

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor

S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and Ali Yazdani Phys. Rev. B **88**, 020407 — Published 25 July 2013 DOI: 10.1103/PhysRevB.88.020407

Majorana fermions in chains of magnetic atoms on a superconductor

S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and Ali Yazdani

Joseph Henry Laboratories and Department of Physics,

Princeton University, Princeton, New Jersey 08544

(Dated: July 8, 2013)

We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such chains can be easily tuned between trivial and topological ground state. In the latter, spatial resolved spectroscopy can be used to probe the Majorana fermion end states. Decoupled Majorana bound states can form even in short magnetic chains consisting of only tens of atoms. We propose scanning tunneling microscopy as the ideal technique to fabricate such systems and probe their topological properties.

PACS numbers: 03.67.Lx

The interest in topological quantum computing and non-abelian braiding has inspired many recent proposals to create Majorana fermions (MFs) in various experimental systems. Following Kitaev's seminal proposal¹, many approaches have been considered including those based on topological insulators^{2,3}; atoms trapped in optical lattices 4-6; semiconductors with strong spin-orbit interaction in two and one dimension⁷⁻⁹; coupled quantum $dots^{10,11}$; and those that combine magnetism of and superconductivity 12-15. The aim of these approaches is to create a topological superconductor in which MFs emerge as the single excitations at the boundaries. Since MFs are its own antiparticles, they are predicted to appear in tunneling spectroscopy experiments as zero bias $peaks^{16-19}$. Such peaks have been indeed observed in several experiments and interpreted as the signatures of MFs^{20-22} . However, these experiments are not spatially resolved to detect the position of the MFs. Additionally, in many instances, the presence of disorder can result in spurious zero bias anomalies even when the system is not $topological^{23,24}$. It is therefore desirable to identify easyto-fabricate condensed matter systems in which MF can be spatially resolved and distinguishable from spurious disorder effects.

In this letter, we theoretically investigate conditions for which a chain of magnetic atoms on the surface of an s-wave superconductor can host MF modes. We explore the parameter space for which this system is topological and show that even relatively short chains made of only ~ 50 atoms can host robust localized MFs. Our proposed structures can be fabricated using scanning tunneling microscopy (STM), which has previously been used to assemble structures of various shapes with tens of atoms using lateral atomic manipulation techniques^{25–27}. Spatially resolved STM spectroscopy of such disorder-free chains can be used to probe the presence of MF end modes.

As shown in Fig. 1, we consider an array of magnetic atoms (such as atoms of 3d or 4f metals with a net magnetic moment) which are deposited on a single crystal surface of an s-wave superconductor (such as niobium (Nb) or lead (Pb)) and arranged into chains using the STM. The interaction of a single magnetic moment with the superconductor gives rise to the so-called Yu-Shiba-Rusinov states^{28–31} that have been previously detected from both 3d and 4f atoms on the surface of Nb and Pb using an STM^{32,33}. The results of these previous experiments (with Gd and Mn deposited on Nb) agree well with model calculations in which the magnetic moment is assumed to be static^{32,34,35}. In addition, recent spin polarized STM studies indicate that in magnetic arrays with $\gtrsim 10$ atoms spin dynamics is greatly suppressed³⁶. It is therefore reasonable to model moments of magnetic atoms as static classical spins. In general, magnetic moments in these chains can form various configurations including a spiral³⁷.

FIGURE 1. Schematic of the experimental setup. An array of magnetic atoms (red spheres) is assembled using scanning tunneling microscope on the surface of s-wave superconductor (gray background). The system is modeled by the two dimensional $N_a \times N_b$ array in which magnetic atoms are embedded (inset). Throughout the paper we consider the case where magnetic moments are in the plane defined by N_a and Z direction.

