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Abstract

The quantum critical Antiferromagnetic (AFM) fluctuation spectra measured by inelastic neu-

tron scattering recently in two heavy fermion superconductors are used together with their other

measured properties to calculate their D-wave superconducting transition temperatures Tc. To

this end, the linearized Eliashberg equations for D-wave superconductivity induced by AFM fluc-

tuations are solved in models of fermions with various levels of nesting. The results for the ratio

of Tc to the characteristic spin-fluctuation energy are well parametrized by a dimensionless cou-

pling constant and the AFM correlation length. Comparing the results with experiments suggests

that one may reasonably conclude that superconductivity in these compounds is indeed caused by

AFM fluctuations. This conclusion is strengthened by a calculation with the same parameters of

the measured coefficient of the normal state quantum-critical resistivity ∝ T 3/2 characteristic of

gaussian AFM quantum-critical fluctuations. The calculations give details of the superconducting

coupling as a function of the correlation length and the integrated fluctuation spectra useful in

other compounds.
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I. INTRODUCTION

Many years ago, superconductivity was discovered in heavy-fermion compounds [1–3]. It

was suggested [4] that the superconductivity was due to collective electronic fluctuations and

not due to electron-phonon interactions. Transport properties in the superconducting state

were analyzed [5, 6] to show that superconductivity was in the D-wave symmetry. It was

also suggested that the D-wave symmetry is promoted by Antiferromagnetic fluctuations [7]

with long enough correlation lengths. This promotes scattering of fermions near the fermi-

surface predominantly through angles around ±π/2, which is essential for superconducting

instability in the ”D-wave” channel for a suitable fermi-surface [8]. The idea of long enough

AFM correlation lengths as essential for this mechanism is supported by the fact that in

heavy-fermions, superconductivity occurs generally in the regime near the AFM quantum

critical point where the correlation lengths are long but the competing AFM phase has lower

condensation energy.

At the same time, Random phase approximation on the Hubbard model was used to calcu-

late the spin-fluctuation spectra and to suggest that D-wave superconductivity is promoted

by such fluctuations [9]. The properties of the Hubbard model have proven controversial

in more elaborate calculations; there are calculations which suggest that the ratio of the

transition temperature Tc to the typical electronic kinetic energy parameters t is more than

O(10−2) [10] to less than O(10−3) [11]. Since heavy-fermion properties require Kondo effect

of the f-orbital local moments and their magnetic interactions using the wide-band elec-

trons, a multi-orbital model is obviously required [12]. The Hubbard model was proposed

as a sufficient model for the cuprate compounds [13]. But the discovery in under-doped

cuprates [14] of the predicted time-reversal breaking order parameter [15] on the basis of a

multi-orbital model raises doubts on the validity of the Hubbard model for the cuprates. For

pnictides, generalization of the Hubbard model to multi-orbital situations and inclusions of

Hund’s rule couplings appears essential.

We have a more modest goal in this paper than calculating spin-fluctuations from mi-

croscopic theory and using it to calculate properties of the superconductor. In recent years

inelastic neutron scattering in the heavy fermion compounds CeCu2Si2 [18–20] and CeIrIn5

[21] have provided details of the AFM fluctuation spectrum in the normal state. The pri-

mary aim of this paper is to estimate the superconducting transition temperature using
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the parameters provided by the experiments in these compounds. To do so, we solve the

Eliashberg equations for d-wave superconductivity using a phenomenological AFM spectral

function with which the experimental data is in good accord. The use of the Eliashberg

equations for quantitative calculations may be open to question because the Migdal ex-

pansion parameter, which is of O(10−2) for the electron-phonon problem is of O(1) for such

compounds if one assumes that the scale of the AFM fluctuations extends to the order of the

electronic bandwidth. However, when the AFM correlation length ξ is large compared to the

lattice constant a or (2kF)
−1, the scale of the AFM fluctuations is reduced correspondingly

to O((a/ξ)2)t. But in the limit of large correlation lengths, new questions arise [8] which are

not important in the electron-phonon problem. The most prominent among them are the

role of inelastic scattering in depressing Tc on the one hand [22], and the fact that the BCS

type coupling constant λ appears to diverge when the characteristic fluctuation frequency

→ 0 and the BCS prefactor appears to go to 0. An answer to these questions and various

considerations which determine Tc from AFM interactions is possible from the numerical

solution of the Eliashberg equations.

We find that it is reasonable to conclude from a comparison of the calculated Tc with ex-

periments that AFM fluctuations are responsible for D-wave superconductivity in the heavy

fermion compounds. Very importantly, with similar parameters we calculate the measured

coefficient of the anomalous ∝ T 3/2 contribution to the resistivity in these compounds. A

claim to quantitative accuracy on both these quantities can however be made only to factors

of O(2).

We note here that if one adopts that the dimensionless measure Tc/EF for how high is

the electronic fluctuation induced superconducting, the heavy fermions may be said to do

very well indeed. For example, in many cases, including the compounds studies here, this

ratio is O(10−2), similar to that of the cuprates.

Following the proposals that AFM fluctuations may also promote superconductivity in

the cuprate compounds [23], there have been many discussions of the mechanism and many

calculations based on the Eliashberg equations. A partial list includes the following [24].

The most complete of these calculations appear to us to be those carried out by Monthoux

and Lonzarich (ML) [25, 26], both for 2 and 3 dimensional models. We present below calcu-

lations for the 2 dimensional square lattice model with a phenomenological spin-fluctuation

spectrum, whose results are no different from those of ML for the range of parameters exam-
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ined that are common. A difference in the calculations is that we vary the parameters in the

two dimensional model so that ”nesting” at the AFM wave-vector quantitatively changes.

