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Abstract 

    It is demonstrated both analytically and numerically that the properties of spin wave modes 

excited by a current-driven nano-contact of length L in a quasi-one-dimensional magnetic  

waveguide magnetized by a perpendicular bias magnetic field He are qualitatively different from the 

properties of spin waves excited by a similar nano-contact in a two-dimensional unrestricted 

magnetic film (“free layer”). In particular, there is an optimum nano-contact length Lopt  

corresponding to the minimum critical current of the spin wave excitation. This optimum length is 

determined by the magnitude of He, the exchange length and the Gilbert dissipation constant of the 

waveguide material. Also, for  L < Lopt  the wavelength λ (and the wave number k ) of the excited 

spin wave can be controlled by the variation of  He (λ decreases with the increase of He ), while for 

L > Lopt   the  wave number k  is fully determined  by the contact length L (k~1/L) , similar to the 

case of an unrestricted two-dimensional  “free layer”.  



 

I. Introduction 

    The geometry of magnetic nanostuctures used to construct spin-torque nano-oscillators (STNO) 

(see e.g. [1])  could have a strong influence on the properties of spin wave modes excited  in these 

STNO structures by the spin-transfer torque [2,3] carried by the spin-polarized current.    

Traditionally, two main geometries - magnetic nano-contacts [4,5] and magnetic nano-pillars [6] -

where used. In the nano-contact geometry, the  STNO “free layer” (where the current-induced 

precession of magnetization takes place) is a continuous magnetic film unrestricted in both in-plane 

dimensions.  In this geometry, depending on the direction of the bias magnetic field,  spin-polarized 

current excites usually either propagating spin waves, having the wavenumber determined by the 

nanocontact radius [7-10],  or a self-localized  nonlinear bullet mode [10-12], having the frequency 

that is below the spectrum of propagating spin waves. It should be noted that it is also possible to 

excite other types of spin wave modes (e.g., magnetic droplet solitons [13,14]) or to excite spin 

waves in magnetic nano-structures by other means (e.g., by specially prepared light pulses [15,16]) 

and achieve a certain level of control of the wavelength of the excited spin waves. However, these 

methods of spin wave excitation mostly deal with the highly-nonlinear solitonic spin wave modes 

for which independent control of the wavelength and amplitude is impossible. 

     In the case of a nano-pillar geometry the “free” magnetic layer has finite lateral sizes and 

reflecting boundaries in the plane of the layer and represents a thin magnetic resonator [6].  The 

spin wave eigenmodes of this resonator, that have discrete frequencies determined by the finite in-

plane sizes of the pillar, can be excited by the traversing spin-polarized current.   

   There is, however, another STNO geometry which might be useful for the development of novel 

microwave signal processing devices  based on the spin-transfer torque effect [17-18]  (see Fig.1). 

In this geometry the “free” layer of STNO has a shape of a quasi-one-dimensional waveguide, 

where spin waves excited by a nano-contact attached to the waveguide can propagate and provide a 

synchronization signal for other nano-contacts attached to the same waveguide, thus forming a 



synchronized linear STNO array with enhanced output power and reduced generation linewidth 

[19].  

      The main goal of our current paper was to study analytically and numerically the properties of 

spin wave modes excited by a current-driven magnetic nano-contact in such a quasi-one 

dimensional magnetic waveguide and to analyze the potential of this geometry for the development 

of practical spintronic microwave devices. Our analysis demonstrates that the properties of spin 

wave modes excited by a current-driven nano-contact of the length L in a quasi-one-dimensional 

magnetic waveguide magnetized by a perpendicular bias magnetic field He (see Fig.1) are 

qualitatively different  from the properties of spin waves excited by a similar nano-contact in two-

dimensional unrestricted magnetic film [7]. In particular, there is an optimum nano-contact length 

Lopt  corresponding to the minimum critical current of the spin wave excitation. This optimum 

length is determined by the magnitude of He, the exchange length and the Gilbert dissipation 

constant of the waveguide material. Also, for  L < Lopt  the wave number k  of the excited spin wave 

can be controlled by the variation of  He ( k decreases with the decrease of He ), while for L > Lopt   

the  wave number k  is fully determined  by the contact length L (k~1/L) , similar to the case of an 

unrestricted  two-dimensional  “free layer” [7].  

