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We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends
of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such
chains can be easily tuned between trivial and topological ground state. In the latter, spatial resolved
spectroscopy can be used to probe the Majorana fermion end states. Decoupled Majorana bound
states can form even in short magnetic chains consisting of only tens of atoms. We propose scanning
tunneling microscopy as the ideal technique to fabricate such systems and probe their topological
properties.

PACS numbers: 03.67.Lx

The interest in topological quantum computing and
non-abelian braiding has inspired many recent propos-
als to create Majorana fermions (MFs) in various exper-
imental systems. Following Kitaev’s seminal proposal1,
many approaches have been considered including those
based on topological insulators2,3 ; atoms trapped in op-
tical lattices4–6 ; semiconductors with strong spin-orbit
interaction in two and one dimension7–9 ; coupled quan-
tum dots10,11 ; and those that combine magnetism of and
superconductivity12–15. The aim of these approaches is to
create a topological superconductor in which MFs emerge
as the single excitations at the boundaries. Since MFs are
its own antiparticles, they are predicted to appear in tun-
neling spectroscopy experiments as zero bias peaks16–19.
Such peaks have been indeed observed in several exper-
iments and interpreted as the signatures of MFs20–22.
However, these experiments are not spatially resolved to
detect the position of the MFs. Additionally, in many
instances, the presence of disorder can result in spuri-
ous zero bias anomalies even when the system is not
topological23,24. It is therefore desirable to identify easy-
to-fabricate condensed matter systems in which MF can
be spatially resolved and distinguishable from spurious
disorder effects.

In this letter, we theoretically investigate conditions
for which a chain of magnetic atoms on the surface of an
s-wave superconductor can host MF modes. We explore
the parameter space for which this system is topological
and show that even relatively short chains made of only
∼ 50 atoms can host robust localized MFs. Our proposed
structures can be fabricated using scanning tunneling mi-
croscopy (STM), which has previously been used to as-
semble structures of various shapes with tens of atoms
using lateral atomic manipulation techniques25–27. Spa-
tially resolved STM spectroscopy of such disorder-free
chains can be used to probe the presence of MF end
modes.

As shown in Fig. 1, we consider an array of magnetic
atoms (such as atoms of 3d or 4f metals with a net mag-
netic moment) which are deposited on a single crystal
surface of an s-wave superconductor (such as niobium
(Nb) or lead (Pb)) and arranged into chains using the

STM. The interaction of a single magnetic moment with
the superconductor gives rise to the so-called Yu-Shiba-
Rusinov states28–31 that have been previously detected
from both 3d and 4f atoms on the surface of Nb and Pb
using an STM32,33. The results of these previous exper-
iments (with Gd and Mn deposited on Nb) agree well
with model calculations in which the magnetic moment
is assumed to be static32,34,35. In addition, recent spin
polarized STM studies indicate that in magnetic arrays
with & 10 atoms spin dynamics is greatly suppressed36.
It is therefore reasonable to model moments of magnetic
atoms as static classical spins. In general, magnetic mo-
ments in these chains can form various configurations in-
cluding a spiral37.
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Figure 1. Schematic of the experimental setup. An array
of magnetic atoms (red spheres) is assembled using scanning
tunneling microscope on the surface of s-wave superconduc-
tor (gray background). The system is modeled by the two
dimensional Na ×Nb array in which magnetic atoms are em-
bedded (inset). Throughout the paper we consider the case
where magnetic moments are in the plane defined by Na and
Z direction.