The amount of nesting does have a significant effect on the results. More important is that

now that the AFM fluctuation spectra is available, we can use the experimental parame-

ters to test the ideas quantitatively. We also discuss how to put limits on the parameters

used based on sum-rule for the fluctuation spectra and show that they are inter-related.

Results for the range of physical parameters that we find relevant for the heavy fermions is

not available in the published results of ML. This has bearing also on general conditions to

determine the extent to which AFM fluctuations give significant Tc for relevant parameters

in other compounds.

This paper is organized as follows: We present in Sec. (II) the models for fermi-surface

and for the spin-fluctuations which we have investigated using the linearized Eliashberg

equations. We discuss there the change of effective coupling constants with the AFM cor-

relation length using sum-rules so that the results for numerical solutions of the Eliashberg

equations presented later are presaged. We present the results of the calculations in Sec.

(III) and discuss the important conclusions immediately after the description of the Models.

We also present, in an Appendix, the explicit derivation of the coefficient of the T 3/2 resistiv-

ity from the measured form of the AFM critical fluctuation spectra. This is used in the text

to estimate independently the value of a coefficient λ, which is important for the calculation

of Tc. We give the parameters that have been deduced by inelastic neutron scattering for

the heavy fermion compounds CeCu2Si2 [18–20] and CeIrIn5 [21] and compare the measured

Tc with the calculations. We should emphasize that such a comparison is meant to be only

illustrative of the physical principles involved; no detailed quantitative agreement is to be

expected, especially given that the electronic structure of these compounds is far more com-

plicated than assumed in the models studied. However, enough details can be provided so

that one can conclude that the idea of AFM fluctuations near the quantum critical point in

these compounds as the source of D-wave superconductivity is well supported. For example

using measured properties, different levels of assumed nesting in the band-structure need a

coupling constant λ between 1.5 and 3 to get the measured Tc. In this range of λ and for

the measured AFM correlation length Tc is close to being linear in λ. This range of values

is compared with the value of λ ≈ 1.6 needed to get the measured coefficient of the T 3/2

resistivity, which is relatively insensitive to nesting. One can assess the results from the fact
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Figure 1: The fermi-surfaces given by the tight binding spectrum with four values of the next

nearest hopping t′ with filling=1.05 and t=0.3meV.

that in the range of λ deduced, Tc is found to be approximately linear in λ.

II. MODELS AND RESULTS FOR Tc

A. Fermi-surface

In our calculations we will consider two types of fermi-surfaces, a free electron fermi-

surface and the others given by the tight binding spectrum in a two dimensional square

lattice with nearest neighbor and next nearest neighbor hopping t and t′ respectively:

ε~k = −2t(cos kxa + cos kya) + 4t
′

cos(kxa) cos(kya) (1)

The fermi-surface with the tight binding spectrum are shown in Fig. 1 for four values of

the next nearest hopping t′/t and the AFM wave-vector. The nesting in the model changes

as t′ increases. We will show detailed result for three fermi-surfaces, the free electron fermi-

surface, the fermi surface (FS1) with tight binding spectrum with t′ = 0.4t and the fermi

surface (FS2) with tight binding spectrum with t′ = 0.1t. Of the four Fermi-surfaces shown

in Fig. 1, the one with t′ = 0.4t has the worst nesting and the one with t′ = 0.1t has the

best nesting. Fig. 2 shows the circular fermi-surface, FS1, FS2 and the corresponding AFM
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Figure 2: Three types of Fermi surfaces and ~Q-vector. The blue line shows the circular fermi-

surface, the black line shows FS1 which is given by the tight binding spectrum in two dimensional

square lattice with filling=1.05 and t′ = 0.40t. The red line shows FS2 which is also given by the

tight binding spectrum in two dimensional square lattice but with filling=1.05, and t′ = 0.10t.

wave-vectors.

We will discuss using the results of ML together with ours, that if properly normalized

density of states and fluctuation spectra are used, two dimensional and three dimensional

models give similar results for Tc provided one adjusts the ratio of the region of fermi-surface

nesting to the total fermi-surface. This is in general is always lower in three than in two

dimensions. It is also important to note, as discovered long ago [38], [39] for the case of

s-wave superconductors that Tc is a rather gross quantity which depends to a very good

approximation on the average density of states near the chemical potential only and not on

details such as the number of fermi-surface sheets and shapes. For d-wave superconductors,

we we show below, it is important to also include effects of nesting of the fermi-surface near

the AFM wave-vectors.
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B. Dynamical Spin Susceptibility for AFM Fluctuations, Correlation lengths,

Partial Sum rules and Coupling Constants

The dynamical spin-susceptibility for itinerant fermions with AFM correlations may

be usefully divided into two parts: The normal contribution of non-interacting fermions

χ0(~q, iω) and the part χAFM(~q, iω) affected by AFM correlations. The two together obey

the total magnetic moment sum-rule. The non-interacting susceptibility can play only an

insignificant role in promoting superconductivity [8] and should be ignored. The two con-

tributions to the susceptibility can be distinguished by their momentum dependence. The

characteristic momentum dependence of the non-interacting spin fluctuations is on a scale

of O(2k−1

f ) while that of the AFM spin-fluctuations is much shorter. A partial sum-rule on

χAFM(~q, iω) in terms of the ordered moment in the AFM phase can be used to relate the

integrated fluctuations to the AFM correlation length. Double counting by using the sum-

rule on the total susceptibility for the fluctuations and yet having (free) fermions interacting

with such spin-fluctuations is incorrect as it over-counts the total degrees of freedom. Such

considerations have usually been blithely ignored in most of the previous phenomenological

work on this problem.

