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We investigate the effects of geometric and material non-linearities introduced by deformation on
the linear dynamic response of two dimensional phononic crystals. Our analysis not only shows that
deformation can be effectively used to tune the bandgaps and the directionality of the propagating
waves, but also reveals how geometric and material non-linearities contribute to the tunable response
of phononic crystals. Our numerical study provides a better understanding of the tunable response
of phononic crystals and opens avenues for the design of systems with optimized properties and
enhanced tunability.
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Phononic crystals (i.e. periodic structures com-
posed of multiple materials with contrast in mechanical
properties) have attracted considerable interest due to
their ability to tailor the propagation of waves through
bandgaps, frequency ranges in which the propagation of
sound and elastic waves is forbidden1–5. This funda-
mental property has been recently exploited to design
waveguides6, frequency modulators7, noise-reduction
devices8 and vibration isolators9. It has also been re-
cognized that phononic crystals are characterized by dir-
ectional behavior that can be exploited to steer or redir-
ect waves in specific directions3,10,11. The directionality
is determined by the level of anisotropy of the structure
and can be fully controlled through proper arrangement
of the material distribution at the unit cell level12. Fur-
thermore, many previous studies have focused on the
high frequency propagation directionality of phononic
crystals13–15, while the strongly directional behavior in
the low frequency/long wavelength regime is not fully ex-
plored despite important potential applications in broad-
band situations12.

Motivated by technological applications, a number of
studies investigated the effects of both material proper-
ties (i.e. contrast in density, Young’s modulus and Pois-
son’s ratio)16,17 and geometry (i.e. volume fraction and
topology)18,19 on the characteristics of phononic crystals.
However, in all these investigations the bandgaps and the
directionality of the propagating waves are limited to spe-
cific values that cannot be tuned after the manufacturing
process. New strategies are required to design phononic
crystals with adaptive properties that can be reversibly
tuned.

It has been recently demonstrated that mechanical
loading can be used as a robust mechanism for in-situ
tunability of soft and highly deformable 2D phononic
crystals5. It was shown that both the position and width
of the bandgap are strongly affected by the applied
deformation5,20,21. However, the effect of deformation
on the directionality of the propagating waves in the
low frequency regime (i.e. the first longitudinal and

shear modes) has never been studied. Finally, although
it is evident that the applied deformation induces both
strong geometric and material non-linearities5, it is not
clear how these two factors contribute to the tunability
of the response. To shed light on these important
points. Here we investigate not only the effect of the
applied deformation on the low frequency directionality
of the propagating waves, but also the contributions of
geometric and material non-linearities to the tunable re-
sponse of soft phononic crystals. The numerical analyses
performed in this study offer a better understanding of
the tunable response of phononic crystals and provide
guidelines for the design of structures with optimized
properties and enhanced tunability.

Here, we focus on two dimensional (2D) soft phononic
crystals. Although our analysis is general and can be
applied to any architecture, in this study we present
numerical results for a square array of circular holes
characterized by an initial void volume fraction V0 = 60%
(Fig. 1A). Here, V0 is defined as the volume of the voids
divided by the total volume of the phononic crystal. The

Figure 1: Geometry reorganization induced by instability in
a soft phononic crystal comprising a square array of circu-
lar holes subjected to equibiaxial compression. The dashed
square of size a × a in (A) indicates the primitive unit cell
in the undeformed configuration. The solid square in (B)
represents the enlarged representative volume element in the
deformed configuration.
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non-linear finite-element code ABAQUS/STANDARD
is used to deform the structures as well as to investigate
the propagation of small-amplitude elastic waves in the
pre-deformed phononic crystal. Detailed description of
the general formulation and the numerical simulations
are provided in the Supplementary Materials22.