To describe this system we use a two-dimensional tight-
binding model Hamiltonian of an s-wave superconductor
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with an array of magnetic atoms :

H =
∑

<i,j>α

(tf†iαfjα + h.c.)− µ
∑
iα

f†iαfiα +

+
∑
nαβ

( ~Bn · ~σ)αβf
†
nαfnβ +

∑
i

(∆if
†
i↑f

†
i↓ + h.c). (1)

The operators f and f† correspond to electron annihila-
tion and creation respectively, t is the hopping amplitude
between adjacent sites <i,j> of a two-dimensional lattice,
µ is the chemical potential, ∆i is the local superconduct-
ing gap associated with a host superconductor (equal to
∆0 in the absence of magnetic atoms). The effective mag-
netic field ~Bn gives rise to a local Zeeman energy on the
atoms which are arranged in a one-dimensional array of
sites {n}. We consider the case of identical atoms, i.e.
| ~Bn| = B. Throughout the paper we normalize all simu-
lation parameters to the value of ∆0.

In order to obtain the two-dimensional gap profile in
the vicinity of the atomic chain, we self-consistently solve
the resulting Bogoliubov-de Gennes equations (BdG)38.
We assume a constant on-site pairing coupling V for a
grid of Na × Nb lattice sites in the middle of which Na
local magnetic moments with strength B are embedded
(see39 section 1 for details). The calculations are per-
formed with open boundary conditions (BC) in the Nb
direction, and both open and periodic BC in the Na di-
rection to show the presence or absence of MF at the end
of the chain and to compute the Pfaffian index (Pf)1.
Previous calculations showed that a single magnetic mo-
ment gives rise to a state inside the superconducting gap
that has an energy close to ∆0 for low B. As the value
of B is increased the energy of this state is continuously
tuned to zero34,35,40. This zero crossing is a signature of
a quantum phase transition, at which the impurity site
traps a single quasi-particle29,41. A similar phase transi-
tion occurs in the case of a few magnetic moments40,42.
The transition obviously coincides with a change of the
sign of the Pfaffian (computed in a periodic geometry)
for the system, indicating a change of the fermion parity
in the ground state. This is the characteristic signature
of a topological non-trivial phase with MF end modes1.

An example of a transition into a topologically non-
trivial phase for our atomic chain is illustrated in Fig.
2, which shows the lowest energy level and the Pfaffian
as a function of B in the case of 96 magnetic moments.
The angle between adjacent magnetic moments, θ, plays
a key role in determining whether this system is topo-
logical (see below), and has been assumed to be 2π/3
for the results shown in Fig. 2. The most important fea-
ture of this calculation is that in the parameter window
2.2 < B/∆0 < 3.45, in which for periodic BC in the Na
direction the Pfaffian is negative, and the spatial extent of
the lowest excited state (Fig. 2b) (for open BC) shows the
presence of MFs at the ends of the chain. This behavior
can be contrasted with that of B/∆0 = 2.1 (Fig. 2c). In
this case Pfaffian is positive and the lowest energy excita-
tion is distributed approximately evenly along the chain.

A calculation of the local density of states (LDOS) as a
function of energy shown in Fig. 2d clearly demonstrates
that the topological case shows a zero bias peak associ-
ated with MF when tunneling at the end of the chain,
while the middle of the system exhibits a mini-gap. In
the non-topological phase sufficiently far away from the
transition point, the system shows a clear gap through-
out the chain and absence of zero energy end modes (Fig.
2e).

The emerging MF end modes considered here are local-
ized on a very short length scale at the last few sites of the
atomic chain. This situation can be contrasted to the pro-
posals involving semiconductor nanowires in proximity
with superconductors, where the coherence length of the
superconductor sets the length scale for MFs9. The spa-
tial extent of our MFs is reminiscent of the extent of the
Yu-Shiba-Rusinov states created by single atoms, which
have been shown both experimentally and theoretically
to decay on length scales associated with the Fermi wave-
length of a superconductor32,35. Note that these states do
have long tails associated with the superconducting co-
herence length, however this decay is strongly enhanced
with an algebraic decay pre-factor34,35.