To describe this system we use a two-dimensional tightbinding model Hamiltonian of an s-wave superconductor with an array of magnetic atoms :

$$H = \sum_{\langle \mathbf{i}, \mathbf{j} \rangle \alpha} (t f_{i\alpha}^{\dagger} f_{j\alpha} + h.c.) - \mu \sum_{i\alpha} f_{i\alpha}^{\dagger} f_{i\alpha} + \sum_{n\alpha\beta} (\vec{B}_n \cdot \vec{\sigma})_{\alpha\beta} f_{n\alpha}^{\dagger} f_{n\beta} + \sum_i (\Delta_i f_{i\uparrow}^{\dagger} f_{i\downarrow}^{\dagger} + h.c). \quad (1)$$

The operators f and f^{\dagger} correspond to electron annihilation and creation respectively, t is the hopping amplitude between adjacent sites $\langle i,j \rangle$ of a two-dimensional lattice, μ is the chemical potential, Δ_i is the local superconducting gap associated with a host superconductor (equal to Δ_0 in the absence of magnetic atoms). The effective magnetic field \vec{B}_n gives rise to a local Zeeman energy on the atoms which are arranged in a one-dimensional array of sites $\{n\}$. We consider the case of identical atoms, i.e. $|\vec{B}_n| = B$. Throughout the paper we normalize all simulation parameters to the value of Δ_0 .

In order to obtain the two-dimensional gap profile in the vicinity of the atomic chain, we self-consistently solve the resulting Bogoliubov-de Gennes equations (BdG)³⁸. We assume a constant on-site pairing coupling V for a grid of $N_a \times N_b$ lattice sites in the middle of which N_a local magnetic moments with strength B are embedded $(\sec^{39} \text{ section 1 for details})$. The calculations are performed with open boundary conditions (BC) in the N_b direction, and both open and periodic BC in the N_a direction to show the presence or absence of MF at the end of the chain and to compute the Pfaffian index $(Pf)^1$. Previous calculations showed that a single magnetic moment gives rise to a state inside the superconducting gap that has an energy close to Δ_0 for low B. As the value of B is increased the energy of this state is continuously tuned to $zero^{34,35,40}$. This zero crossing is a signature of a quantum phase transition, at which the impurity site traps a single quasi-particle^{29,41}. A similar phase transition occurs in the case of a few magnetic moments 40,42 . The transition obviously coincides with a change of the sign of the Pfaffian (computed in a periodic geometry) for the system, indicating a change of the fermion parity in the ground state. This is the characteristic signature of a topological non-trivial phase with MF end modes¹.

An example of a transition into a topologically nontrivial phase for our atomic chain is illustrated in Fig. 2, which shows the lowest energy level and the Pfaffian as a function of B in the case of 96 magnetic moments. The angle between adjacent magnetic moments, θ , plays a key role in determining whether this system is topological (see below), and has been assumed to be $2\pi/3$ for the results shown in Fig. 2. The most important feature of this calculation is that in the parameter window $2.2 < B/\Delta_0 < 3.45$, in which for periodic BC in the N_a direction the Pfaffian is negative, and the spatial extent of the lowest excited state (Fig. 2b) (for open BC) shows the presence of MFs at the ends of the chain. This behavior can be contrasted with that of $B/\Delta_0 = 2.1$ (Fig. 2c). In this case Pfaffian is positive and the lowest energy excitation is distributed approximately evenly along the chain.

A calculation of the local density of states (LDOS) as a function of energy shown in Fig. 2d clearly demonstrates that the topological case shows a zero bias peak associated with MF when tunneling at the end of the chain, while the middle of the system exhibits a mini-gap. In the non-topological phase sufficiently far away from the transition point, the system shows a clear gap throughout the chain and absence of zero energy end modes (Fig. 2e).

The emerging MF end modes considered here are localized on a very short length scale at the last few sites of the atomic chain. This situation can be contrasted to the proposals involving semiconductor nanowires in proximity with superconductors, where the coherence length of the superconductor sets the length scale for MFs⁹. The spatial extent of our MFs is reminiscent of the extent of the Yu-Shiba-Rusinov states created by single atoms, which have been shown both experimentally and theoretically to decay on length scales associated with the Fermi wavelength of a superconductor^{32,35}. Note that these states do have long tails associated with the superconducting coherence length, however this decay is strongly enhanced with an algebraic decay pre-factor^{34,35}.

