pa-
per, the quantum O(N = ∞) vector model appears in-
termediate between generic systems that exhibit thermal-
ization starting out of equilibrium and integrable systems
that do not. It does exhibit stationary behavior at long
times following parameter changes but it does not exhibit
thermalization. This behavior is consistent with it ap-
pearing to have only half the number of conserved quan-
tities appropriate for a fully integrable system. Interest-
ingly, the GGE constructed from the known conserved
quantities does not describe the late time stationary
states which is inconsistent with the GGE conjecture9.
A definitive resolution to the question of whether the
GGE conjecture is false or whether there are additional
conserved quantities is desirable. In the absence of the
latter the O(N =∞) vector model would provide an ex-
ample of a system exhibiting a large number of emergent
conserved quantities at late times. In such a case, all lo-
cal properties of the system are captured by a modified
GGE which includes chemical potentials for the emergent
conserved quantities.
Interestingly, the late time states of the O(N =∞) vec-
tor model following quenches exhibit “knowledge” of its
equilibrium phase diagram. They exhibit coarsening if
and only if the model exhibits a finite temperature or-
dered phase, which in turn depends on the dimensionality
of the system. However, this coarsening process appears
to be to a state that is critical. That is, it does not show
any signatures of developing long range order on length
scales smaller than the coarsening length scale. Elucidat-
ing the nature of this critical coarsening and its precise
dependence on initial conditions is a fit subject for future
work.
We note that the temporal structure of relaxation ap-
pears to be quite complicated at large but finite N . The
infinite N theory already exhibits finite times scales for
the appearance of stationary states in the absence of
coarsening and algebraic relaxation in the presence of
coarsening. This behavior is initial state dependent. For
large N we expect this behavior to give way to genuine
thermalization, at least for d > 1, on a time scale that
is parametrically large in N . How much of this intricate
time dependence survives to, say, N = 3 is an interesting
question.
Finally we note that in d = 3 the critical fixed point
is Gaussian. In its neighborhood, the scaling limit will
be described by the Gaussian theory as we illustrated in
this paper for quenches to the critical point. This is po-
tentially amenable to experimental work in cold atomic
systems where the N = 2 case is the critical theory of
the Mott insulator to superfluid transition with particle
hole symmetry.
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Appendix A: Lack of relaxation to the GGE

In this appendix, we show that the correlations in the
late time state of the O(N) model are not reproduced
by the appropriate GGE Eq. (19). Define a new set
of variables linearly related to the mode functions f~k in
Eq. (11):

g~k ≡ f~k
√
N~k. (A1)

We interpret g~k as the complex coordinate of a 2d classi-

cal particle labelled by ~k > 0. Next, define the momen-
tum of each particle to be:

π = ġ∗. (A2)

When absent, the momentum subscript is implied. Then,
the condition in Eq. (12) implies that the angular mo-

mentum of the particle at ~k > 0 is given by:

lz ≡ −Im[g(t)π(t)] = −N . (A3)

This classical angular momentum should not be confused
with the conserved angular momentum Lz in Eq. (17).
They are completely unrelated. The above equation im-
plies that lz is a constant of the motion for the classical
system and is set by the value of N . The dynamics of
the classical particles is governed by the Hamiltonian:

Hcl =

∫
~k>0

|π|2 + (|~k|2 + r)|g|2 +
λ

4

(∫
~q>0

|g|2
)2

.

(A4)

It is easily checked that the equations of motion derived
from Hcl reproduce Eq. (15,16). On solving for the dy-
namics of the classical particles generated by Hcl with
fixed angular momentum lz and the initial conditions
derived from Eq. (14), we can compute any observable
in the O(N) model through Eq. (11). This classical in-
terpretation is useful because it unambiguously identifies

the role of the c-number N in the solution. The radial
coordinate of the classical particle, |g(t)|, depends on the
conserved angular momentum lz at late times. As the

equal time structure factor S(~k, t) is given by:

S(~k, t) =
|g~k(t)|2

2
(A5)

where 〈Φ~kΦ†~k′〉 = S(~k, t) (2π)dδd(~k − ~k′), (A6)

the time-averaged structure factor at late times must de-
pend on lz~k as well. The structure factor in the GGE

however is independent of this quantity. Thus, the two
do not agree and the dynamics in the O(N) model does
not relax to the GGE defined in Eq. (19).



12

1 M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and
I. Bloch, Nature 415, 39 (2002).

2 M. Greiner, O. Mandel, T. W. Hansch, and I. Bloch, Na-
ture 419, 51 (2002).

3 L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore,
and D. M. Stamper-Kurn, Nature 443, 312 (2006).

4 S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch,
U. Schollwock, J. Eisert, and I. Bloch, Nat Phys 8, 325
(2012).

5 J. Sabbatini, W. H. Zurek, and M. J. Davis, New Journal
of Physics 14, 095030 (2012).

6 I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

7 J. Dziarmaga, Advances in Physics 59, 1063 (2010).
8 A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-

tore, Rev. Mod. Phys. 83, 863 (2011).
9 M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys.

Rev. Lett. 98, 050405 (2007).
10 T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440,

900 (2006).
11 T. W. B. Kibble, Journal of Physics A: Mathematical and

General 9, 1387 (1976).
12 W. H. Zurek, Nature 382, 296 (1996).
13 A. Polkovnikov, Phys. Rev. B 72, 161201 (2005).
14 A. Chandran, A. Erez, S. S. Gubser, and S. L. Sondhi,

Phys. Rev. B 86, 064304 (2012).
15 C. De Grandi, A. Polkovnikov, and A. W. Sandvik, Phys.

Rev. B 84, 224303 (2011).
16 P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801

(2006).
17 M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006).
18 M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne,

Phys. Rev. Lett. 100, 030602 (2008).
19 C. De Grandi, V. Gritsev, and A. Polkovnikov, Phys. Rev.

B 81, 012303 (2010).
20 A. Mitra and T. Giamarchi, Phys. Rev. B 85, 075117

(2012).
21 P. Calabrese, F. H. L. Essler, and M. Fagotti, Phys. Rev.

Lett. 106, 227203 (2011).
22 M. Rigol, Phys. Rev. Lett. 103, 100403 (2009).

23 M. Kolodrubetz, B. K. Clark, and D. A. Huse, Phys. Rev.
Lett. 109, 015701 (2012).

24 M. Moshe and J. Zinn-Justin, Physics Reports 385, 69
(2003).

25 D. Boyanovsky, H. J. de Vega, R. Holman, and J. F. J.
Salgado, Phys. Rev. D 54, 7570 (1996).

26 F. Cooper, S. Habib, Y. Kluger, and E. Mottola, Phys.
Rev. D 55, 6471 (1997).

27 L. M. Bettencourt and C. Wetterich, Physics Letters B
430, 140 (1998).

28 D. Boyanovsky, H. J. de Vega, R. Holman, and J. Salgado,
Phys. Rev. D 59, 125009 (1999).

29 S. Sotiriadis and J. Cardy, Phys. Rev. B 81, 134305 (2010).
30 S. Das and K. Sengupta, Journal of High Energy Physics

2012, 1 (2012).
31 B. Sciolla and G. Biroli, ArXiv e-prints (2012),

arXiv:1211.2572.
32 P. Calabrese and J. Cardy, Journal of Statistical Mechan-

ics: Theory and Experiment 2007, P06008 (2007).
33 T. Barthel and U. Schollwöck, Phys. Rev. Lett. 100,
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