For all the analyses, 2D finite element models are
constructed and the accuracy of the mesh is ascer-
tained through a mesh refinement study. We focus on
a phononic crystal made of an almost-incompressible
elastomeric material whose response is captured by a
Gent model23 characterized by the following strain en-
ergy density function:
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where I1 = trace
(
FTF

)
, J = det(F) , F denotes the

deformation gradient, G and K are the initial shear and
bulk moduli and Jm denotes a material constant related
to the strain at saturation. We note that the strain
energy tends to infinity as I1 − 3 approaches Jm.

Figure 2: Uniaxial stress-stretch response of a nearly incom-
pressible Gent material with Jm = 0.5, 2.0 and ∞ (the last
corresponding to a Neo-Hookean material).

Here, we consider an elastomeric material with
G = 1.08 × 106 N/m2, K = 2.0 × 109 N/m2(Poissson’s
ratio ν = 0.4997) and ρ0 = 1050 kg/m3, so that in the
undeformed configuration the elastic wave speeds for
shear and pressure waves in the material are cT = 32.07
m/s and cL = 1381 m/s, respectively. The effects of
material non-linearities are investigated by considering
three different values of Jm, Jm = 0.5, 2.0, ∞. Note
that, at the limit of Jm → ∞, the strain energy
density function (1) reduces to that of a Neo-Hookean
material22,24. In Fig. 2 the material response under uni-
axial loading is reported in terms of the nominal stress
S, normalized by G, versus the uni-axial deformation

stretch. The results clearly indicate that smaller values
of Jm introduce stronger non-linearities in the material
behavior.

It is well known that, under compression, the geomet-
ric pattern of soft phononic crystals can suddenly change
due to either: (a) microscopic instabilities with a spa-
tial periodicity comparable to the size of the unit cell; or
(b) macroscopic instabilities with a spatial periodicity
much larger than the size of the unit cell25–28. Note
that a detailed description of both micro- and macro-
scopic instabilities and the numerical procedure to cal-
culate the onset of each case is provided in the Supple-
mentary Materials22. In this study, we investigate both
instabilities of the phononic crystal under equi-biaxial
compression, so that the macroscopic deformation gradi-
ent F̄ is given by

F̄ = λ (e1 ⊗ e1 + e2 ⊗ e2) , (2)

where λ denotes the macroscopically applied stretch
and e1 and e1 are the basis vectors of two-dimensional
Cartesian coordinates. We note that the undeformed
configuration is characterized by λ = 1. Moreover, λ > 1
and λ < 1 represent the tension and compression load,
respectively.

For the considered periodic structure, the onsets
of both microscopic and macroscopic instabilities are
detected by studying the response of a single unit cell
(indicated by the dashed red square in Fig. 1A) along
the loading path (2) by decreasing λ from unity. For
all the cases considered here (i.e. Jm = 0.5, 2.0, ∞) a
microscopic instability is detected at λMicro

cr = 0.984,
while the onset of macroscopic instability occurs at
λMacro
cr = 0.961. Therefore, microscopic instabilities are

always critical in compression, leading to an enlarged

Figure 3: Macroscopic nominal stress vs stretch curves for the
square array of circular holes in a Gent matrix. The depar-
ture from linearity is the result of an elastic instability that
triggers the pattern transformation. The Von Mises stress
distributions in the phononic crystals at λ = 0.8 are shown
on the right for Jm = 0.5, 2.0 and ∞.
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representative volume element of 2 × 2 primitive unit
cells and to the formation of a pattern of alternating,
mutually orthogonal and elongated holes (Fig. 1B).

The post-buckling response of the phononic crystal
is then simulated by introducing small random imper-
fections in the initial geometry22. In Fig. 3 we present
the static response of the phononic crystal for the three
considered values of Jm in terms of the macroscopically
effective nominal stress S̄ versus the applied stretch
λ. Although the onset of instability is found not to be
affected by Jm, we can clearly see that Jm has a strong
influence on the postbuckling response of the structure.

To highlight the effect of the applied deformation
on the propagation of elastic waves, we present in Fig.
4 the band structure and directionality diagrams of a
phononic crystal made of a Gent material with Jm =
0.5 in both the undeformed (λ = 1.0, Fig. 4A) and
deformed (λ = 0.8, Fig. 4B) configurations.