While we used a self-consistent BdG calculation for realistic modeling of experimental situation, a more efficient approach to gain physical insight into this system is to consider an effective 1D model of magnetic atoms on superconducting sites, which is just the $N_b = 1$ limit of our 2D model. Note that in 1D, all information about the superconductor is simply included in the strength of the on-site s-wave gap Δ_0 and the hopping term describes coupling between the impurities on superconducting sites only (as opposed to the superconductor bandwidth in BdG model above, see³⁹ section 2). Fig. 3 shows that a 1D model qualitatively gives similar results the 2D model. Importantly, the hopping term, which can be tuned experimentally by placing atoms at different distances, may also drive quantum phase transition from the trivial phase (Pf>0) to the topological phase (Pf<0)with MFs at the ends. A one-dimensional version of this Hamiltonian is also considered in Ref.¹² in the context of MFs in disordered magnetic islands on a superconductor.

A key advantage of the 1D model is that it lends itself to an analytical solution, which shows that for a given angle θ between adjacent moments, the Pfaffian for the system is negative when

$$\sqrt{\Delta_0^2 + (|\mu| + 2|t\cos(\theta/2)|)^2} > |B|,$$

$$|B| > \sqrt{\Delta_0^2 + (|\mu| - 2|t\cos(\theta/2)|)^2}$$
(2)

(see³⁹, section 3 for the derivation). The negative value of the Pfaffian is a necessary condition for this system to be in a topological phase; however, it not sufficient, as the bulk of atomic chain remains must also be gapped. For example, $\theta = 0, \pi$ have the widest range of negative Pfaffian in Eq. 2; unfortunately, this full range is gapless. The min-gap for low energy excitation is related to

Figure 2. (a) Calculated energy spectrum, marked by blue lines, for 96 classical spins placed in the middle of the $N_a \times N_b = 96 \times 19$ grid using periodic BC. Parameters for the plot are : $\mu/\Delta_0 = 2.12, t/\Delta_0 = 2.34, V/\Delta_0 = 2.81$ and $T/\Delta_0 = 0.01$. The regions corresponding to the trivial phase (Pf>0) are shaded gray. Red thick line represents the lowest energy excitation using open BC. (b,c) The spatial distribution of the local density of states corresponding to the lowest excitation state in the non-trivial $(B/\Delta_0 = 2.87, \mathrm{Pf} < 0)$ and the trivial $(B/\Delta_0 = 2.23, \text{Pf} > 0)$ phase. Lattice coordinates X and Y correspond to the N_a direction (along the chain) and N_b direction (orthogonal to the chain) respectively. (d,e) Local density of states at the chain ends (blue solid line) and in the middle of the chain (gray dashed line) as a function of energy for non-trivial and trivial phase taking into account first 96 energy eigenvalues. The intrinsic line-width of the energy eigenstates is taken to be $\omega/\Delta_0 = 1 \times 10^{-3}$ for this plot.

strength of the *p*-wave pairing that emerges on the chain because of the combination of hopping, pairing, and local Zeeman terms in the Hamiltonian. Calculations of the spectra in both 2D and 1D model described above reveal the energy scale, which separates the zero energy MF states (localized at the two ends) from the next available excitation of the system. In a certain limit, the 1D

FIGURE 3. (a,b) The spatial profile of the two lowest excitation states of magnetic chain containing 48 atoms for $\mu/\Delta_0 = 4$, $B/\Delta_0 = 5$, $\theta = \pi/2$ (marked by red solid and green dashed line respectively). Tuning the hopping term t drives quantum phase transition from the trivial $(t/\Delta_0 = 0.4, \text{ Pf} > 0)$ (a) to the topological $(t/\Delta_0 = 1, \text{ Pf} < 0)$ phase (b). (c,d), Local density of states calculated for the same parameters as in (a) and (b) at the chain ends (blue solid line) and in the middle of the chain (gray dashed line). Note that for this choice of parameters spectrum in (c) is asymmetric in energy (see inset). Importantly, in (d) the two MF states around zero energy are separated by the effective mini gap Δ_p from the other states in the spectrum (marked by double arrow line).

model can be directly mapped¹² to the original proposal by Kitaev for realization of MF end mode, which is a superconducting wire with nearest neighbor pairing¹, but general eigenvalues can be obtained even without this mapping, see³⁹ section 2. The value of this mini-gap depends on the relative values of μ , t, B, and angle θ (see Fig 4).

