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Time-resolved x-ray diffraction is a very powerful tool for visualizing transient one-dimensional
crystalline strains, ranging from crystal growth to shockwave production. In this work, we use
picosecond x-ray diffraction to visualize transient strain formation from nanometer scaled laser
excited gold films into crystalline substrates. We show that there is a direct correspondence between
the measured time-resolved x-ray diffraction pattern and the transient acoustic wave, providing a
straightforward method to make a reconstruction of the transient strain. In addition, we discuss
real-world experimental constraints that place limits on the validity of the reconstructed transient
acoustic wave.

I. INTRODUCTION

Understanding the dynamics driven by intense opti-
cal radiation is of fundamental importance to a diverse
set of fields, ranging from structural phase transitions1–4

to biophysics5,6. In solid state systems, for example,
upon ultrafast optical excitation, the resultant impul-
sive surface heating can produce a transient longitudi-
nal acoustic pulse. The central wavelength of this strain
pulse can be as small as a few nanometers, providing a
method to directly image of nanometer scale structures
and biomaterials7,8. Direct comparisons of theoretical
models with experiments can lead to an understanding
of electron-phonon interactions and thermal properties of
materials1,9–16.
Experimental studies of ultrafast dynamics are of-

ten based upon stroboscopic pump-probe techniques,
whereby a fast optical pump pulse excites the mate-
rial, and a separate fast probe pulse measures the in-
duced distortion. While very successful, traditional opti-
cal pump-probe spectroscopies can only measure changes
in either the material’s dielectric constant and/or elec-
tronic resonances, making an atomic scale reconstruc-
tion of the material strain difficult. In contrast, due to
its short wavelength, hard x-ray radiation can directly
probe atomic scale structure. Integrating stroboscopic
pump-probe techniques with classic x-ray Bragg diffrac-
tion has introduced a new spectroscopic tool for measur-
ing transient structural deformations on the atomic scale,
time-resolved x-ray diffraction (TRXRD).
With the development of high-brightness, short pulse,

hard x-ray sources in the last 25 years, TRXRD has
rapidly grown to study a whole range of laser initiated
structural dynamics1,3,5,11,12,16–23. Like traditional opti-
cal pump-probe techniques, TRXRD typically utilizes an
intense optical pump pulse to rapidly initiate structural
change through the rapid heating of the material. Fol-
lowing photo excitation, a short x-ray pulse diffracts from
the excited sample to take a quasi-instantaneous image
of the atomic scale structure. The ultrafast dynamics are
revealed by adjusting the time-delay between the optical
pulse and the diffracted x-ray beam, creating a series of
atomic scale structural images of the excited system.
In this work, we use TRXRD to study the formation

of ultrafast longitudinal acoustic pulses in crystalline sys-
tems. Transient acoustic pulse are generated by the ul-
trafast excitation of thin gold films on a crystalline Ger-
manium substrate. Previously we demonstrated that
the maximum wave-vector of the photogenerated acous-
tic pulse is determined by the film thickness24. Here we
extend that work by studying the acoustic pulse forma-
tion in a variety of film thicknesses and directly compar-
ing the TRXRD patterns to numerical dynamical diffrac-
tion calculations. In addition, we show that, in principle,
it is possible to make a one-to-one correspondence be-
tween the experimental TRXRD patterns and the spatio-
temporal shape of a longitudinal pulse.

II. TIME-RESOLVED X-RAY DIFFRACTION :

EXPERIMENT

For time-domain x-ray diffraction studies we utilize a
table-top picosecond x-ray source to measure the ultra-
fast lattice dynamics induced by intense optical radiation
on photo excited metallic films on a crystalline substrate.
By modifying the thickness of the metallic film we can
choose the maximum acoustic wave-vector that is gen-
erated. In the following section, we describe the exper-
imental setup in detail and the resulting experimental
measurements of the acoustic pulse generation.

A. Experimental Setup

To measure the spatio-temporal shape of a ultrafast
longitudinal acoustic pulse, we utilize a home-built fem-
tosecond laser-plasma x-ray source (see figure 1). The
optical pump and hard x-ray probe beams were derived
from a 1 kHz Ti:sapphire chirped pulsed regenerative am-
plifier (Spectra Physics, Spitfire). Prior to final pulse
compression, two optical elements were added to the
amplifier system; an additional Pockel’s cell providing
pre-pulse contrast of greater than 105:1 and an optical
beam splitter, such that ∼0.3 mJ of the chirped optical
light was used as a seed for a home-built cryogenically
cooled multi-pass amplifier. The residual chirped ampli-
fied beam was compressed to ∼40 fs, and was used for
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FIG. 1. Experimental geometry for the laser-pump/x-ray
probe setup. Inset: Prototypical TRXRD of laser excited
of an uncoated Ge (111) crystal.
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FIG. 2. (a) Vertical summation of (b) Measured x-ray diffrac-
tion from Ge (111) single crystal. (c) Measured x-ray focus
from the polycapillary optic (d) Typical hard x-ray spectrum
from the laser plasma source.

the optical excitation.