Figs. 4C and 4D show the band diagrams of the
undeformed and deformed configurations, respectively.
The dimensionless frequency f̃ = ωa/(2πcT ), with a
denoting the characteristic size of the unit cell in the
undeformed configuration (Fig. 1A), is plotted as a
function of the wave vector in the reciprocal space22.
In the undeformed configuration, the periodic structure
features a bandgap at f̃ = 0.61 ∼ 0.82. It is clear from
Fig. 4D that the compression significantly alters the
band structure. The pre-existing bandgap is shifted and
widened to f̃ = 0.84 ∼ 1.29. In addition, a new bandgap
that does not exist in the reference state is opened at
f̃ = 0.50 ∼ 0.64.

To investigate the effect of deformation on the prefer-
ential directions of wave propagation, we focus on the
low frequency range and calculate both phase velocity
and group velocity for all directions of propagation at
f̃ = 0.05 (horizontal red line in Figs. 4C and 4D)22. In
Figs. 4E and 4F we report the phase velocity profiles and
in Figs. 4G and 4H the group velocity profiles for the
undeformed and deformed configurations, respectively.
In these plots all the wave velocities are normalized, so
that the magnitude of maximum velocity, vmax, of any
mode in any configuration is unity. It is important to
note that the wave directionality in the low frequency
range cannot be fully captured just by inspecting the
band diagrams12. In fact, although the dispersion curves
at low frequency resemble straight lines, which seem to
imply linear dispersion relations, the approximation of
an effective non-dispersive media is not applicable here,
as phase and group velocities may exhibit very different
directional behaviors12.

We start by noting that, in the undeformed config-
uration, the phase velocity shows a preferred direction
of propagation at θ = 45o for mode 1 (shear-dominated

Figure 4: Dynamic response of the phononic crystal in the un-
deformed (left column, λ = 1.0) and deformed (right column,
λ = 0.8) configuration. The effects of deformation on the
bandgaps (B and C) and directionality of phase (D and E)
and group (F and G) velocities are investigated.

mode) and at θ = 0o for mode 2 (pressure-dominated
mode) (Fig. 4E). Moreover, the group velocity in the un-
deformed configuration exhibits two preferred directions
at θ = 10o and 80o for mode 1 (Fig. 4G), whereas it does
not show a significant preferential direction of propaga-
tion for mode 2. Finally, we note that the loped pattern
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Figure 5: Effects of geometric non-linearities on (A) bandgaps and directionality of (B) mode 1 and (C) mode 2.

in Fig. 4G entails two different group velocities in certain
directions (a feature that cannot be directly observed in
the standard dispersion relation in Fig. 4C). In general,
the group velocity, which is defined as the gradient of the
dispersion surface22, can be at a different direction than
the direction of the wave vector. Hence, two wave vectors
of different directions may result in two group velocities
of different magnitudes in the same direction.

In contrast, the deformed configuration does not
exhibit any strong preference in directions for both
phase and group velocities in both modes (Figs. 4F and
4H), so that it behaves as a nearly-isotropic medium.
These results clearly indicate that the deformation have
a significant effect on the wave directionality. Finally,
we observe that the applied deformation has a more
pronounced effect on the phase and group velocity
profiles of mode 1 (shear-dominated mode), whereas the
directionality of mode 2 (pressure-dominated mode) is
only marginally affected.