The fermions interact with spin-fluctuations with a phenomenological Action

Sint = g2
∑

q,kk′,i,α,β,γ,δ

∑

ωn

χ(~q, iωn)ψ
+

k′−q,γσ
i
γ,δψk′,δψ

+

k+q,ασ
i
α,βψk,β +H.C. (2)

χ will be chosen to have dimensions of inverse of energy (after subsuming a factor of 4µ2
B

in its definition). So g is a coupling function of dimension of energy. g for heavy fermions

is the exchange energy between the conduction electrons and the f - local moments. Its

meaning for d-band problems is more ambiguous, and may be best inferred from independent

experiments, for example the resistivity above Tc.

A suitable phenomenological form for the dynamical spin-fluctuations due to AFM cor-

relations, with which experimental results [18, 19] can be fitted, is

χ(~q, iω) =
χ̄0ΓAFM

ψ~q + |ω| , (3)

ψ~q ≡ ΓAFM

[

(ξ/a)−2 + a2
(

~q − ~Q
)2
]

. (4)

where ΓAFM is the damping rate of the fluctuations, Q is the antiferromagnetic vector.
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The correlation length ξ is related to the deviation from the Quantum Critical Point

(QCP) by variation in pressure, doping, magnetic field, etc. as well as by temperature.

ΓAFM, Q and ξ may all be determined from experiments. The temperature dependence

of ξ has been studied by renormalization group (RG) [27, 28] and by the self-consistent

renormalization (SCR) methods [29, 30]. ξ−2 ∝ T 3/2 near AFMQCP in the 3 dimensions and

dynamical critical exponent = 2. SCR derives using the same dynamical critical exponent

that near the magnetic QCP, ξ−2(T ) ∼ χ ~Q ∝ T + θ.

In our calculations in two dimensions ξ will be assumed to be of the form

(ξ/a)−2(T ) = (ξ∗/a)−2 + γ
T

ΓAFM

, (5)

where ξ∗ is the asymptotic T = 0 value of the correlation length. One of our results is that

the temperature dependence of ξ is of insignificant consequence in determining Tc.

The linearized Elisahberg equations give that the kernel for Cooper pair coupling in the d-

wave channel in a square lattice is proportional to the projection of |g(k,k′)|2χ(k− k′, ω) to

(cos kx − cos ky)(cos k
′
x − cos k′y). In spin-fluctuations theories, |g(k,k′)|2 has only a smooth

momentum dependence. So, Cooper-pair coupling prominently depends depends only on

(i) the momentum dependence of χ(k− k′, ω) determined by the correlation length ξ (ii)

the integrated weight in the momentum dependent part and (iii) the energy scale of the

momentum dependent fluctuations. The first is qualitatively obvious from the fact that a q-

independent spin - fluctuation contributes zero to the Cooper channel in the d-wave channel.

It is not possible to make quantitative statements on these effects without detailed calcu-

lations because the results also depend on the nesting in the band-structure near the AFM

Q. We will show that the three ingredients in χ(k− k′, ω) are not mutually independent.

To gain physical insight, the effect of ξ on the integrated spectral weight may be dis-

cussed before detailed calculations through the the partial sum-rule on χAFM( ~Q, ω), which

determines the effective coupling constant for superconductivity:
∑

i

〈S2
i 〉AFM =

1

π

∑

~q

∫ ωc

0

dωImχ(~q, ω)

=
ωc

π2
χ̄0

[

π

2
− Tan−1

(

ΓAFM(ξ/a)
−2

ωc

)

− 1

2

ΓAFM(ξ/a)
−2

ωc

log

[

1 +

(

Γ(ξ/a)−2

ωc

)−2
]]

.

(6)

With the assumed Lorentzian form, it is necessary to introduce an upper cut-off ωc in the fre-

quencies ω up to which the fluctuations extend. Actually, spin fluctuation are actually quite
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suppressed for ω ∼ ΓAFM and we can simply use ωc ≈ ΓAFM in calculations of Eliashberg

equations. It is important to take into account that there are four equivalent AFM-vector

for the two dimensional problem in the paramagnetic regime of the model, however strongly

fluctuating it may be. This has been taken into account in the sum-rule by multiplying the

measured Imχ(~q, ω) by 4. For d = 3, the number of equivalent AFM vectors is larger and a

correspondingly larger multiplicative factor should be used.

In the regime of very long correlation lengths, (ξ/a)2 ≫ 1, i.e. close to the quantum-

critical point, the sum rule simply gives

∑

i

〈S2
i 〉AFM ≈ ωc

2π
χ̄0 +O(a/ξ)2 (7)

〈S2
i 〉AFM may to a first approximation be estimated from the ordered moment 〈S〉 in nearby

AFM phase but more properly from integration of the relevant momentum and frequency

range of the measured fluctuations in absolute units using polarized neutrons. Fig. 3 shows

the (ξ/a)−2-dependence of
∑

i

〈S2
i 〉AFM/ωc(χ̄0/2π) for ΓAFM/ωc=1.0, 2.0 and 10.0.