The picosecond x-ray probe pulse was generated by the
compressed output of the multi-pass amplifier focused
onto a solid copper target. The cryogenically cooled
multi-pass Ti:sapphire amplifier was pumped by 1kHz,
20 mJ, frequency doubled Nd:YLF Q-switched laser. Af-

ter compression, the four-pass amplifier achieved a final
pulse energy of∼2.9 mJ and a pulse length of∼50 fs. The
generation of the x-ray pulse was achieved by the focusing
of the optical pulse using an f-#15 optic, onto a moving
copper wire housed in a lead lined vacuum chamber held
at a base pressure of less than 100 mTorr. To shield
the optical elements from the copper debris generated
in the laser-plasma formation, a thin (∼25 µm) moving
cellophane sheet was placed in front of the copper tar-
get. X-ray spectral analysis of generated x-ray yield was
performed by a single channel silicon x-ray spectrometer
(Amptek X-123), and revealed that the total integrated
hard x-ray flux was in excess of 1011 hard x-ray photons
per second, of which ∼30% was in the copper k-alpha
lines (see figure 2d). Previously published work done on
the THz emission from this target, demonstrated that the
emitted radiation is on order of 1 ps25, consistent with
similar x-ray sources3.

To increase the x-ray flux at the sample, a polycapil-
lary x-ray optic (XOS systems) with an input focal length
of 25 mm and output focal length of 45 cm collected the
hard x-ray photons and focused them onto the target of
interest. The resultant quasi-collimated x-ray beam (an-
gular divergence of ∼0.25◦) produced a ∼1 mm diameter
focus at the sample consisting of a hard-x-ray photon flux
of 106 photons/sec (see figure 2c). The lens introduced
minimal change in the optical path length, thereby pro-
ducing negligible temporal dispersion on the x-ray pulse.
To increase the angular resolution of the diffraction ex-
periment, 100 µm wide tungsten slits were inserted prior
to the sample.

Following Bragg diffraction from the sample of interest,
the x-ray flux was collected by a free standing, cryogeni-
cally cooled, direct detection x-ray CCD camera (Prince-
ton Instruments) placed approximately 50 cm from the
sample. The combination of the tungsten slits, CCD
pixel size, and distance from the sample resulted in an
angular resolution of ∼5 mdeg , sufficient to accurately
measure the copper k-alpha lines (see figure 2a, b). An-
gular calibration of the camera was determined by the
measured location of the spin split copper k-alpha lines
from an unexcited Ge (111) crystal. Several images (>4)
were taken at each time delay to remove the effects of
long term drift and changes in the optical intensity at
the copper wire due to the moving cellophane sheet.

Experiments were performed on a series of gold coated
Ge (111) crystals, with film thicknesses ranging from 50
nm to 270 nm. 50±5 nm and 100±10 nm gold films were
grown on 0.5 mm thick undoped Ge (111) substrates by
magnetron-sputtering. ∼270 nm Gold film was deposited
onto a similar Ge substrate by utilizing KAuCl4 and hy-
drofluoric acid (HF) to grow a “quasi-single-crystalline”
gold film26. The thickness of this film was determined by
SEM cross section viewing (see figure 3b). The samples
were excited by the ultrafast laser after frequency dou-
bling to 400 nm in a 100 µm thick β-barium borate crys-
tal. The optical sample was excited by both the residual
800 nm and 400 nm light resulting in a total incident
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FIG. 3. (a) TRXRD pattern of Au (111) from the 270 nm
gold film. Dashed line is the location of the centroid of the
measured diffraction peak. (Note: the hyperfine-spin splitting
of the copper kα radiation cannot be observed due to the
natural width of the Au (111) diffraction peak. ) (b) SEM
of cross section of gold film. (c) Measured x-ray diffraction
rocking curves at a laser/x-ray time delay of -15 ps (blue), +20
ps (red) and +650 ps (black). (d) Time-resolved angular shift
(blue) of Au (111) and the inferred temperature rise (red).

optical fluence of ∼10 mJ/cm2. As the 800 and 400 nm
light has approximately same optical absorption depth
(∼15 nm), we assume the photo-initiated carrier dynam-
ics, and therefore the strain dynamics, are identical for
both radiation fields. Additional measurements pumping
solely with 800nm radiation (not shown) did not make
significant changes to the diffraction patterns. Since all
these films are significantly thicker than the optical pen-
etration depth, the resulting strain in all the three Ge
substrates are due entirely to the dynamics in the gold
film. To determine the temporal and spatial overlap of
all three samples, a TRXRD experiment from an 800 nm
pumped uncoated Ge (111) crystal was performed (see
figure 1 inset).

