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Closed quantum systems with quenched randomness exhibit many-body localized regimes wherein
they do not equilibrate, even though prepared with macroscopic amounts of energy above their
ground states. We show that such localized systems can order, in that individual many-body eigen-
states can break symmetries or display topological order in the infinite volume limit. Indeed, isolated
localized quantum systems can order even at energy densities where the corresponding thermally
equilibrated system is disordered, i. e.: localization protects order. In addition, localized systems
can move between ordered and disordered localized phases via non-thermodynamic transitions in
the properties of the many-body eigenstates. We give evidence that such transitions may proceed
via localized critical points. We note that localization provides protection against decoherence that
may allow experimental manipulation of macroscopic quantum states. We also identify a ‘spectral
transition’ involving a sharp change in the spectral statistics of the many-body Hamiltonian.

I. INTRODUCTION

Our current understanding of the phases of quantum
matter in equilibrium is built largely on the traditional
Landau framework of broken symmetries [1] and the more
recent framework, still in rapid evolution, of topological
order and allied classifications [2–7]. There are inter-
esting exceptions to these in the presence of quenched
randomness: such as Anderson localization [8], which
is firmly established in studies of non-interacting parti-
cles [9]. Recently, the work of Basko, Aleiner and Alt-
shuler [10] and others [11–17] has added to these a pre-
viously conjectured [8] extension of Anderson localiza-
tion to closed, quantum interacting systems—the phe-
nomenon now known as many-body localization (MBL).

To understand the nature of many-body localization,
it is useful to first refer to the eigenstate thermalization
hypothesis (ETH) [18–20]. The ETH, when true, applies
to the exact many-body eigenstates of the Hamiltonian of
a closed, isolated quantum system, in the limit of many
degrees of freedom. The ETH postulates that for a large
class of quantum systems, the probability operator (a. k.
a. the reduced density matrix) for any subsystem is, in
any exact many-body eigenstate of the full system, equal
to the equilibrium Boltzmann-Gibbs distribution at the
temperature set by the energy density of the eigenstate.
This occurs because the remainder of the full system suc-
cessfully acts as a thermal bath for the subsystem in ques-
tion.

The many-body localization phase transition is an
eigenstate phase transition from the thermal phase where
the exact many-body eigenstates obey the ETH, to the
localized phase where the eigenstates violate the ETH;
the latter fail to be a heat bath that thermally equili-
brates its subsystems [8,10,12,15]. Thus this is a dy-
namic, but not thermodynamic, phase transition from
the thermal phase where the system does thermally equi-
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FIG. 1: In the one-dimensional models we consider, eigenstate
properties depend on the energy density, the typical value
of h/J , the disorder strengths δJ and δh, and the fermion-
fermion interaction strength λ. This figure shows, schemati-
cally, a slice through the phase diagram, for typical h/J < 1,
and non-zero λ. Extended (Ext) and many body localized
(MBL) phases are separated by the localization transition,
ordered spin glass (S-G) and paramagnetic (Para) phases are
separated by an eigenstate phase transition, and regions with
paired and unpaired spectra are separated by a spectral tran-
sition. Here and in Fig. 3 we choose the zero of energy density
to be the ground state.

librate under the dynamics due to its own Hamiltonian,
to the ‘glassy’ localized phase where the isolated quan-
tum system can remain far from thermal equilibrium for-
ever. In a related diagnostic, MBL eigenstates generally
display an ‘area law’ entanglement entropy [21], unlike
thermal eigenstates where the entanglement entropy is
generally a ‘volume law’ that reproduces the thermody-
namic entropy.

In this work we examine the highly excited eigenstates,
defined as eigenstates with a macroscopic energy above
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the ground state, of MBL systems and point out that
they come in many flavors, and may be classified in terms
of broken symmetries, topological order and/or critical-
ity, very much as in the usual account of phases and
phase transitions in equilibrium systems. We note that
in the presence of many-body localization, equilibrium
constraints on order can be evaded: symmetry breaking
can occur in highly-excited states of one-dimensional sys-
tems, and topological order can arise even in the absence
of a bulk gap. Instead it is the localization that ‘protects’
the order. We suggest that there can even arise con-
tinuous phase transitions between distinct MBL phases,
which proceed via MBL critical points. Finally, we point
out the existence of yet another kind of transition within
the MBL phase: a ‘spectral transition’, which does not
involve a change in the properties of the eigenstates, but
instead a change in the spectral statistics of the system’s
Hamiltonian. We emphasize that unlike standard discus-
sions of quantum phase transitions, our discussion is not
about ground states or low-lying excited states, but is
about highly-excited eigenstates at energies that would
correspond to nonzero (even infinite) temperature if the
system could thermalize at these energies. This might
be useful for experiments, in particular for experiments
designed to exploit topological order. Note that here we
only work with spin models that have a bounded spec-
trum. However, MBL is expected to occur even for par-
ticles moving in continuous space, at least for certain
one-dimensional systems [17].