Let us now consider the sum-rule in the opposite limit, that the correlation length is

small compared to the lattice constant, i.e. the system is very far from the quantum critical

point. Then
∑

i

〈S2
i 〉AFM ≈ ωc

2π
χ̄0

1

2
[(ξ/a)2 +O(ξ/a)4] (8)

As already shown by ML and further elaborated below, for a given band-structure, the

results of the Eliashberg calculations for Tc/ΓAFM may be parametrized in terms of a dimen-

sionless ”bare” coupling constant λ and a correlation length ξ,

λ = g2NFχ̄0 (9)

χ̄0 may be determined in terms of 〈S2
i 〉AFM and therefore (approximately) to the ordered

moment through the sum-rule. We may define an effective coupling constant λeff to incorpo-

rate the effect of the correlation length. Using that the sum-rule becomes the total moment

sum-rule in the limit of infinite correlation length and the maximum possible ordered mo-

ment, i.e. that of the AFM insulator (ignoring the zero-point effects), one concludes that in

the limit of very large correlation lengths

λeff → λ∞ = g2NFf
2〈S2

i 〉max

2π

ωc

, (10)
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Figure 3: The dependence of the quantity
∑

i

〈S2
i 〉AFM/ωc(χ̄0/2π) which is shown in the text to be

approximately proportional to the effective coupling constant λeff on the correlation length ξ/a is

exhibited for various values of ΓAFM/ωc shown.

where f is the fraction of the maximum possible ordered moment. From Fig. (3 and from

the detailed calculations presented in the next section, one deduces that the limit for λ∞ is

reached for ξ/a & 10, below which there is an exponential fall off of Tc/ΓAFM. For smaller

correlation-lengths, Fig. (3) shows that the λeff for Tc decreases with decreasing correlation

length.

In the work of ML, λ values from about 5 to about 50 are used in the calculations with

varying correlation lengths. Actually, one obtains for the considerations of the sum-rules

above that for spin-(1/2) problems, even the coupling constant λ∞ is only of O(1), because

gNF is of O(1) and so is the upper limit on the ratio ΓAFM/ωc. An independent estimate

of λeff may be obtained from the normal state properties, for example the coefficient of the

temperature dependence of the resistivity of non-fermi-liquid form in the quantum critical

region. Again only λ of O(1) will be found consistent.

It is also important to note that these BCS type coupling constants do not carry infor-

mation on the retardation effects due to the frequency dependence of the interaction; these
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as well as the effects of inelastic scattering which are particularly important for anisotropic

superconductors are properly treated through the numerical solution of the Eliashberg equa-

tions. The difference from electron-phonon induced superconductivity where a single param-

eter λ need by introduced [38] should also be noted.

It should also be pointed out that in some heavy fermions, the quantum-critical fluctu-

ations do not have the functional form given by the simple RG or SCR approximations as

above, but displays ”local criticality” [36] as suggested for the cuprates [37]. In this paper,

we only consider fluctuations which are well specified by the form given above.

III. RESISTIVITY IN THE QUANTUM-CRITICAL REGION

The temperature dependence of the resistivity near the quantum-critical points has been

derived several times [40]. Here, we rederive it paying special attention to the coefficient in

front of the anomalous temperature dependent part. An expression of the resistivity ρ(T )

in the antiferromagnetic quantum critical region suitable for heavy fermions may be derived

with the following formula derived from the Boltzmann equation.

ρ−1(T ) =
1

4π3

e2vF
~

1

3

∫

τ~kdSFS, (11)

where the integration is taken over the fermi-surface, and vF the fermi velocity. This assumes

that the actual electronic structure near the chemical potential is sufficiently complicated

that in the temperature region of interest, vertex corrections which lead to emphasis on large

momentum scattering for resistivity are unimportant. In that case the scattering rate which

determines the resistivity is the same as the single-particle scattering rate averaged over the

fermi-surface. This is true in a multi-sheeted fermi-surface and is suitable for heavy fermions.

This is similar to the case of transition metals where the resistivity from electron-phonon

scattering at low temperatures is ∝ T 5 in contrast to the nearly free-electron metals where it

is ∝ T 3. For weakly anisotropic single band scattering, as in the cuprates, the resistivity for

large AFM correlation lengths is close to the Fermi-liquid temperature dependence although

near the hot spots the scattering rate is nearly ∝ T [41].

Equation (11) can also be expressed as follows.

ρ−1 =
ne2

m∗
〈τ~k〉FS. (12)
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where 〈· · · 〉FS ≡ 1

4πk2
F

∫

· · · dSFS means the average over the fermi-surface, m∗ the renormal-

ized effective mass.

Here, τ~k can be derived from the imaginary part of the self-energy.

~

2τ~k
= −ImΣ(~k, ε+ iδ)|ε→0, (13)

where the self-energy due to the antiferromagnetic quantum fluctuations is given as follows.

Σ(~p, iεn) = g2kBT
∑

ωm

∑

~q

G(~p− ~q, iεn − iωm)χ(~q, iωm) (14)

The result for the resistivity in the limit ξ/a→ ∞ is derived in an Appendix A. by explicitly

calculating the self-energy given by eq. (14) is

ρ(ξ/a = ∞) = λ
3

4e2
a~

(εF/kB)
√

ΓAFM/kB
T 3/2. (15)

IV. SOLUTION OF THE LINEARIZED ELIASHBERG EQUATIONS

The superconducting transition temperature is given by the linearized version of the

Eliashberg Equations for the normal self-energy−iωnZ(θ~k, iωn) and the anomalous or pairing

self-energy W (θ~k, iωn).

[

1− Z(θ~k, iωn)
]

iωn = −
∫

FS

ddS~p

(2π)dv~p
πT

∑

Ωm

i sgn(Ωm)g
2χ(~k − ~p, iωn − iΩm), (16)

W (θ~k, iωn) = −
∫

FS

ddS~p

(2π)dv~p
πT

∑

Ωm

W (θ~p, iΩm)

|ΩmZ(θ~p, iΩm)|
g2χ(~k − ~p, iωn − iΩm). (17)

Here ωn are the Matsubara frequencies; g is a momentum-independent coupling matrix

element, which has already been defined , θ~k is an angle parameterizing the Fermi surface,

N(θ~k) is the density of states at angle θ~k. The ~p-integral is over the Fermi surface, v~p =

∂ε~p/∂~p is the unrenormalized velocity.