B. Experimental Results

Laser induced carrier dynamics in the gold film were
characterized by a TRXRD experiment. In particular
the temporal evolution of the Au (111) diffraction peak
from the 270 nm gold film was measured (see figure 3).
Upon ultrafast excitation, a shift in the diffraction peak
to lower angles is clearly observed. Fitting the x-ray
diffraction peaks to a series of gaussian curves, we deter-
mined that the gold lattice has expanded by∼0.1% in un-
der 10 ps, consistent with previously published results16.
Using the accepted value of the lattice expansion coeffi-
cient of bulk gold (1.4× 10−5 K−1), the resulting lattice

expansion indicates that the gold film has increased in
temperature by ∼100 K. At intermediate time delays (10
ps< ∆T <100 ps), the location of the gold diffraction
peak changes minimally, and by 650 ps, the peak has
returned to its pre-pumped position indicating the cool-
ing process takes on order of 500 ps. If we assume the
diffusion of hot electrons is much faster than the electron-
phonon coupling time of the system and that the laser-
generated strain is spatially homogeneous in the film, an
optical fluence of 10 mJ

cm2 will produce a local tempera-
ture rise in the gold film of ∼100 K, consistent with the
measured angular shift of Au (111) peak.

Following the Gold film experiments, we proceeded to
measure the TRXRD patterns of the photoexcited gold
coated Ge (111) crystals. In Figure 4, differential diffrac-
tion intensity of x-ray Bragg diffraction patterns from Ge
(111) substrates are shown. The x-ray diffraction inten-
sity is normalized by the intensity of the Cu-Kα1 diffrac-
tion peak (angular location θb). To reduce the pixel noise,
the rocking curves, the data is convolved with a two-
dimensional Gaussian function of comprised of a tempo-
ral and angular widths of 5 ps and 7 mdeg respectively.
For comparison, we also include the differential diffrac-
tion intensity of an uncoated Ge (111) crystal (figure 4a).

Upon inspection, there are several distinct differences
between the coated and uncoated samples. The un-
coated sample demonstrates an almost universal increase
in diffraction efficiency for all angles (indicating the gen-
eration of additional sideband components) as well as a
global peak shift to lower diffraction angles (which is in-
dicative of ‘static’ surface heating). However, at early
time delays, ∆T < 50 ps, each of the coated samples
display a reduction in diffraction intensity on the nega-
tive sidebands, indicating a destructive interference be-
tween the strained lattice and the unstrained lattice. The
dip in diffraction efficiency is consistent with the gener-
ation of a localized longitudinal acoustic pulse in the Ge
substrate has the compression layer leading the expan-
sion layer24. The uncoated Ge sample doesn’t show this
phenomena due to the rapid electron plasma diffusion
in the Ge crystal, which generates a dramatically spa-
tially broadened acoustic pulse that propagates into the
crystalline substrate15,27. In addition, we observe a sam-
ple dependent time delay in the dip of the diffraction
efficiency. This temporal shift is likely due to the acous-
tic wave propagation through the varying thickness gold
films prior to the transmission to the Ge substrate.

For both the 50 nm and 100 nm gold film coated Ge
crystals, positive diffraction sidebands are observed im-
mediately after laser excitation, where the maximum an-
gular shifts appear at ∼30 ps and ∼53 ps respectively.
Following the positive sidebands, the maximum negative
angular shift from 50 nm gold film, ∼50 mdeg, is observed
at ∼66 ps while negative sidebands up to ∼25 mdeg are
apparent at ∼83 ps for the 100 nm film. The temporal
shift between the generation of positive and negative side-
bands demonstrates that the strain in the Ge substrate
is a bipolar acoustic pulse18,24. In addition, the differ-
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FIG. 4. Differential TRXRD measurements of gold coated Ge(111) crystals of various thicknesses. Left to right uncoated Ge,
50 nm, 100 nm, and 270 nm gold film. θb represents the Bragg angle for the undisturbed Ge(111) peak upon Cukα1 radiation.

ent maximum angular shifts of two samples, is consistent
with the generation of the maximum wave-vector gener-
ation being determined by the thickness of the metallic
film.
While the sidebands on the uncoated sample slowly

(>100 ps) return to their equilibrium positions, the 50
and 100 nm samples exhibit clear temporal modulations
in the diffraction intensity on both the positive and nega-
tive angles. The temporal oscillations are π phase shifted
across the diffraction peak. In the 50 nm sample, tempo-
ral oscillations with periods up to ∼20 ps are clearly seen,
while in the 100 nm sample oscillation periods of up to 40
ps are visible. Between the two diffraction peaks, a tem-
poral beat pattern is also observed due to the combina-
tion of positive and negative sidebands from the Kα1 and
Kα2 peaks respectively. Following the temporal oscilla-
tions, the 50 and 100 nm films show additional sidebands
on the positive diffraction angles that slowly recover over
a period of ∼1 ns. These observations are consistent
with a transient bipolar acoustic pulse traveling from the
metallic film into the crystalline substrate.
For the 270 nm coated sample, a diffraction peak shift

without any discernible temporal oscillation is seen. This
indicates that the oscillation period is too long to be
distinguished from the cooling process of the gold film.
However, we still observe a rapid positive shift in the
peak position at early time delays (<50 ps), indicating
the existence of a transient pressure front from the film
being exerted onto the Ge substrate.