While we used a self-consistent BdG calculation for
realistic modeling of experimental situation, a more effi-
cient approach to gain physical insight into this system
is to consider an effective 1D model of magnetic atoms
on superconducting sites, which is just the Nb = 1 limit
of our 2D model. Note that in 1D, all information about
the superconductor is simply included in the strength
of the on-site s-wave gap ∆0 and the hopping term de-
scribes coupling between the impurities on superconduct-
ing sites only (as opposed to the superconductor band-
width in BdG model above, see39 section 2). Fig. 3 shows
that a 1D model qualitatively gives similar results the
2D model. Importantly, the hopping term, which can be
tuned experimentally by placing atoms at different dis-
tances, may also drive quantum phase transition from
the trivial phase (Pf>0) to the topological phase (Pf<0)
with MFs at the ends. A one-dimensional version of this
Hamiltonian is also considered in Ref.12 in the context of
MFs in disordered magnetic islands on a superconductor.

A key advantage of the 1D model is that it lends itself
to an analytical solution, which shows that for a given
angle θ between adjacent moments, the Pfaffian for the
system is negative when√

∆2
0 + (|µ|+ 2|t cos(θ/2)|)2 > |B|,

|B| >
√

∆2
0 + (|µ| − 2|t cos(θ/2)|)2 (2)

(see39, section 3 for the derivation). The negative value
of the Pfaffian is a necessary condition for this system to
be in a topological phase ; however, it not sufficient, as
the bulk of atomic chain remains must also be gapped.
For example, θ = 0, π have the widest range of negative
Pfaffian in Eq. 2 ; unfortunately, this full range is gap-
less. The min-gap for low energy excitation is related to
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Figure 2. (a) Calculated energy spectrum, marked by
blue lines, for 96 classical spins placed in the middle of the
Na × Nb = 96 × 19 grid using periodic BC. Parameters for
the plot are : µ/∆0 = 2.12, t/∆0 = 2.34, V/∆0 = 2.81 and
T/∆0 = 0.01. The regions corresponding to the trivial phase
(Pf>0) are shaded gray. Red thick line represents the lowest
energy excitation using open BC. (b,c) The spatial distribu-
tion of the local density of states corresponding to the lowest
excitation state in the non-trivial (B/∆0 = 2.87, Pf < 0) and
the trivial (B/∆0= 2.23, Pf >0) phase. Lattice coordinates X
and Y correspond to the Na direction (along the chain) and
Nb direction (orthogonal to the chain) respectively. (d,e) Lo-
cal density of states at the chain ends (blue solid line) and in
the middle of the chain (gray dashed line) as a function of en-
ergy for non-trivial and trivial phase taking into account first
96 energy eigenvalues. The intrinsic line-width of the energy
eigenstates is taken to be ω/∆0 = 1 × 10−3 for this plot.

strength of the p-wave pairing that emerges on the chain
because of the combination of hopping, pairing, and lo-
cal Zeeman terms in the Hamiltonian. Calculations of
the spectra in both 2D and 1D model described above
reveal the energy scale, which separates the zero energy
MF states (localized at the two ends) from the next avail-
able excitation of the system. In a certain limit, the 1D
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Figure 3. (a,b) The spatial profile of the two lowest excitation
states of magnetic chain containing 48 atoms for µ/∆0 = 4,
B/∆0 = 5, θ = π/2 (marked by red solid and green dashed
line respectively). Tuning the hopping term t drives quantum
phase transition from the trivial (t/∆0 = 0.4, Pf > 0) (a)
to the topological (t/∆0 = 1, Pf <0) phase (b). (c,d), Local
density of states calculated for the same parameters as in
(a) and (b) at the chain ends (blue solid line) and in the
middle of the chain (gray dashed line). Note that for this
choice of parameters spectrum in (c) is asymmetric in energy
(see inset). Importantly, in (d) the two MF states around zero
energy are separated by the effective mini gap ∆p from the
other states in the spectrum (marked by double arrow line).

model can be directly mapped12 to the original proposal
by Kitaev for realization of MF end mode, which is a su-
perconducting wire with nearest neighbor pairing1, but
general eigenvalues can be obtained even without this
mapping, see39 section 2. The value of this mini-gap de-
pends on the relative values of µ, t, B, and angle θ (see
Fig 4).