A non-collinear arrangement of magnetic moments in a chain is essential to realize robust MF end modes. When transformed to a basis parallel to the spiraling on-site magnetic field, the hopping becomes spin-dependent giving rise to spin-orbit coupling and hence to the usual mechanisms for MF end modes. Without detailed modeling of the surface magnetism it is difficult to predict whether specific magnetic atomic chains would have a spiral spin-arrangement. We suggest that exploring the full freedom of the linear chain geometry may provide a feasible approach to create favorable conditions for non-collinear magnetic moments of adjacent atoms. For example, double or zig-zag chain structures with antiferromagnetic interactions are likely to become frustrated and result in spiral orientation of magnetic moments in the chain³⁷. To explore some of these possible geometries (Fig. 5a), we map these chains into equivalent linear chains with the nearest t_1 and the next nearest t_2 hop-

FIGURE 4. The value of the mini gap as a function of tunnel coupling and angle θ calculated for the 1D model : (a) $\mu/\Delta_0 = 2$ and $B/\Delta_0 = 3$; (b) $\mu/\Delta_0 = 2$ and $B/\Delta_0 = 5$; (c) $\mu/\Delta_0 = 5$ and $B/\Delta_0 = 2$; (d) $\mu/\Delta_0 = 5$ and $B/\Delta_0 = 4$.

ping as shown in Fig. 5b. In the simplest case for which θ is assumed constant, we show that these chains can also support topological phase when

$$\sqrt{\Delta_0^2 + (\mu + 2\cos(\theta/2)t_1 - 2\cos(\theta)t_2)^2} > |B|,$$

$$|B| > \sqrt{\Delta_0^2 + (\mu - 2\cos(\theta/2)t_1 - 2\cos(\theta)t_2)^2} \quad (3)$$

(see³⁹ section 3a for further details). We note again that these chains may provide easy-to-fabricate structures that would ensure non-collinear spin arrangements required for realization of MF end modes.

FIGURE 5. (a) Array of magnetic atoms arranged in two rows (zig-zag chain). The coupling among neighboring atoms corresponding to different rows is t_1 and the coupling between atoms within the same row is t_2 . (b) Equivalent magnetic moment configuration represented as a single chain with the next nearest coupling.

Lastly, we comment on the experimental feasibility of the proposed approach. As shown here the strength of the mini-gap associated with the *p*-wave pairing can sometimes exceed 30-40% of the gap of the host superconductor (Fig. 4). Nevertheless, using an s-wave superconductor with large gap Δ_0 (and measuring at the lowest temperatures) would increase the chance of experimental success. Other factors such as size of the magnetic moment Bor hopping matrix element t are also important and can be optimized experimentally using magnetic atoms with different spin or building chains with different spacing. A systematic experimental approach can start by characterizing the single-impurity states and their modification when impurities are brought close enough to interact³³. These measurements could be used to map effective 1D model parameters (effective hopping, chemical potential and exchange coupling) and allow investigation of the finite size effects on the excitation spectrum. A different approach would be to start from magnetic chains grown using self-assembled techniques. Note that self-assembled chains consisting of ~ 50 atoms with spiral arrangement of magnetic moments are already reported³⁷. Such chains would be an ideal starting point to investigate interaction between Majorana fermions. For example, examining coupled chains can provide direct experimental means to demonstrate the Z_2 character of the MF end modes by showing that they appear only in odd number of coupled chains. Finally, as structures of different shapes are equally easy to assemble in STM, one can envision viable route towards braiding experiments in arrays of coupled chains in a similar fashion as proposed for semiconductor nanowire structures $^{43-45}$.

We thank R. Lutchyn and J. Seo for the discussions. This work is supported by NSF-DMR1104612 and NSF-MRSEC programs through the Princeton Center for Complex Materials (DMR-0819860), ONR, ARO, and DARPA-SPAWAR grant N6601-11-1-4110. S. N-P acknowledges support of the European Community under a Marie-Curie OEF fellowship. B. A. B. acknowledges support of the programs CAREER DMR-095242, ONR-N00014-11-1-0635, ARMY-245-6778 and the Packard Foundation.

- ¹ A. Y. Kitaev, Physics-Uspekhi **44**, 131 (2001).
- ² L. Fu and C. L. Kane, Phys. Rev. Lett. **100**, 096407 (2008).
- ³ A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev. Lett. **102**, 216404 (2009).
- ⁴ M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009).
- ⁵ S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Nat Phys **7**, 971 (2011).
- ⁶ L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett. **106**, 220402 (2011).
- ⁷ J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. Lett. **104**, 040502 (2010).
- ⁸ R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. **105**, 077001 (2010).
- ⁹ Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.