III. STRAIN PULSE RECONSTRUCTION

While cursory inspection of the TRXRD patterns in-
dicate the generation of a bipolar acoustic pulse, to re-
trieve the spatio-temporal profile of the strain front we
need to directly compare the data with simulated strains.
This process is performed by the direct comparisons be-
tween the data and numerically reconstructed TRXRD

patterns for a given strain profile. However, this re-
construction is meaningless unless it is known that the
measured TRXRD pattern is unique to the strain. Be-
low we will demonstrate that, in principle, it is possible
to uniquely reconstruct a one-dimensional longitudinal
strain pulse from the time-resolved x-ray diffraction pat-
terns. We will also discuss the experimental limitations of
this reconstruction and the implications for time-resolved
x-ray Bragg diffraction.

A. One-Dimensional X-ray Diffraction

In a x-ray Bragg diffraction pattern, the magnitude
and location of scattered x-ray photons is the given by
the spatial Fourier transform of the crystalline lattice. In
particular, the structure factor of a crystal is represented
by:

F (~q) = D

∫

f(~r)e−i~q·~rdV (1)

where D is a proportionality constant, ~q = ~kh − ~ko is the

difference between the incoming ( ~ko) and outgoing ( ~kh)
x-ray photons, F (~q) is the crystalline structure factor in
the direction ~q, and f(~r) are the location of the lattice
planes28,29. For crystalline materials, the locations of
lattice planes can be represented as a Fourier sum of the
different structure factors:

f(~r) =
∑

m

Fmei
~Gm·~r (2)

where ~Gm is the reciprocal lattice vector of the mth

diffraction plane.
In the vicinity of a specific x-ray diffraction peak,

H = (hkl) and (~GH · ~r >> ~Gm 6=H · ~r), f(~r) is a pe-
riodic function with a lattice spacing of d = 2π

|G| . The

location of the diffraction peak is dictated by Bragg’s

Law (2dsinθ = λ) or the Laue Equation ( ~ko + ~G = ~kh).
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However as x-ray detectors are only sensitive to the inten-
sity of the incoming x-ray radiation, an x-ray diffraction
pattern will only reveal the magnitude of F (~q), losing
the spatial phase information associated with the crystal
lattice.
In crystals that possess strain, for example, a tradi-

tional x-ray Bragg diffraction curve will show diffraction
sidebands associated with the applied strain. A cursory
inspection of Bragg’s law would imply that the location
of the diffraction sidebands are dictated solely by the
magnitude of the strain. However, this is not necessarily
the case. In particular, in the case of a one-dimensional
longitudinal strain, the strain profile can be represented
as a Fourier sum of discrete phonon wave-vectors along
the z-direction:

η(z) =
∑

n

A(qn)e
i(qnz+φn) (3)

where A(qn) is the amplitude of a particular momentum
component (qn), and φn is the relative spatial phase of a
particular acoustic wave-vector. This strain modifies the
locations of the atomic planes:

f ′(~r) = (1 + η(z))f(~r) (4)

In the vicinity of an x-ray diffraction peak, we can com-
bine equations 3 and 4:

f ′(~r) ∼ FHei
~GH ·~r

(

1 +
∑

n

A(qn)e
i(qnz+φn)

)

(5)

The resulting x-ray Bragg diffraction will be therefore
be the superposition of an x-ray diffraction pattern of a
unstrained crystal with a strained crystal possessing the
added phonon acoustic wave-vectors.
If we represent the crystalline strain as a series of

momentum components added to the crystalline lattice,
~G → ~G ± ~q, the Laue equation will be modified to
~ko + ~G ± ~qm = ~kH , where ~qm represent the additional
phonon wave-vectors. For symmetric x-ray reflections,
a specific wave-vector can be identified by the angular
location of the diffraction sideband19,30:

qm =
∆θm|G|

tanθb
(6)

where ∆θm is the angular deviation from the Bragg con-
dition.
This superposition can be demonstrated by numeri-

cally calculating x-ray rocking curve of a strained crys-
tal. To model the diffraction pattern of a longitudinal
strained crystal, we use the diffraction algorithm devel-
oped by Wie et al31. This algorithm numerically solves
the Takagi-Taupin equations32–34 governing dynamical x-
ray diffraction for perfect crystals with a strained surface.
In figure 5 we calculate the x-ray Bragg diffraction pat-

tern of a crystal with a one-dimensional sinusoidal lon-
gitudinal strain with a wave vector of 10−3|G| and am-
plitude of ∆d

d
= 5 × 10−4 inside a crystalline substrate.
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FIG. 5. Simulated Bragg diffraction pattern of a travel-
ing one-dimensional longitudinal strain wave. Inset: Time-
dependent intensity modulation of negative (solid) and posi-
tive (dashed) sidebands.