 

II. Analytical Model 

The core of the device geometry under investigation is a trilayer structure composed by an extended 

thick magnetic layer (the “pinned layer” (PL)), a non-magnetic spacer and a thin magnetic layer (the 

“free layer” (FL)) in the form of a thin quasi-one-dimensional waveguide (prism) elongated along 

one direction (the x-axis), but confined along the other two directions (see Fig.1).  A metallic 

contact of finite length L  attached to the top of the FL allows the current flow perpendicular to the 

layers in a confined region of the trilayer, as shown in Fig.1.  We also assume that the waveguide is 

magnetized to saturation by the bias magnetic field of the magnitude He  directed along the axis z. 

 



 

Fig.1. The geometry of the STNO with the “free layer” in the form of a perpendicularly magnetized magnetic 
waveguide of the finite width W.   

In the top-left inset the geometry of the nano-contact of a finite length L is shown in detail.  
 

       In contrast with the classical nano-contact geometry [7,12,20-21], where the spin-wave mode 

excited  by a nano-contact can propagate radially in the unrestricted two-dimensional “free” layer, 

in this case the excited spin waves can only propagate along the axis “x” of a quasi-one-dimensional 

waveguide. This reduction of dimensionality in the wave propagation has a profound effect on the 

properties of spin wave modes excited in this waveguide geometry.  

      The equation of motion for the magnetization vector M  in the waveguide “free” layer (Landau-

Lifshitz-Gilbert-Slonczewski equation )  can be written in the form :   

[ ] ( )eff
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( 2 )G IL x
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∂ ∂⎡ ⎤= × + × + Θ − × ×⎡ ⎤⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦
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where ( ),t=M M r  is the magnetization vector of the  FL (we are neglecting dynamics in the PL), γ 

is the modulus of the gyromagnetic ratio for the electron spin, 2 2
eff ( 4 )e z exH Mπ λ= − − ∇H z M  is 

the effective magnetic field which includes Zeeman, dipole-dipole and exchange contributions, M0 

and  exλ   are  the magnitude of the static magnetization and  the exchange length in the waveguide 

(FL) material, respectively, and Mz  is the z- projection of the FL magnetization that coincides with 

M0  in the static case.  It is assumed that the thickness dFL of the “free” layer waveguide is much 

smaller than its width W, so that the waveguide is considered to be quasi-one-dimensional. The 



effects arising from the current-induced (Oersted) magnetic field, magnitocrystalline anisotropy, 

magnetostatic coupling between the two ferromagnetic layers and the thermal fluctuations are also 

neglected as they do not play a significant role in this context [20,22]. The first term on the right-

hand side of Eq.(1) represents, therefore, the conservative precessional torque. 

        The second term in the right-hand side of (1) is the magnetic damping torque written in the 

traditional Gilbert form ( Gα  is the damping constant) of the FL material. The last term is the 

Slonczewski spin-transfer torque that is proportional to the bias current I. The function ( 2 )L xΘ −  

describes the spatial distribution of the current across the nano-contact area (of the length L).  The 

coefficient β characterizing the strength of the spin-transfer torque is related to the dimensionless 

spin-polarization efficiency ε  ( 0 1ε< < ) by the expression B 02 FLg eM Wdβ ε μ= , where g is the 

spectroscopic Landé factor, Bμ  is the Bohr magneton, e is the absolute value of the electron charge, 

dFL is the FL thickness and W  is the waveguide width (along the y axis). Note that in this 

formulation the coefficient β  is independent of the nano-contact length L.  The unit vector p defines 

the spin-polarization direction which coincides with the equilibrium direction of the PL 

magnetization. In our analysis, we assume that the directions of the static magnetization of the two 

layers are parallel to each other. In the first approximation, the misalignment of equilibrium 

magnetization orientations in the two layers leads simply to the reduction of the effective spin-

polarization efficiency, i.e. to the scaling of the critical current. Since we are considering normally-

to-plane bias fields, we thus assumed that =p z . 