The results presented above clearly show that the
applied deformation strongly affects not only the static,
but also the dynamic response of phononic crystals.
However, to design the next generation of tunable
phononic crystals that take full advantage of the
changes on the dynamic response induced by the applied
deformation, this mechanism needs to be thoroughly
understood. While it is well known that the applied
deformation introduces both geometric and material
non-linearities, it is not clear how these two effects
control the tunable dynamic response of the phononic
crystal. To gain knowledge on this front, we numerically
investigate the separate effects of (I) geometric and (II)
material non-linearities on both the bangaps and wave
directionality.

a. Geometric non-linearities. To evaluate the effect
of geometric non-linearities on the dynamic response of
the phononic crystal, we investigate the propagation of
elastic waves in a stress-free structure with the deformed
geometry (i.e. the shape of the structure is determined
by the post-buckling analysis). More specifically, we com-
press the structure up to a certain value of λ and then

set the all the components of the stress to zero before
performing the wave propagation analysis. Thus, the
inhomogeneous stress distribution is not taken into the
consideration when computing the dynamic response.

The evolution of the bandgaps as a function of λ is
shown in Fig. 5A. The change in geometry induced
by the applied deformation is found to shift and widen
the main bandgap and to generate two additional band
gaps, one higher and the other lower than the main
gap, which open at λ = 0.92 and λ = 0.88, respectively.
These deformation-induced bandgaps also shift and
widen for decreasing values of λ. Finally, we note that
these results are independent of Jm, since, in order to
investigate the geometric effects alone, we have neglected
the stress distribution in the deformed configuration
(note that the incremental response for an unstressed
Gent material is independent of Jm).

To describe the evolution of the directionality of
propagating waves, we define the anisotropy ratio:

η =
vmax

vmin
, (3)

where vmax and vmin are the maximum and minimum
wave velocities, respectively (see Fig. 4E). The trends
of η for both phase velocity and group velocity of
mode 1 (shear-dominated mode) and mode 2 (pressure-
dominated mode) as a function of λ are reported in Figs.
5B and 5C, respectively.

For mode 1, the anisotropy ratios of both the group
and phase velocity profiles (ηgroup and ηphase) rise from
the initial values up to a turning point, then to rapidly
decrease as function of λ and approach unity (Fig. 5B).
Note that the turning point at λ = 0.984 corresponds
to the onset of structural instability. Similar trends
are observed for mode 2 (Fig. 5C), but the changes
induced by deformation are less dramatic in this case.
In summary, the results from both modes show that the
geometric non-linearities induced by instability have a
significant effect on the wave directionality; They remove
the directional characteristics of both modes and make
the wave propagation more isotropic.
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Figure 6: Effects of material non-linearities on the bandgaps. Soft phononic crystals made of Gent materials with (A) Jm =∞,
(B) Jm = 2.0 and (C) Jm = 0.5 are investigated.

b. Material non-linearities It is apparent from Fig.
4B that deformation not only affects the geometry, but
also induces an inhomogeneous strain/stress distribution
within the phononic crystal. Substantial stress con-
centrations are developed during compression and they
strongly depend on the non-linear material response,
which is characterized by Jm (Fig. 3).

To investigate the effect of material non-linearities on
the propagation of elastic waves, we start by studying
the response of a phononic crystal made of a Neo-
Hookean material (i.e. Gent material with Jm = ∞).
The response of such material is weakly non-linear
and the stiffening effect induced by the applied de-
formation is negligible in this case. In Fig. 6A, we
report the evolution of the bandgaps as a function of
the applied deformation λ. Comparison between Figs.
5A and 6A reveals that the dynamic response of the
phononic crystal is not affected by the inhomogeneous
stress state. Therefore, for a phononic crystal made
of an Neo-Hookean elastomeric material, the geometric
non-linearities induced by the applied deformation fully
control the position and width of the bandgaps.

Next, we investigate the evolution of the bandgaps
for phononic crystals made of elastomers with stronger
material non-linearity. As shown in Fig. 2, smaller
values of Jm introduce stronger material non-linearities
under the applied deformation. Here, we comparatively
study the cases of phononic crystals made of Gent
materials with Jm = 2.0 and 0.5 (Figs. 6B and 6C). We
notice that in both cases the bandgaps are significantly
affected by material non-linearities when λ < 0.9. We
find that smaller values of Jm provide a larger range of
tunability for the bandgaps. To better quantify the effect
of material non-linearity on the bandgap tunability, we
divide the wave frequencies into three categories: (i)
frequencies that are always in the propagating band
(e.g. f̃ = 0.55, continuous horizontal line in Fig. 6A);
(ii) frequencies that are always in the bandgap (e.g.