As expected, the resulting diffraction pattern has side-
bands on either side of the fundamental Bragg peak, due
to the interference between the scattering from the un-
strained crystalline lattice and the strained lattice. The
location of these sidebands is dictated by the acoustic
wave-vector, while the amplitude is determined by both
the strain amplitude and the spatial phase of the strain
wave. For propagating strain profiles, the sideband os-
cillates according to the acoustic frequency of the wave,
however the measured temporal phase of the oscillations
is dependent on which sideband is measured (see figure
5 inset).

B. Time-resolved x-ray diffraction

While a single x-ray rocking curve can measure the
presence of an acoustic disturbance, due to the inability
to measure both the phase and amplitude of each momen-
tum component simultaneously, a one-dimensional rock-
ing curve analysis of a single Bragg peak cannot deter-
mine the exact location and shape of the strain within the
crystal. In particular, the diffraction intensity depends
on both the the amplitude of a particular acoustic wave-
vector (A(q)) as well as the phase (φm) of the acoustic
mode. Several computational methods have been devel-
oped which can calculate the x-ray rocking curve due to
a known the crystalline structure profile31,35,36, however,
a direct inversion from a single x-ray diffraction peak is
quite difficult. In cases where the one-dimensional strain
is both static and monotonic, it has been shown that the
diffraction pattern can be uniquely inverted to reveal the
strain profile37. However, in transient strain pulses, typi-
cally neither of these conditions are met, making a direct
inversion from a single x-ray rocking curve impossible.
However, a time-resolved x-ray diffraction pattern can
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provide enough information to reconstruct the spatio-
temporal shape of the transient acoustic pulse.
In general, a longitudinal acoustic pulse can be rep-

resented as a Fourier sum of acoustic waves of differing
wave-vectors and frequencies:

η(z, t) =
∑

n

A(qn, ωn)e
i(qnz−ωnt+φn) (7)

where η(z, t) is the longitudinal strain as a function of
depth and time, and qn, ωn, A(qn, ωn), and φn are the
wave-vector, frequency, amplitude, and phase of the nth

mode of the acoustic excitation respectively. At first
glance, this expression would appear to imply that a

three-dimensional measurement is required to uniquely
reconstruct the acoustic pulse. However, utilizing the
material properties the dimensionality strain profile can
be reduced, such that the two-dimensional TRXRD pat-
tern can be inverted to reveal the strain profile.

A transient strain pulse can be broken up into two dis-
tinct constituent components; a propagating wave and a
‘static’ strain. Here we define the static strain as one
where the phonon wave-vector evolves on a timescale
much slower than the ratio of the x-ray absorption depth
to the sound velocity. In the vicinity of a strong x-ray
reflection, equation 5 can be rewritten as:

f ′(~r, t) = FHei
~G·~r

(

1 +
∑

n

A(qn, ωn)e
i(qnz−ωnt+φn) +

∑

m

A(qm)ei(qmz+φm)

)

(8)

The resultant x-ray diffraction pattern will then be the
superposition of the diffraction pattern from a perfect
crystal, the traveling acoustic wave, and the static strain.
Like before, the traveling wave component as currently

written in equation 7, is dependent on three seemingly in-
dependent variables (qn, ωn, and φn). As acoustic pulses
are determined by elasticity of the material, however, the
frequency of a particular phonon mode is governed by the
acoustic dispersion relation, ωq = |C(q)|. In cases where
the acoustic frequency is low, the acoustic dispersion re-
lation is equal to ωq = vs|q|. Given this constraint, the
traveling wave can be represented as:

η(z, t) =
∑

A(qn)e
i(qnz+φn)ei|qn|vst (9)

This relationship now has two unknown quantities,
the spectral phase φn and spectral power (A(qn)) of the
acoustic pulse. Although equation 9 is only valid for
low frequency excitations, provided the dispersion rela-
tionship is known for the material in question, a similar
equation can be derived relating the strain to only the
spectral phase and spectral power. Taking this time-
resolved spatial strain into account, the spatial locations
of the lattice planes for the traveling wave is represented
by:

f ′(~r, t) = FHei
~G·~r

(

1 +
∑

n

A(qn)e
i(qnz+φn)ei|qn|vst

)

(10)
The Fourier transform of this spatial function re-

veals that the diffraction peak will possess oscillating
side-bands associated with the additional acoustic wave-
vectors. As a consequence, a standard x-ray rocking
curve analysis will possess diffraction sidebands associ-
ated with the interference between the strained and un-
strained crystals. In addition, these side-bands will now
oscillate in time with a frequency ωn

1,18,19,38.