     Introducing the dimensionless complex variable  a   
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proportional to the amplitude of the magnetization precession in the FL  (where Mi  , with i = x, y, z,  

are the Cartesian projections of the FL magnetization vector M) one can rewrite Eq.(1) in the 

following form (for the details of the derivation see [23]): 
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where 0ω  is the ferromagnetic resonance (FMR)  frequency in the perpendicularly magnetized 

(along the axis z  in Fig.1)  thin (dFL << W)  FL: 

                                               ( )0 04eH Mω γ π= −  ,                                                                (4) 

2
04 exD Mγ π λ=    is the dispersion coefficient of the exchange-dominated spin waves excited in the 

nano-contact, 2
02ex A Mλ π=  ,  A  is the exchange constant, and 0GΓ = α ω  is the FMR linewidth 

proportional to the FL Gilbert damping constant Gα . Only the terms linear in the spin wave 

amplitude a were retained in Eq. (3): the nonlinear corrections, which can also be obtained using 

ansatz Eq. (2), do not influence the threshold of spin wave generation and do not change the profile 

or frequency of the excited mode at the threshold. Eq. (3) correctly describes spin wave dynamics 

only when He > 4π M0 , and the saturated state of the waveguide is stable; below, we restrict our 

analysis only to this case. 

  The stationary solution of  Eq.(3) at the threshold of the current-induced spin wave generation can 

be found in the form: 
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where  κ  and  k  are the complex wave numbers of the spin wave modes excited inside and outside 

the current-carrying nano-contact region and gω  is the frequency of the excited spin waves. The 

imaginary parts of the wave numbers κ  and k describe the energy loss/gain of the excited spin wave 

mode. Using the condition of continuity for the variable spin wave amplitude ( , )a t x  at the 

boundaries of the nano-contact region one can obtain the following system of equations defining the 

complex spin wave wave numbers   κ  and k ,    the   frequency gω   of the excited spin wave and the 

threshold  current thI  at which the current-induced spin wave excitation starts in the nano-contact : 
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                                                2
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                                                   tan( 2)L i kκ κ = −  .                                                                (6c) 

     The system of equations (6) can not be solved analytically in a general case, but if we introduce 

the characteristic length scale c   of the problem as: 
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and the characteristic  current cI   as: 

                                                   c cI
β
Γ=    ,                                                                         (8) 

it is possible to find approximate analytical solutions of the problem in two limiting cases. 

In the limiting case of a “long” nano-contact cL >> , when the spin wave propagation is dominated 

by the Gilbert losses,  the approximate solution of (6) has the form: 
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In the opposite limiting case of a “short”  cL <<   nano-contact, when the spin wave propagation is 

dominated by the propagation losses, the approximate solution of (6) has the form: 
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It is clear from the expressions for critical current in (9) and (10) that there should be an optimum 

value of the nano-contact length  coptL ~ , at which the critical current has the minimum value 

cth II ~min . The exact values of optL  and min
thI  can be found from numerical solution of equations (6): 

                                             coptL 52.0≈ ,                                                             (11) 

                                                                      cth II 48.1min ≈  .                                                            (12) 



The typical values of c  lie in the range of 50-100 nm for applied fields He about 2 times higher 

than the saturation field 4π M0. 

 It is also clear from the expressions (9) and (10) for the wavenumber k  of the spin wave 

mode  propagating from the nano-contact  that for  a “long”  contact  (9) the wavenumber is totally 

determined by the nano-contact size L, while for a “short” contact (10)  it is possible to control the 

value of  k   by variation of the external bias magnetic field He .  This latter regime is qualitatively 

different from the case of nano-contact radiation of spin waves in a two-dimensional “free”  layer 

and could be used to enhance the group velocity of spin waves propagating   in a waveguide , thus 

improving the possibility of mutual synchronization of several generating nano-contacts connected 

to the same  waveguide “free” layer [19]. 