A. Results for variation of Tc with Parameters in the Models

Our principal general results for Tc on the basis of solution of the linearized Eliashberg

equations in terms of λ and the parameters in χAFM( ~Q, ω) are given in this section. The

numerical evaluation is done by first simplifying the Eliashberg equations (16) and (17), as
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far as possible analytically. The final expressions for the numerical evaluation, both for the

circular Fermi-surface and the tight-binding Fermi-surfaces are given in Appendix B.

Figure. 4 show the (ξ∗/a)−2-dependences of Tc/ΓAFM for the circular fermi-surface on

the bare coupling constant λ in the large correlation length limit on the right. For small

bare coupling λ, the latter does have the BCS form while for λ & 1, the dependence is

approximately linear. Consistent with earlier discussions [25, 26], Tc/ΓAFM shows a very

shallow peak at around (ξ∗/a)−2 ∼ 5 × 10−3. Tc/ΓAFM shows a drop-off as the correlation

length decreases, while it also shows moderate decreases as the correlation length increases.

ML pointed out that this moderate decrease is caused by the rapid diverges of Z as the

correlation length increases. We note also that the quantum-classical crossover correction

to the correlation length proportional to the factor γ in Eqs. (5) has a negligible effect on

Tc. This will not be considered in any further calculations.

The principal message from Fig. (4) is that the infinite correlation length result for Tc is

well obeyed up to ξ/a ≈ 10 with a very sharp fall off thereafter which will be seen later to

be exponential. For large ξ/a, no BCS type approximation for Tc is valid. The limit of very

large correlation length is equivalent to the effective frequency of fluctuations → 0, as may

be seen from Eq.(4). If we use the McMillan [38] type approximation, in which λM ∝ 〈ω2〉−1,

the inverse of the average squared frequency of fluctuations, we get a divergent coupling.

Fig. (4) gives a finite limit to Tc/ΓAFM, which depends on the bare coupling constant λ.

One may understand this result from the calculations of Allen and Dynes [39], deduced for

s-wave Eliashberg equation, that in the limit of a diverging coupling constant Tc ∝
√
λM〈ω〉,

where 〈ω〉 may be taken approximately to be the square-root of 〈ω2〉. -
Next we show in Fig. (5) the (ξ∗/a)−2-dependence of Tc/ΓAFM for the four fermi surface

shown in Fig. (1) . For t′ = 0.4t, the worst nesting case, Tc/ΓAFM is similar to that for the

circular fermi-surface. Improving the nesting condition increases , Tc/ΓAFM.

We show in (6) Tc as a function of λ for the worst nesting fermi-surface and the best

nested fermi-surface of those in Fig. (1). A increase of O(2) in Tc for the similar values of

λ is discerned from the worst to the best nesting conditions.

ML have also presented detailed results for calculations on a 3 d electronic dispersion

with the symmetry of a cubic lattice. They remark that other parameters being the same

2 dispersion gives higher Tc than a three dimensional dispersion. Based on our results for

changes in Tc in the 2 d problem, we conclude that this is because of the much better nesting

13



Figure 4: The transition temperature normalized to ΓAFM vs (ξ∗/a)−2 for a circular fermi-surface

and λ = 1 is shown on the left, and the transition temperature normalized to ΓAFM vs λ for a

circular fermi-surface and (ξ∗/a)−1 = 0 is shown on the right.

Figure 5: The transition temperature normalized to ΓAFM vs (ξ∗/a)−2 for the four fermi-surfaces

shown in Fig. (1).

that is obtainable in model 2 d systems compared to the 3d systems for a given Q which

spans the Fermi-surface in some (usually symmetry) direction. In fact, we can place our

2 d-results for the very weakly nested fermi-surface over the ML results for the 3d Fermi-

surface and find for other parameters the same that the systematics of the results for Tc as
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Figure 6: Left: The transition temperature normalized by ΓAFM vs λ for the worst nested fermi-

surface (FS1) of Fig (1); Right: The transition temperature normalized by ΓAFM vs λ for the best

nested fermi-surface (FS4) of Fig (1)

.

well as its value is very similar.

V. COMPARISON WITH EXPERIMENTS IN HEAVY FERMIONS

In this section, we compare the estimates of Tc from the calculations with the experimental

result in CeCu2Si2 and CeIrIn5. For convenience, we show the measured intensity [20]

proportional to the dynamic structure factor S(Q, ω) = coth(ω/2T )Imχ(Q, ω) in Fig. (7)

for Q near QAFM.

Although the magnetic fluctuation spectrum found through inelastic scattering in

CeCu2Si2 is well represented by the form of Eq. (4), the electronic structure is far more

complicated than assumed here or in the 3 d calculations of ML. We have seen that Tc, es-

pecially in the limit of large magnetic correlation lengths depends only on gross parameters

like λ and secondarily on the amount of nesting. The comparison can only be very limited

and can only give insight into the orders of magnitudes expected and to the physics involved.

a. CeCu2Si2 [18, 20]

To fit the phenomenological susceptibility to these results, the parameters take the following

values:

AFM wave vector: QAFM= (0.22, 0.22, 1.46)

Ordered Moment in the AFM phase : 〈S〉 ≈ 0.2µB/Ce Correlation length: ξ ≃ 25 Å;
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Figure 7: The measured dynamic structure factor at the antiferromagnetic Bragg vector as a

function of energy for various temperatures in CeCu2Si2. From Ref. (20). The variation with Q

to get the correlation length is also available in (20) and references therein.

.

Characteristic energy scales :

ΓAFM ≃ 1.5 [meV];

Density of States: From the measured uniform (q = 0) Paramagnetic susceptibility in the

normal state, one deduces the N(EF) ≈ (1/7) [meV]−1/unit-cell.