For example, if the shape of the traveling wave is sinu-
soidal, there will be two x-ray diffraction sidebands os-
cillating at a frequency of the acoustic mode (see figure
5 inset), with a temporal phase related to the shape of
the traveling strain wave. As one travel farther from the
Bragg diffraction peak, and thus probing larger phonon
wave-vectors, the frequency of these oscillations increase
per the acoustic dispersion relationship. If the relative
timing between the pump and x-ray probe is known with
enough accuracy, a numerical Fourier transform of this
oscillation can reveal both the power and phase of a par-
ticular coherent phonon mode. Therefore, transforming
the entire 2D TRXRD pattern will then reveal the entire
power spectrum and the spectral phase of the acoustic
pulse, making a unique reconstruction possible.

A simulated time-resolved x-ray Bragg diffraction of
an impulsively strained, single crystal is shown in Fig-
ure 6. In this simulation, a transient bipolar acoustic
pulse, whose central wave-vector is larger than the x-ray
extinction/absorption depth, in a crystal that is much
thicker than the x-ray absorption depth. Upon a cur-
sory inspection of the TRXRD pattern, several things
are clear: there are temporal oscillations in the diffrac-
tion intensity as a function of time and diffraction angle,
the oscillations have a finite lifetime, and the phase of
oscillations on either side of the Bragg peak are inverted.
Physically the lifetime is proportional to the ratio of the
x-ray absorption depth and the sound velocity. In many
semi-conductor systems, the hard x-ray absorption depth
is typically larger than 1 micron, therefore for low order
diffraction conditions can have greater than 10,000 dis-
crete acoustic modes.

Figure 7 shows the spectral amplitude and phase of
three different acoustic pulses: an acoustic pulse model
via the formalism of Thomsen et al.

10, symmetric bipo-
lar pulse, and a 100 nm bipolar square wave. For direct
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initial phase of the oscillation from a simulated TRXRD pat-
tern. The amplitude is normalized to the intensity of diffrac-
tion peak. (e) Reconstructed strains from (c) and (d).

comparison, each of the pulse trains had equivalent en-
ergy. The π phase shift on either side of the diffraction
angle represents the fact that the compression (∆θB

θo
> 0)

and rarefaction (∆θB
θo

< 0) inside the crystal temporally
separated. In addition, the positive slope in the angle
dependent phase on the compression side of the Bragg
peak reveals that the compression side of the acoustic
pulse leads the rarefaction. This can be demonstrated by
simulating the inverse phonon pulse. Under these circum-
stances the temporal phase of the acoustic wave-vectors
are flipped (see figure 8).

The simulated spectral phase and amplitude demon-
strates the potential power of TRXRD to differentiate
between different acoustic strain waves. In particular,
the addition of the static heated layer in the Thomsen
strain, produces a distinct asymmetry in the spectral am-
plitude as well as spectral phase due to the added inter-
ference between heated surface and the generated side-
bands. In addition, the square pulse and phonon pulse
show distinct differences in their amplitude profile, with
the square pulse possessing a higher proportion of high
wave vector components.

In Figure 8, two square waves with different longitu-
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dinal scale were simulated: 50 nm and 100 nm. To en-
sure the strains contain equivalent energy, the amplitude
of acoustic pulses were adjusted. A Fourier transform
of the differing strain profiles directly demonstrates the
differences in high wave vector components. By simply
summing all the acoustic modes together, we can roughly
retrieve the spatio-temporal shape of the acoustic strain
(see figure 8(e)). In particular, the reconstruction cor-
rectly orients the order of the strain pulse as well as
correctly reproducing the relative spatial extent of the
acoustic pulses. However there are differences in the re-
trieved shapes, that demonstrate the inherent limitations
of TRXRD experiments. These differences between the
reconstructed strain profile and the actual profile are as-
sociated with the natural resolution of the TRXRD ex-
perimental technique and will be discussed in the follow-
ing section.

IV. REAL-WORLD LIMITS OF TRXRD

Provided that an x-ray pulse is not bound by the trans-
form limit (ie. ∆ν∆t = 0), the analytical formalism pro-
vided above indicates that a TRXRD pattern can be in-
verted to reconstruct an acoustic pulse by directly mea-
suring the amplitude and phase of the Fourier compo-
nents of the strain. However, in realistic experimental
conditions, the reconstruction of the transient acoustic
pulse is limited by several factors including; 1. the crys-
tal thickness, 2. finite x-ray monochromaticity, 3. the
finite temporal resolution, 4. spatial divergence of the
x-ray pulse, and 5. the non-zero attenuation of the x-ray
pulse in the sample.
The crystal thickness physically limits the number of