 

III. Micromagnetic Model 

    To check the above presented approximate analytical results we performed the numerical study 

of the spin-torque-induced excitation and propagation of spin waves in a magnetic waveguide by 

means of  finite-difference micromagnetic scheme [12,20-21,24-25] which integrates, in the time 

domain, the Landau-Lifshitz-Gilbert-Slonczewski equation of motion (1).  In our numerical study 

we used the following parameters of the nano-contact device Fig.1 : exchange constant Aex = 

1.4×10–6 erg/cm , saturation magnetization 4πM0 = 8 kG, lateral sizes of the PL  LT ×LT = 3μm × 

3μm and thickness dPL = 70 nm, lateral sizes of the FL LT ×W =3μm × 69 nm and thickness dFL = 3 

nm (the corresponding integration cell is a cube with a side of 3 nm), Gilbert damping constant 

αG=0.02, spin-torque efficiency ε = 0.3. It was assumed that the current-carrying region has a fixed 

width W = 69 nm along the y axis, while the x dimension ( nano-contact length L) is varied.  The 

current density was assumed to be uniform within the W×L area and zero outside. The strength of 

the external bias magnetic field He  was varied in the range  (8 – 20) kOe. 

 



IV.  Comparison between micromagnetic and analytic results and discussion 

    In the course of our micromagnetic study, first, we calculated the dependences of the bias current 

Ith and the spin wave frequency / 2g gf ω π= , both computed at the threshold of spin wave 

generation, as functions of  the external  bias magnetic field  He  for the nano-contact of the length 

L= 69 nm. The results of these micromagnetic calculations are presented in Fig.2a,b  as dots. In the 

same figures we present the results of numerical solution of the analytical model equations (6) as 

solid lines. 

    As one can see from Fig. 2, the dependences of the analytically calculated threshold current and 

generated frequency on the bias field have the same form as the micromagnetically calculated ones, 

but are shifted to the right by approximately 0.2 T. This shift is explained by the finite sizes of the 

magnetic waveguide in the simulations, which leads to finite demagnetization factors of the 

waveguide. As a result, the ferromagnetic resonance frequency (and, respectively, Gilbert damping 

which determines threshold current) is not described by the simple Eq. (4), but has more 

complicated form (see Eq. (14) below), which can be approximated by the shift of the bias field. 

  In addition, we note that the linear slope / 27.4  GHz/Tg ef H∂ ∂  of the micromagnetically 

calculated curve ( )g ef f H=  presented in Fig.2b agrees quite well with the value of the 

gyromagnetic ratio γ   for electron spin  which follows from (13),(14). 

 

 



 

Fig.2. Dependence of the current  Ith  (a)  and generation frequency / 2g gf ω π=  (b), computed at the threshold, on the 

magnitude of the bias magnetic field  He .  Dots: numerical simulation, solid lines: analytic theory from Eqs.(6). 

 

      Then, we calculated the dependence of the generation frequency  / 2g gf ω π=  on the applied 

bias current at the fixed magnitude of the bias magnetic field  He  = 10 kOe  and  fixed nano-contact 

length  L = 69 nm  from the micromagnetic simulations in (1) and from the numerical solution of 

the model equation (3). The results of these calculations are presented in Fig.3.  It is clear that the 

generation frequency increases with current, like it should in the case of a perpendicular 

magnetization of the free layer, and demonstrates nonlinear behavior at larger current magnitudes. 

Micromagnetic results (dots) show that the excitation of spin waves by direct current exhibits no 

hysteresis. It is also clear from Fig.3 that micromagnetic results (dots) reproduce well the results of 

the numerical solution of the model equation (3) (solid line). 



 

Fig.3. Dependence of the generated frequency   / 2g gf ω π=    on the  applied current  I  at the fixed value of  the bias 

magnetic field of He = 10 kOe  and fixed length  L = 69 nm  of the nano-contact.  

Dots: micromagnetic simulation, solid line: numerical solution of the model equation (3). 