This article is structured as follows: We first con-
sider three equivalent “integrable” [22] one-dimensional
systems - the Majorana chain, p-wave superconducting
chain, and transverse-field Ising chain [23]. The eigen-
states of the disordered versions of these Hamiltonians
are localized and can be described in terms of noninter-
acting localized fermions. Ref. [10] showed that this lo-
calization is robust to weak fermion-fermion interactions,
and we assume in this paper that this is indeed true.
The MBL eigenstates can break symmetries, and a ro-
bust notion of topological order can be defined for them
even without a gap. We also show how by tuning pa-
rameters of the Hamiltonian, we can drive an eigenstate
phase transition from one MBL phase to another. In the
Ising chain, the transition is of the symmetry-breaking
type, from a disordered paramagnet to a phase where the
eigenstates are feline (Schrodinger cat) states with long-
range spin-glass (SG) order. In the Majorana and Dirac
fermion systems, the transition is between MBL states
with and without topological order. We further argue
that the critical point separating these two distinct MBL
phases can itself be MBL. We close by discussing exten-
sions of these ideas to higher dimensions. We emphasize
again that the ideas discussed here apply only to closed
quantum systems - i.e. it is essential that the system not
be put in contact with an external thermal bath.

II. ONE-DIMENSIONAL SYSTEMS

The three non-interacting one-dimensional models
studied in this paper (to which we will add interactions
perturbatively), are the transverse-field Ising, Majorana,
and Dirac fermion chains of finite length L sites, with
open ends:

HIsing = −
L−1∑
i=1

Jiσ
z
i σ

z
i+1 −

L∑
i=1

hiσ
x
i , (1)

HMajorana = −
L−1∑
j=1

iJjbjaj+1 −
L∑
j=1

ihjajbj , (2)

HDirac = −
L−1∑
j=1

Jj
(
c†jc
†
j+1 + c†jcj+1 + h.c.

)
−

L∑
j=1

hj(1− 2c†jcj) , (3)

where the σx,z are Pauli matrices, the a, b are (self-
adjoint) Majorana fermion operators and the c, c† are
conventional Dirac fermion operators. The parameters
Ji and hi are drawn from distributions P (J) and P (h)
with means J > 0 and h > 0, and variances δ2

J and δ2
h.

The precise details of the distribution are unimportant
for our present purposes, but it is vital that at least one
of the variances be non-zero. For specificity, take the dis-
tributions to be log-normal, so all Ji and hi are positive.
We consider the disorder strengths δ2 to be parameters
in our analysis. These three Hamiltonians are related to
one another by the duality transformations [23,24]

ak = ck + c†k =

∏
j<k

σxj

σzk ,

bk = −i(c†k − ck) =

∏
j<k

σxj

σyk . (4)

The above Hamiltonians all possess a global Z2 symme-
try, implemented by the operator P̂ , which takes the form

P̂ =

L∏
j=1

σxj =

L∏
j=1

iajbj =

L∏
j=1

(1− 2c†jcj) . (5)

In the ordered phase (typical h/J < 1), there is an

‘edge mode’ operator Ô†, whose commutator with the
Hamiltonian is exponentially small ((h/J)L � 1) in L.
In the Majorana language [23],

Ô† = a1 + ibL +
h1

J1
a2 + i

hL−1

JL−1
bL−1 +

h1h2

J1J2
a3

+ i
hL−1hL−2

JL−1JL−2
bL−2 + ... (6)

This operator creates a Dirac fermion which is bilocalized
near the two edges, and has an energy which is exponen-
tially small in the system size, E ∼ exp

(
− L ln(J/h)

)
.



3

The existence of this quasi-zero-energy edge mode can
be considered a diagnostic for topological order. Since
Ô and P̂ anti-commute, acting on a state with Ô or Ô†

flips its eigenvalue under P̂ .

A. Localization in the ordered phase

To discuss localization in the non-interacting model, it
is convenient to use the Ising spin formulation (1). The
results apply equally to the Majorana and Dirac fermion
chains.