f̃ = 0.75, dashed horizontal line in Fig. 6A); and (iii)
frequencies that can be switched on / off by the applied

deformation (e.g. f̃ = 1.05, dotted horizontal line in Fig.
6A). We start by noting that all the three frequencies
highlighted in Fig. 6A turn into category (iii) when
Jm = 0.5 (see dotted horizontal lines in Fig. 6C). In
fact, for Jm = 0.5, the frequencies in the entire region
f̃ = 0.49 ∼ 1.28 can be switched on / off by the applied
deformation. Therefore, since large regions of type
(iii) frequencies are desirable for the design of a highly
tunable system, our results indicate that phononic
crystals made of materials with stronger non-linearities
can offer enhanced bandgap tunability.

In addition, our analysis also reveals that material non-
linearities do not affect the directionality of the propagat-
ing waves at low frequency. The velocity profiles ob-
tained for phononic crystals made of Gent material with
Jm = ∞, 2.0 and 0.5 are found to be the same as those
shown in Figs. 5B and 5C. The same behavior is also
observed for the case of triangular and trihexagonal ar-
rays of circular holes (see Supplementary Materials22),
suggesting that only changes in geometry can be effect-
ively used to tune the directional characteristics of the
lower bands. This is due to the fact that the wavelength
of the low frequency propagating modes are very long
compared with the length scale of the local variations of
stress field.

To further study the effect of the material parameter
Jm on the bandgaps, we calculate the relative size of the
band-gaps as the ratio between gap width and the mid-
gap position,

∆ωrelative =
ωupper − ωlower

(ωupper + ωlower)/2
, (4)

where ωupper and ωlower are the frequencies of upper and
lower edge limits of a bandgap, respectively. It has been
previously shown that the relative size defined above is
a important design parameter, and that a large relative
size of the bandgap is preferable for many applications4.
The evolution of ∆ωrelative as a function of the applied
deformation is reported in Figs. 7A, B and C for the
first, second and third bandgap, respectively. The
responses of phononic crystals made of Gent material
with Jm = 0.5, 1.0, 2.0, 5.0, 10.0 and ∞ are considered.
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Figure 7: Comparison of the change of relative bandgaps during deformation

For all different materials considered here and for all
three bandgaps ∆ωrelative is found first to increase as
a function of the applied deformation, then to reach a
maximum and finally either to plateau or slightly de-
crease. For instance, in the case of Jm = 0.5, ∆ωrelative

reaches the maximum value at λ = 0.83, 0.94 and 0.91
for the first, second and third bandgaps, respectively. We
note that the decrease of ∆ωrelative after its maximum
is due to the fact that the position shifting effect is
stronger than the widening effect. That is, in Eqn. (4),
the increase in the denominator becomes faster than
the increase in the numerator. As a result, although
the bandgap keeps widening upon further deformation,
∆ωrelative diminishes. This feature described above
becomes more pronounced when the applied deformation
is large and the constituting material is highly non-linear.

To summarize, we use numerical simulations to study
the propagation of small-amplitude elastic waves in
highly deformed phononic crystals and investigate the
effect of deformation on bandgaps and directionality
of propagating waves. The contributions of geometric
and material non-linearities to the tunable response
of phononic crystals are revealed. The bandgaps are
found to be affected both by geometric and material
non-linearities, while the directional preferences of
the wave modes in the first two bands are shown to
be sensitive only to changes in geometry. Enhanced
tunability of the bandgaps is found for phononic crystals
made of materials with stronger non-linear behavior.
Finally, the changes in geometry introduced by the
applied deformation gradually remove the directional
characteristics of the lowest two propagation modes,
making the wave propagation more isotropic. The
results presented in this paper provide useful guidelines
for the design of tunable phononic devices.
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