 

       It is important to note that the micromagnetically calculated generation frequency  fg  can be 

well described by the classical expression for the frequency of exchange-dominated spin waves:  

2
0g p numDkω ω= +        (13) 

where 0 pω  is the FMR frequency of the perpendicularly magnetized FL waveguide (taken as a 

rectangular prism) and knum=2π/ λnum  is the numerically calculated wavenumber ( where λnum is the 

wavelength of the generated spin wave). The FMR frequency in the waveguide 0 0pω ω    is 

computed  from the expression [see Eq.(2) in Ref. 26]: 

                               ( )( )0 0 0( )4 ( )4p e xx zz e yy zzH N N M H N N Mω γ π π= + − + −         ,               (14) 

where Nii  ( i = x,y,z)  are  the demagnetizing factors of a rectangular prism. The numerical values of 

the prism demagnetization factors  Nxx=0.0014 and Nyy=0.0638 are much smaller than that of 

Nzz=0.9348, so Eq.(14) gives a result 
0 0 / 2p pf ω π= = 7.76 GHz  that is very close numerically to 

the result obtained from the simple approximate expression (4).   



      Also, if for each value of the bias direct current I we determine from the micromagnetic 

simulations the wavenumber  numk  of a spin wave excited in the waveguide nano-contact and, then, 

use these values in Eq.(13), we get the frequencies of generated spin waves that agree very well (the 

difference is less than 300 MHz) with the frequencies obtained from both the micromagnetic 

simulations and the numerical solution of the model equation (3). 

          Our micromagnetic simulations also allow us to determine the spatial profile of the excited 

spin wave mode and to confirm the propagating character of this mode. For example, the 

micromagnetically simulated profile of the spin-wave power P (proportional to the square of the 

envelope amplitude A (P~A2) of the y-component of the normalized magnetization) as  a function of 

the distance r  from the nano-contact  center  is shown in Fig.4 by dots.  

 

Fig.4. Dependence of the normalized spin-wave power (P/P0) on the distance r from the center of a nano-contact at the 

applied current I = 4 mA and bias magnetic field μ0He = 1 T. The dotted line is the result of micromagnetic simulations, 

while the solid line corresponds to an exponential fit  0( ) / exp( 2 / )P r P r ρ= −  with ρ = 455 nm . The inset shows the 

same graph as in the main panel with the normalized power expressed in a  logarithmic scale. 

 

It is clear from Fig.4 (and in particular by the log-scale inset), the normalized power of the excited 

spin wave mode exhibits an exponential decay which is well described by the expression  

2
0 0( ) / ( / ) exp( 2 / )P r P A A r ρ= = −  where the characteristic spin wave “propagation distance” ρ   



(distance at which the spin wave amplitude A reduces e-times) characterizing the spin wave 

propagation losses in the Py waveguide  is determined from the comparison with the micromagnetic 

results to be ρ = 455 nm (see Fig.4).  The propagation distance ρ  can be also approximately 

calculated quasi-analytically, assuming that it is equal to the ratio between the spin wave group 

velocity vg and the effective damping rate Γ  and determining the spin wave wave number  numk  

from micromagnetic simulations: 

2
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/ 2
( )

g g num

G g G p num

v k Dk
Dk

ω
ρ

α ω α ω
∂ ∂

= = =
Γ +

     (15) 

Using the analytical expression 2
04 exD Mγ π λ= =7740 GHz·nm2 for the exchange stiffness, Eq.(14) 

for the FMR frequency 0 / 2pω π =10.5 GHz, nominal value αG = 0.02  for the Gilbert damping 

constant, and micromagnetically calculated at I =4 mA (as in Fig.4) value of the spin wave 

wavenumber numk  = 0.042 nm-1 (λnum=150 nm) one obtains the value 490 nmρ , which  turns out 

to be in a reasonably good agreement with the above presented micromagnetic result. 