AFM spin-fluctuations parameter: χ̄0:

The experimental results for χ(q, ω) in Ref.(18) are parametrized in terms of three quantities

ξ, χ0 and Γ. The correlation length ξ in Ref.(18) is the same quantity used by us. For clarity

we give here the relation of the other two parameters to the parameters used by us. The

conversion from the quantity χ0, which we will call χ0,S to our χ̄0 is obtained by equating the

integral over all q, ω of Equation S4 in Ref.(18) to the integral of the same physical quantity

given in Eq. (6). In the limit of (ξ/a)2 >> 1, one gets χ̄0 ≈ χ0,S(a/ξ)
2. The experimental

result is χ0,S = 15.64µ2
B/meV . This then gives χ̄0 ≈ 0.4µ2

B/unit− cell/meV .

The quantity Γ is related to ΓAFM by ΓAFM = Γ(a)−2.

16



Transition Temperature : Tc ∼ 0.6[K]

CeCu2Si2 has a very anisotropic fermi-surface with very little dispersion along the tetragonal

axis. The fermi-surface in the plane is very complicated but we assume that just as in s-wave

superconductivity [38], Tc depends only on the average density of states at the Fermi-surface,

supplemented by knowledge of nesting of the fermi-surface near QAFM . Among other things,

our results below may be taken to be test of this assumption.

b. CeIrIn5 [21, 32]

Although long-range magnetic order competing with superconductivity in CeIrIn5 has not

been accessed in this stoichiometric compound, there are strong experimental results in-

dicating that the compound lies in the vicinity to an AFM quantum-critical point. The

resistivity of this material exhibits a non-Fermi liquid behavior similar to that observed in

CeCoIn5, which is known to lie in the vicinity of an AFM quantum-critical point which

has been accessed by doping the compound. Moreover, the nuclear spin relaxation rate of

CeIrIn5 is also similar to that of CeCoIn5. The dynamical susceptibility has been recently

deduced by NMR experiments [21] in agreement with this conclusion.

To fit the susceptibility to these experimental result, the parameters take the following val-

ues.

AFM wave vector: QAFM= (0.5, 0.5, 0.5)

The chosen QAFM and ordered moment are taken to be that of the related compound CeCoIn5

[33]

Ordered Moment in the AFM phase: 〈S〉 ≈ 0.15µB

Correlation length

(ξ∗/a) ≃ 10 at T = 1[K][21] Characteristic energy scales of AFM: ΓAFM ≃ 1.5[meV];

Transition Temperature: Tc = 0.4[K]

The experimental results show that both CeCu2Si2 and CeIrIn5 lie not far from the

asymptotic large correlation length limit and that their Tc/ΓAFM are both about 0.03. For

a circular fermi-surface, and using the measure value of ξ/a in the former, we may refer

then simply to Fig. (4) and find that λ ≈ 3 gives the right value of Tc. For the best nested

Fermi-surface, however, a λ ≈ 1 is sufficient as shown in Fig. (6).

We may now try to estimate λ to see if these values are reasonable. We do this in two

different ways. To utilize the neutron scattering results for this purpose, we need to know

g besides the directly measured properties listed above. The renormalizations in the heavy
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fermion problem are such that near the critical point the AFM interaction between magnetic

moments is of the same order as the heavy fermion bandwidth. Then g is of the order of the

effective fermi-energy, i.e gNF ∼ 1. Then we may use the experimental values of NF and χ̄0

deduced from experiments above in Eq.(9) to get λ ≈ 2.

The above manner of estimation has forced us to guess the value of g. We can

estimate the value of λ much better and independently from the non-fermi-liquid resis-

tivity proportional to T 3/2 observed in the quantum critical regime of CeCu2Si2, whose

coefficient is proportional to λ. The resistivity ρ in the quantum-critical region for

ξ/a → ∞ is given by Eq.(15). Using the values of CeCu2Si2 mentioned above, the

resistivity is estimated ρ = 3.02 × 10−8λT 3/2 [Ωm] from eq. (15). The non-fermi liquid

resistivity observed in CeCu2Si2 takes the form: ρ(T )/ρ300K = 0.151 + 0.071T 3/2 [34]

where ρ300K ∼ 70µΩcm [35]. From the comparison of the coefficient of T 3/2-term in the

resistivity between theoretical and experimental results, λ is estimated as λ ∼ 1.6. This

should be considered an important evidence for the rather obvious idea that fluctuations

that determine the normal state scattering also determine Tc, and of the consistency

of the present calculations. The extent to which the calculations correctly estimate Tc

may be judged from the fact that in the range of λ from the different estimates for it, Tc ∝ λ.

We comment briefly on an estimation of the condensation energy due to superconductivity

and its comparison with the increase in energy of AFM fluctuations on entering supercon-

ductivity [18]. The latter has been estimated to be almost a factor of 20 larger than the

superconducting condensation energy. The suggestion has been offered that this factor of 20

may be the increase in kinetic energy. In BCS theory for electron-phonon interactions, the

absolute magnitude of the change in kinetic and in potential energy are both of the same

order as the condensation energy. So, a good reason has to be found for this factor of 20.

We do not have a solution to this enigma.