discrete acoustic modes that can be excited. In particu-
lar, the physical number of acoustic modes in crystalline
systems are dictated by the lattice spacing and the crys-
tal thickness. For example, in a 100 micron thick silicon
(111) crystal with lattice planes separated by 3.135 Å, re-
sults in qmax ∼0.3 Å−1 and qmin ∼ 10−6 Å−1, resulting
in ∼ 105 possible spatial modes.. However, as the x-ray
absorption/extinction depth is often much shorter than
the crystal thickness, the measurable number of acous-
tic modes will be limited by the x-ray interaction length
(∼ 1− 100 µm). As the x-ray penetration depth is often
fairly deep compared to the spatial extent of the strain
pulse, this constraint typically does not significantly limit
the analytical power of TRXRD.
The finite x-ray monochromicity and temporal resolu-

tion are related issues, but they manifest themselves in
different ways. Experimentally, the x-ray pulse has an
energy bandwidth which are related to the x-ray source
and any x-ray optics that are used. For example, laser
based x-ray sources utilize x-ray line emission, where the
central frequencies are ∼5-20 keV and have natural line
widths of ∼1.5 eV39,40 providing a natural energy res-
olution of ∆E

E
< 10−3. Synchrotron based hard x-ray

sources typically utilize a double crystal monochrometer

to select the radiation41, providing an energy resolution
of ∆E

E
∼ 10−4. This frequency resolution limits the abil-

ity to detect differences in acoustic modes. In particular,
the measurement uncertainty of a lattice spacing due to
an incoming energy bandwidth is directly related30:

∆d =
∆θ

θ

∆E

E
tanθb (11)

For many low order diffraction planes, this relationship
indicates that acoustic modes separated by <10−4 Å−1

cannot be uniquely resolved. Under realistic experimen-
tal conditions, the maximum photo-generated acoustic
wave-vectors lie between qmax ∼ 10−4 − 10−2 Å−1, de-
pending on the optical absorption depth and electron dy-
namics of the system10. Coupling this fact with the ex-
perimental x-ray bandwidth, the number of unique mea-
surable acoustic modes is then limited to ∼2-100. In
cases with a small number of measurable acoustic modes,
the number of possible acoustic pulse shapes which can
be identified is very large making a unique reconstruction
challenging. For example in the work by Rose-Petruck et

al. the optical penetration depth within the laser-excited
GaAs provided a wide range of possible acoustic pulse
shapes to be retrieved from the TRXRD measurement
making it difficult to directly compare theoretical strain
mechanisms with the experimental results12.
The finite temporal resolution in TRXRD experiments

can be due to several factors, including source size, x-
ray detectors, and laser-x-ray synchronization. For ex-
ample, laser based sources have been shown to have a
minimum x-ray pulse widths on order of 150 fs3, limited
by the laser induced electron dynamics, while the tem-
poral resolution of synchrotron sources are typically dic-
tated by either ultrafast x-ray streak cameras42,43 or the
accelerated electron bunches44–48 (∼100 fs). (Although
x-ray free electron lasers have trains of attosecond x-ray
pulses49, a simple method of isolating a single attosecond
pulse will be technically challenging). The temporal reso-
lution causes an uncertainty in the phase reconstruction,
through an uncertainty in zero time delay as well as a
maximum frequency which can be uniquely resolved (i.e.
the Nyquist frequency). For most longitudinal strains,
an 100 fs x-ray pulse is much faster than any motion in
the system providing ample temporal resolution to visu-
alize the strain, however, the finite time resolution will
produce a significant phase uncertainty for the high vi-
brational modes. In particular, the phase uncertainty
will be equal to:

∆φ = ωq∆t (12)

where ωq is the frequency of a particular acoustic mode
and ∆t is the temporal resolution of the experiment. For
acoustic phonons in the linear dispersion regime, com-
bining equation 12 with equation 6 reveals a maximum
diffraction angle that can resolve the oscillation of the
coherent phonon:

∆θ =
2π

vs|G|∆t
tanθb (13)
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FIG. 9. Spectral amplitude and phase of sidebands retrieved
form the TRXRD patterns observed for the 50 nm thick gold
film. Dashed line is a guide to the eye. (b) The reconstructed
spatial profile of the acoustic pulse using the data as shown.
(c) The reconstructed spatial profile of the acoustic pulse ob-
tained by adding 9 interpolated points for each data point.
The shadow represents the error of reconstruction.

In figure 7 the error bars demonstrate the initial phase
retrieval error due to the real-world experimental con-
straints. This phenomena was explicitly seen in the work
by Reis et al., whereby a 100 ps x-ray pulse resolved the
relatively low frequency oscillating sidebands at the ex-
pense of the high wave-vector components18. However,
simple assumptions on the spectral phase can provide in-
tuition on the shape of the acoustic pulse. For example,
for acoustic pulses generated via ultrafast laser excita-
tion, one often assumes that the laser pulse can be treated
as an instantaneous impulse to the crystalline lattice and
thus all acoustic modes are excited simultaneously with
the same phase. Therefore, measuring the spectral power
distribution and the phase of a select number of modes,
one can reconstruct the acoustic pulse with some accu-
racy.