105, 177002 (2010).

- ¹⁰ J. D. Sau and S. Das Sarma, Nat Commun **3**, 964 (2012).
- ¹¹ I. C. Fulga, A. Haim, A. R. Akhmerov, and Y. Oreg, New Journal of Physics 15, 045020 (2013).
- ¹² T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev. B 84, 195442 (2011).
- ¹³ S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett. **107**, 036801 (2011).
- ¹⁴ I. Martin and A. F. Morpurgo, Phys. Rev. B 85, 144505 (2012).
- ¹⁵ M. Kjaergaard, K. Wölms, and K. Flensberg, Phys. Rev. B 85, 020503 (2012).
- ¹⁶ K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. **103**, 237001 (2009).
- ¹⁷ K. Flensberg, Phys. Rev. B 82, 180516 (2010).
- ¹⁸ J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B 82, 214509 (2010).
- ¹⁹ M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C. W. J. Beenakker, New Journal of Physics **13**, 053016 (2011).
- ²⁰ V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science **336**, 1003 (2012).
- ²¹ A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nat. Phys. 8, 887 (2012).
- ²² M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Letters **12**, 6414 (2012).
- ²³ J. Liu, A. C. Potter, K. T. Law, and P. A. Lee, Phys. Rev. Lett. **109**, 267002 (2012).
- ²⁴ D. I. Pikulin, J. P. Dahlhaus, M. Wimmer, H. Schomerus, and C. W. J. Beenakker, New Journal of Physics 14, 125011 (2012).
- ²⁵ M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science 262, 218 (1993).
- ²⁶ S. Fölsch, P. Hyldgaard, R. Koch, and K. H. Ploog, Phys. Rev. Lett. **92**, 056803 (2004).

- ²⁷ N. Nilius, T. M. Wallis, and W. Ho, Science **297**, 1853 (2002).
- ²⁸ L. Yu, Acta Phys. Sin. **21**, 75 (1965).
- ²⁹ H. Shiba, Progress of Theoretical Physics **40**, 435 (1968).
- ³⁰ A. I. Rusinov, Sov. Phys. JETP **29**, 1101 (1969).
- ³¹ A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78, 373 (2006).
- ³² A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and D. M. Eigler, Science **275**, 1767 (1997).
- ³³ S.-H. Ji, T. Zhang, Y.-S. Fu, X. Chen, X.-C. Ma, J. Li, W.-H. Duan, J.-F. Jia, and Q.-K. Xue, Phys. Rev. Lett. 100, 226801 (2008).
- ³⁴ M. E. Flatté and J. M. Byers, Phys. Rev. Lett. **78**, 3761 (1997).
- ³⁵ M. I. Salkola, A. V. Balatsky, and J. R. Schrieffer, Phys. Rev. B 55, 12648 (1997).
- ³⁶ S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science **335**, 196 (2012).
- ³⁷ M. Menzel, Y. Mokrousov, R. Wieser, J. E. Bickel, E. Vedmedenko, S. Blügel, S. Heinze, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Phys. Rev. Lett. **108**, 197204 (2012).
- ³⁸ P. D. Sacramento, V. K. Dugaev, and V. R. Vieira, Phys. Rev. B **76**, 014512 (2007).
- ³⁹ supplementary information, (2013).
- ⁴⁰ D. K. Morr and N. A. Stavropoulos, Phys. Rev. B 67, 020502 (2003).
- ⁴¹ T. Soda, T. Matsuura, and Y. Nagaoka, Progress of Theoretical Physics **38**, 551 (1967).
- ⁴² D. K. Morr and J. Yoon, Phys. Rev. B **73**, 224511 (2006).
- ⁴³ J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nat Phys 7, 412 (2011).
- ⁴⁴ B. I. Halperin, Y. Oreg, A. Stern, G. Refael, J. Alicea, and F. von Oppen, Phys. Rev. B 85, 144501 (2012).
- ⁴⁵ B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and C. W. J. Beenakker, New Journal of Physics **14**, 035019 (2012).