VI. SUMMARY

We have presented a solution to the linearized Eliashberg equations using a phenomeno-

logical spin-fluctuation spectrum and simple fermi-surfaces to highlight the important

parameters that determine Tc for d-wave symmetry. Careful attention has been paid to
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the partial sum-rule on the q-dependent part of the spin-fluctuation spectra to estimate

the effective coupling constant which depends on parameters such as the total partial

spectral weight, the correlation length and the upper frequency cut-off of the q-dependent

spin-fluctuations. These parameters are not independent and we show their relationship

in the simple model studied. With regard to the electronic structure, a knowledge of

the average density of states at the fermi-surface is sufficient for determining Tc in the

s-wave channel [38]. But for d-wave superconductivity through exchange of well correlated

spin-fluctuations, this must be supplemented by a knowledge of nesting. The results

for the general solutions are employed for two heavy fermion compounds using their

measured spin-fluctuation spectra and other quantities such as specific heat and magnetic

susceptibility. Correct estimates for Tc to factors of O(2) are obtained. Confidence in

these results is bolstered by getting the correct observed temperature dependence of the

anomalous T 3/2 resistivity with a coefficient using the same parameters, again correct to

factors of O(2). This puts a semi-quantitative backbone to the surmise made long ago

that d-wave superconductivity in such heavy fermions is promoted by large amplitude

spin-fluctuations with large correlation lengths such as occur near some AFM quantum

critical points.
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Appendix A: Derivation of Resistivity Near the Antiferromagnetic Quantum

Critical Point

An expression for the resistivity under assumptions suitable for heavy fermions with a

multi-sheeted fermi-surface and/or sufficient impurity scattering [42] is given by eq. (15)

in terms of the self-energy function Eq. (14). Here, we derive the relation (15) explicitly.
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Substituting χ(~q, iωm) in the spectral representation into eq. (14) and carrying out the

ωm-summation, one gets

Σ(~p, iεn) = −g
2

2

∑

~q

∫ ∞

−∞

dx

π

Imχ(~q, x)

x− iεn + ξ~p−~q

(

tanh
ξ~p−~q

2kBT
+ coth

x

2kBT

)

. (18)

Taking the analytic continuation of Σ(~p, iεn), the imaginary is given as

ImΣ(~p, ε+ iδ) = −g
2

2

∑

~q

∫ ∞

−∞

dx

π
Imχ(~q, x)πδ(x− ε+ ξ~p−~q)

(

tanh
ξ~p−~q

2kBT
+ coth

x

2kBT

)

= −g
2

2

∑

~q

Imχ(~q, ε− ξ~p−~q)

(

tanh
ξ~p−~q

2kBT
+ coth

ε− ξ~p−~q

2kBT

)

= −g
2

2

∑

~q

χ̄0Γ
−1

AFM(ε− ξ~p−~q)

[(ξ/a)−2 + a2(~q − ~Q)2]2 +
(

ε−ξ~p−~q

ΓAFM

)2

(

tanh
ξ ~p−q

2kBT
+ coth

ε− ξ ~p−q

2kBT

)

.

(19)

We now consider the behavior at around the antiferromagnetic quantum critical point, i.e.,

(ξ/a)−1 ∼ 0. In a low temperature region where the non-fermi liquid behavior appears,

ε ∼ 0 gives the dominant contribution for eq. (19). Moreover, using the following relation,

tanh
x

2
− coth

x

2
=

−2

sinh x
, (20)

eq. (19) is transformed as

ImΣ(~p, 0 + iδ) = −g2χ̄0Γ
−1

AFM

∑

~q

ξ~p−~q

a4(~q − ~Q)4 +
(

ξ~p−~q

ΓAFM

)2

1

sinh(
ξ~p−~q

kBT
)

= −g2χ̄0Γ
−1

AFM

∑

~q′

ξ~p− ~Q−~q′

a4~q′4 +
(

ξ
~p− ~Q−~q

′

ΓAFM

)2

1

sinh(
ξ
~p−~Q−~q

′

kBT
)
. (21)

Next, we consider the ~q-integration in eq. (21). Because the denominator in eq. (21) has

~q
′4 term, q

′ ∼ 0 gives the dominant contribution in the ~q
′

-integration. Therefore, one gets

ImΣ(~p, 0 + iδ) = −g2χ̄0Γ
−1

AFM

1

2π2

∫ qc

0

dq
′ ξ~p− ~Q

a4q′4 +
(

ξ
~p−~Q

ΓAFM

)2

1

sinh(
ξ
~p− ~Q

kBT
)
. (22)

Since the integrated function in eq. (22) rapidly decays as q
′

increases, we take qc as ∞ and

obtain following result by easy calculation.

ImΣ(~p, 0 + iδ) = −g2χ̄0Γ
−1/2
AFM

1

8
√
2πa3

|ξ~p− ~Q|1/2

sinh(
ξ
~p−~Q

kBT
)
. (23)
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Figure 8: The cross-sectional circular fermi-surface and the wave vector ~p which satisfies the relation

|~p| = |~p − ~Q| = kF.

Substituting eqs. (23) and (13) into eq. (12), ρ is given as

ρ ≃ λ
a~

2
√
2Γ

1/2
AFMe

2
〈
|ξ~p− ~Q|1/2

sinh
ξ
~p−~Q

kBT

〉FS, (24)

where we use na3 ∼ 1 and NF = m∗kF/(2π
2
~
2).

Here, we estimate the average over the fermi-surface in eq. (24) assuming that the fermi-

surface is spherical.