            The most interesting and non-trivial result obtained in our micromagnetic simulations 

performed for the quasi-one-dimensional waveguide geometry is the confirmation of the non-

monotonic dependence of the threshold current Ith on the nano-contact length L, for a fixed  value of 

the bias magnetic field (He = 10 kOe).  It follows from the above developed analytic theory (6)-(12) 

that the dependence of the bias current Ith on the nano-contact length L should have a minimum  

value min ~th cI I  near the point  where cL  (see (11), (12)), and qualitatively different behaviour 

of  Ith  below and above this point (see (9) and (10)). All these conclusions of the analytic theory 

were fully confirmed in out micromagnetic simulations, the results of which are presented in  Fig.5. 

Indeed, Fig.5 demonstrates a pronounced minimum in the threshold current  at the nano-contact 

length  L = 102 nm  which is very close to the analytically predicted value  opt cL  = 105 nm  

following from  (7).  

 



                        

Fig.5. Dependence (double logarithmic scale) of the threshold current Ith on the nano-contact length  L 

micromagnetically calculated (dots)  for the fixed value of the  bias magnetic field  He = 10 kOe. The solid line is the 

guide for the eye. The dashed lines are the asymptotic theoretical dependences calculated using  Eq. (10) for cL < and 

Eq.(9) for cL >   ( 105c = nm ). 

 

Also the micromagnetically calculated behaviour of the threshold current in the regions L << Lopt  

and L >> Lopt  agrees remarkably  well  with the analytic predictions, Eqs. (10)  and (9), respectively 

(see dashed lines in Fig.5).   

        There is another non-trivial feature of the considered quasi-one-dimensional geometry of the 

free layer Fig.1.  In contrast with the case of a finite-radius nano-contact in a two-dimensional free 

layer, where the wavelength of the spin wave excited at the threshold is determined exclusively by 

the nano-contact radius Rc ( 4.5th cRλ ∼ ) [7], in the case of a short (L < Lopt ) nano-contact in a 

waveguide the wavelength λ  (or the wave number k ) of the excited spin wave can be also 

controlled by varying the strength of the bias magnetic field He  (see Eqs. (10). This interesting 

feature analytically predicted in (10) provides an additional degree of freedom to manipulate the 

properties of the excited spin waves. This theoretical prediction is also confirmed in our 

micromagnetic simulations (see Fig.6) performed for  a “short” (L < Lopt ) nano-contact of the length 



L = 69 nm .  It is clear from Fig.6 that the micromagnetically calculated  wavelength of the spin 

wave excited at the threshold (dots in Fig.6) can be reduced two times when the bias magnetic field 

He  is increased from 10 kOe to 20 kOe. The analytic result from (10) (shown as a solid line in 

Fig.6) is in a reasonably good agreement with the simulation results. 

 

Fig.6. Dependence of the spin wave wavelength λth  at the excitation threshold on the magnitude of the bias magnetic 

field He  calculated for the  “short” (L < Lopt ) nano-contact nano-contact of the length L = 69 nm  micromagnetically 

(dots) and analytically from (10) (solid line). 

 

V. Conclusions 

In conclusion, our analytic and micromagnetic study of the spin-transfer driven excitation of spin 

wave modes in a quasi-one-dimensional magnetic waveguide demonstrated two new features of this 

geometry in comparison with the traditional two-dimensional nano-contact geometry [7]: (i) the 

dependence of the threshold bias current on the nano-contact length is non-monotonous and has a 

minimum defined by Eqs. (11), (12); (ii) for  “short” (L < Lopt ) nano-contacts it is possible to 

control the wavelength of the radiated spin wave by varying the magnitude of the bias magnetic 

field. This last feature might be very important for the experimental study of the spin wave 

propagation in magnetic waveguides as by the variation of the bias field the spin wave wavelength 

could be brought to the region λ >300 nm where the wave process is accessible for the observation 



by the micro-focus Brillouin light scattering [8,9].  The same feature might also be useful for the 

development of the synchronized linear arrays of nano-contact STNOs, as by variation of the 

wavelength  one can also vary the spin wave group velocity (and , therefore, the spin wave 

propagation distance  ρ  (15). That way by varying the bias magnetic field He    it would be possible 

to vary the effective coupling between the nano-contact STNO and, thus, influence the 

synchronization properties of the linear STNO array. 
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