A non-collinear arrangement of magnetic moments in a
chain is essential to realize robust MF end modes. When
transformed to a basis parallel to the spiraling on-site
magnetic field, the hopping becomes spin-dependent giv-
ing rise to spin-orbit coupling and hence to the usual
mechanisms for MF end modes. Without detailed mod-
eling of the surface magnetism it is difficult to predict
whether specific magnetic atomic chains would have a
spiral spin-arrangement. We suggest that exploring the
full freedom of the linear chain geometry may provide
a feasible approach to create favorable conditions for
non-collinear magnetic moments of adjacent atoms. For
example, double or zig-zag chain structures with anti-
ferromagnetic interactions are likely to become frustrated
and result in spiral orientation of magnetic moments in
the chain37. To explore some of these possible geome-
tries (Fig. 5a), we map these chains into equivalent linear
chains with the nearest t1 and the next nearest t2 hop-
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Figure 4. The value of the mini gap as a function of tunnel
coupling and angle θ calculated for the 1D model : (a) µ/∆0 =
2 and B/∆0 = 3 ; (b) µ/∆0 = 2 and B/∆0 = 5 ; (c) µ/∆0 = 5
and B/∆0 = 2 ; (d) µ/∆0 = 5 and B/∆0 = 4.

ping as shown in Fig. 5b. In the simplest case for which θ
is assumed constant, we show that these chains can also
support topological phase when√

∆2
0 + (µ+ 2 cos(θ/2)t1 − 2 cos(θ)t2)2 > |B|,

|B| >
√

∆2
0 + (µ− 2 cos(θ/2)t1 − 2 cos(θ)t2)2 (3)

(see39 section 3a for further details). We note again
that these chains may provide easy-to-fabricate struc-
tures that would ensure non-collinear spin arrangements
required for realization of MF end modes.

a b

t2

t2

t1 t1

t2 t2

t1 t1

Figure 5. (a) Array of magnetic atoms arranged in two rows
(zig-zag chain). The coupling among neighboring atoms cor-
responding to different rows is t1 and the coupling between
atoms within the same row is t2. (b) Equivalent magnetic mo-
ment configuration represented as a single chain with the next
nearest coupling.

Lastly, we comment on the experimental feasibility of
the proposed approach. As shown here the strength of the
mini-gap associated with the p-wave pairing can some-
times exceed 30-40% of the gap of the host superconduc-
tor (Fig. 4). Nevertheless, using an s-wave superconduc-
tor with large gap ∆0 (and measuring at the lowest tem-
peratures) would increase the chance of experimental suc-
cess. Other factors such as size of the magnetic moment B
or hopping matrix element t are also important and can
be optimized experimentally using magnetic atoms with
different spin or building chains with different spacing. A
systematic experimental approach can start by charac-
terizing the single-impurity states and their modification
when impurities are brought close enough to interact33.
These measurements could be used to map effective 1D
model parameters (effective hopping, chemical potential
and exchange coupling) and allow investigation of the fi-
nite size effects on the excitation spectrum. A different
approach would be to start from magnetic chains grown
using self-assembled techniques. Note that self-assembled
chains consisting of ∼ 50 atoms with spiral arrangement
of magnetic moments are already reported37. Such chains
would be an ideal starting point to investigate interac-
tion between Majorana fermions. For example, examin-
ing coupled chains can provide direct experimental means
to demonstrate the Z2 character of the MF end modes
by showing that they appear only in odd number of cou-
pled chains. Finally, as structures of different shapes are
equally easy to assemble in STM, one can envision viable
route towards braiding experiments in arrays of coupled
chains in a similar fashion as proposed for semiconductor
nanowire structures43–45.
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