V. STRAIN RECONSTRUCTION

In figure 9, we show the retrieved spectral amplitude
and phase for each of the diffraction angles measured
in the TRXRD pattern shown in figure 4. The Fourier
transform makes it clear that the angular shift of side-
band is proportional to the oscillating frequency, con-
sistent with the acoustic dispersion relationship. Mean-
while, there is an obvious π phase shift between the neg-
ative and positive sidebands, which is consistent with
the simulation above. Looking at the retrieved spectral
amplitude from the Fourier transform, there is a clear

asymmetry to the spectra of the positive and negative
wave-vectors. This asymmetry is likely due to a slight
‘static’ temperature rise of the Ge substrate (<10 K),
which shifts the whole rocking curve to smaller diffrac-
tion angles and increasing the observed amplitude of the
oscillations.

The ultimate retrieval of the spatio-temporal strain
profile is limited by the angular resolution of our setup.
This constraint ultimately limits the number of unique
measurable acoustic modes to ∼10, making the recon-
struction process challenging. In particular, in figure 9b
we numerically reconstruct the strain profile by perform-
ing a Fourier sum of the amplitude and phase retrieved
from the negative sidebands for the 50 nm gold coated
sample. To reconstruct the acoustic strain, we only con-
sider the data for ∆T > 0. With our experimentally
limited number of modes, we see a series of strain pulses
at a characteristic period associated with the inverse of
the angular step size of our experiment. Even with this
limitation, we can retrieve some insight into the spatio-
temporal profile of the acoustic pulse. For example, we
observe that the pulse is bipolar with a very rapid change
in sign (<50 nm) consistent with the observed coherent
sideband generation.

However, what is somewhat surprising in the Fourier
reconstruction, is the spatial extent of the acoustic pulse.
It has been widely assumed that the spatial extent of the
generated acoustic pulse will have a scale that is approx-
imately the twice the thickness of the metallic film10.
However, we find that the acoustic pulse has a spatial
extent of greater than 500 nm, an order of magnitude
larger than the gold film thickness. This extended spa-
tial extent can be more clearly seen if we make some
simple assumptions. In particular, if we assume the am-
plitude and phase are smoothly varying functions such
that we can perform a simple data interpolation between
measured data points to artificially enhance the angu-
lar resolution to the experiment. In figure 9c, we per-
form a simple nine point interpolation on the data prior
to Fourier reconstruction. After reconstruction, we now
find that the data reveals an isolated bipolar acoustic
pulse, with a sign change of less than 50 nm and a spa-
tial extent of over >500 nm (see figure 9c). To estimate
the error of our numerical reconstruction, we made a se-
ries of acoustic pulse reconstructions by assuming the
measured spectral amplitude had a ∼ 20% error and a
phase error dictated by temporal step-size of measure-
ment. The resulting error in the reconstruction is shown
in by the shading in figure 9c. While the phase and am-
plitude errors become significant for the high frequency
components of the acoustic pulse, the pulse shape is dom-
inated by the lower frequency components that are less
susceptible to the phase and amplitude errors, resulting
in similar retrieved pulses for all reconstructions.

The observation of this spatio-temporal elongation has
not been reported in most time-domain optical8–10,13 or
TRXRD studies16,24. Part of this spatial dilation is likely
due to the sound speed difference in gold (∼3300 m/s)
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versus germanium (∼5400 m/s), which results in spa-
tially stretching the acoustic pulse by almost a factor of
two. However, the majority of this spatial elongation
cannot be simply attributed to the acoustic mismatch
of the materials. This result maybe due to ultrafast
electron-phonon dynamics within the gold film. In par-
ticular, Wright observed that under intense ultrafast op-
tical excitation, the non-instantaneous decay of the hot
electrons will create an extended phonon pulse within
the gold film50. If we assume that the electron phonon
coupling time is 5 ps16 this increases the effective film
thickness to 65nm. Coupling this effect with the change
in acoustic velocities at the gold/Ge interface, will gen-
erate a longitudinal acoustic pulse that is ∼ 250nm wide.
The final discrepancy between the time-domain optical
and TRXRD measurements may be due to a slight en-
hancement of the low frequency modes from the resid-
ual < 10K surface heating of the crystalline substrate
and/or a difference in the electron-phonon coupling time
than was previously reported16.

VI. CONCLUSION

In this paper we have measured the TRXRD patterns
of photo excited gold films on a germanium crystalline
substrate. These measurements demonstrate that the re-
sulting generated acoustic pulse is bipolar with acoustic
wave vectors that are determined by the metallic film
thickness. In addition we have shown that there is a
one-to-one correspondence between longitudinal strain
pulses and a corresponding TRXRD pattern, however
real world constraints limit this inversion. Even with
these constraints, we are able to reconstruct the spatio-
temporal shape of the impulsive generated acoustic pulse
that propagates into the crystalline bulk.
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