〈
|ξ~p− ~Q|

sinh
ξ
~p−~Q

kBT

〉FS =
1

4πk2F

∫ |ξ~p− ~Q|1/2

sinh
ξ
~p− ~Q

kBT

dSFS. (25)

The dominant contribution in eq. (25) comes from “hot” line where the relation |~p| =

|~p − ~Q| = kF is satisfied as shown in Fig. 8 Assuming that the dispersion near the fermi-

surface is given by linear dispersion, we obtain ξ~p− ~Q ≃ vFk⊥ cos(2σ−π/2) = kF sin 2α, where

k⊥ is the deviation from the “hot” line. For one “hot” spot, the integration is estimated as

1

4πk2F
kF sinα

∫ kc

−kc

dk⊥

√

|vFk⊥ sin 2α|
sinh vFk⊥ sin 2α

kBT

. (26)

Changing the integration variable as x ≡ vFk⊥ sin 2α/(kBT ), eq. (26) is transformed as

(kBT )
3/2

8πvFkF cosα

∫

vFkc sin 2α

kBT

0

dx

√
x

sinh x
. (27)
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Now, we take the upper limit of the integration as ∞ because we consider the low temper-

ature region, and eq. (27) can be calculated as

(kBT )
3/2

8πvFkF cosα

2
√
2− 1√
2

ζ

(

3

2

)

Γ

(

3

2

)

≃ 3(kBT )
3/2

4πvFkF cosα
(28)

Since such a “hot” point makes two rings whose total length is equal to 4π in the sphere

fermi-surface, eq. (25) is given by

〈
|ξ~p− ~Q|

sinh
ξ
~p− ~Q

kBT

〉FS =
3(kBT )

3/2

2εF cosα
. (29)

Substituting eq. (29) into eq. (24), we obtain

ρ ≃ λ
3a~

4
√
2 cosα

1

(εF/kB)(ΓAFM/kB)1/2e2
T

3

2 . (30)

In this calculation, the Q-vector is given by 2kF sinα. The Q-vector of the CeCu2Si2 is

observed as (0.215, 0.215, 0.1458) giving | ~Q| = 1.49a/π. Therefore, α is estimated as

α ∼ π/4, and we obtain the result used for the estimation of λ:

ρ ≃ λ
3

4e2
a~

(εF/kB)(ΓAFM/kB)1/2
T

3

2 . (31)

Appendix B: Final Expressions for Evaluation of Tc

Circular Fermi-surface

For a circular Fermi-surface, it is possible to do the momentum integrals in the Eliashberg

equations (16) and (17) analytically so that only a diagonalization in discrete frequency space

needs to be done numerically. The final expressions used for numerical evaluation for the

normal and the anomalous self-energy are:

Z(θ~k, iωn) = 1 +
λ

ωn/(πT )

∑

Ωm

sgn(Ωm)
√

α2 − β2
(32)

W2(iωn) = πT
∑

Ωm

K(ωn,Ωm)
W2(iΩm)

|Ωm|
, (33)

K(ωn,Ωm) = −λ
∫ 2π

0

dθ~p
2π

cos 2θ~p cos 2x

|Z(θ~p,Ωm)|
A−

√
A2 − B2 − C2

(B2 + C2)
√
A2 − B2 − C2

, (34)
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where

α =
|ωn − Ωm|
ΓAFM

+ (ξ/a)−2 + a2(|~k|2 + |~p|2 + | ~Q|2)− 2a2|~k|| ~Q| cos(θ~k − θ~Q), (35)

β = 2a2|~p|
√

| ~Q|2 + |~k|2 − 2| ~Q||~k| cos(θ~k − θ~Q), (36)

A =
|ωn − Ωm|
a2ΓAFM

+ (ξ/a)−2 + a2(|~k|2 + |~p|2 + | ~Q|2) + 2a2|~p|| ~Q| cos(θ~p − θ~Q), (37)

B2 + C2 = 4a4|~k|2
[

|~p|2 + | ~Q|2 + 2|~p|| ~Q| cos(θ~p − θ~Q)
]

, (38)

x = tan−1

[

| ~Q| sin θ~Q + |~p| sin θ~p
| ~Q| cos θ~Q + |~p| cos θ~p

]

. (39)

(40)

Tight-Binding Fermi-surfaces

With tight binding approximation, only some simplifications in the momentum integrals

in the Eliashberg equations (16) and (17) can be done analytically. The final expressions

used in this paper for numerical evaluation are

Z(θ~k, iωn) = 1 +
1

ωn/(πT )

∑

Ωm

sgn(Ωm)

∫

FS

d2S~p

(2π)2v~p

λ
|ωn−Ωm|
ΓAFM

+ (ξ/a)−2 + a2(~k − ~p− ~Q)2
,

(41)

W2(iωn) = πT
∑

Ωm

K(ωn,Ωm)
W2(iΩm)

|Ωm|
, (42)

K(ωn,Ωm) ≡ −2λ

∫

FS

d2S~k
(2π)2v~p

∫

FS

d2S~p

(2π)2v~p

1

|Z(θ~p, iΩm)|

(

cos(kFxa)− cos(kFya)
)(

cos(pFxa)− cos(pFya)
)

|ωn − Ωm|/ΓAFM + (ξ/a)−2 + a2(~k − ~p− ~Q)2
.

(43)

For both circular and tight binding Fermi-surfaces, the best numerical strategy to evaluate

Tc is to cast Eqs. (34) and (43) in the form of an eigenvalue equation for the eigenvector

W/|ωn|
∑

Ωm

[

K(ωn,Ωm)−
|ωn|
πT

δn,m

] [

W (iΩm)

|Ωm|

]

= 0. (44)

It should be noted that the Matrix of eq. (44) is not Hermitian becauseK(ωn,Ωn) includes

the renormalization factor Z(ωn, θ~k). If the angle dependence of Z can be neglected, we can

define K in a form which does not include Z, and we obtain the eigenvalue equation with

a Hermitian Matrix for the eigenvector W/|ωnZ(ωn)|. In s-wave superconductor case, such
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a situation, namely angle-independent self-energy appears. However, in the d-wave case,

Z(iωn, θ~k) strongly depends on θ~k. On including Z in the kernel K, the latter is no longer

symmetric for the frequency exchange, ωn and Ωm.

At high temperatures the eigenvalues of eq. (44) are close to the negative odd integers.

As the temperature decreases, the largest eigenvalue increases and crosses zero at transition

temperature T = Tc.
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