In the ordered phase, J −
√
δ2
J � h, the ground state

is a ferromagnet, with long-range order of σz. It is even
under P̂ , consisting of a linear combination of states with
the average z-magnetization ‘up’ and ‘down’. Let’s call
it |0,+〉. It is a ‘feline’ (Schrodinger cat) state consisting
of a coherent linear combination of two ‘macroscopically’
different states. If we let Ô operate on this ground state,
this makes the other ‘ground state’, |0,−〉 = Ô|0,+〉,
which is also feline, is odd under P̂ , and is higher in
energy by an amount that is exponentially small in L.

The normal modes in the ordered phase are fermion
operators, which anticommute with each other and with
P̂ . The action of these normal modes on the spin state is
straightforward: they create domain walls (with respect
to the ferromagnetic ground state). Domain walls sit on
bonds, and are created by the self-adjoint operators

dk+1/2 =

∏
j<k

σxj

 =

∏
j<k

iajbj

 =

∏
j<k

(1− 2c†jcj)


(7)

For this integrable Hamiltonian, the properties of an
eigenstate may be extracted from the behavior of the
normal modes, which create domain walls. In the clas-
sical limit h = 0, the normal modes are trivially local-
ized. Away from the classical limit, they hop under the
action of the transverse fields hi, and see a spatial po-
tential Ji. In the clean limit, the normal modes (and
hence the domain walls) are delocalized over the chain.
However, it is well known that non-interacting fermions
hopping in a one-dimensional random potential always
experience localization [9]. Therefore, in the presence
of non-vanishing disorder in Ji, the normal modes (and
hence the domain walls) must necessarily be localized.

In the strong disorder limit, when δ2
J � h

2
, the single

domain wall eigenstates are exponentially localized, with
localization length

ξloc ∼
1

ln |δ2
J/h

2|
(8)

This follows straightforwardly from perturbation theory
in small h/δJ . Localization of the domain walls in each
many-body eigenstate implies that each eigenstate has
long-range spin glass order [25], i.e. the correlation func-
tion 〈σz0σzr 〉 within the eigenstate is non-zero for large

r, with its sign set by how many domain walls are
present and localized between sites 0 and r. Observe
that this spin-glass order breaks the global Z2 symme-
try in these highly-excited localized eigenstates of this
one-dimensional system, although at thermal equilibrium
such discrete symmetry breaking at non-zero tempera-
tures is forbidden. This eigenstate spin-glass ordering is
also discussed in Pekker, et al. [26].

Just as this model in the ordered phase has two nearly-
degenerate ground states |0,±〉 that are each feline, the
excited eigenstates also come in nearly-degenerate fe-
line pairs |n,±〉, produced by adding some particular
set of localized domain walls, n, to each of the two
ground states. The states |n,±〉 are orthogonal eigen-

states of the global spin flip operator P̂ , with eigenvalue
±1. From these two eigenstates we can make the state
|n, ↑〉 ≡ (|n,+〉 + |n,−〉)/

√
2 which has some particular

pattern of local z-magnetizations dictated by the local-
ized domain walls. Each eigenstate |n,±〉 is a (feline)
coherent linear combination of this spin-glass state |n, ↑〉
with the opposite state under the global spin flip oper-
ation, |n, ↓〉 = P̂ |n, ↑〉. However, the states |n,±〉 are
eigenstates of the Hamiltonian even for a finite sized sys-
tem, unlike the spin-glass superpositions |n, ↑〉 and |n, ↓〉.
The energy splitting between |n,±〉 is exponentially small
in system size, and thus the energy uncertainty in the
symmetry-breaking states |n, ↑〉 and |n, ↓〉 vanishes expo-
nentially with the number of spins in the infinite volume
limit. We note in passing that the existence of spin glass
order in the eigenstates is consistent with exponential lo-
calization of the local fluctuations of conserved quantities
- a hallmark of the MBL phase.

B. Robustness of localization to weak interactions

We assume we are working with highly-excited states,
where the localized domain walls are dense and frequently
overlap (the typical domain wall separation can be less
than a localization length) [27]. We then add to the
Hamiltonian weak short-range interactions between these
domain walls, and ask whether they cause a breakdown
of localization. Weak interactions between domain walls
may be introduced in the spin model by adding e.g. a
λσxi σ

x
i+1 term to the Hamiltonian (1). Such a term pre-

serves the global spin flip symmetry of the problem, but
upon fermionization (4) gives rise to a Hamiltonian con-
taining local four fermion ‘interaction’ terms. More gen-
eral interaction terms may also be introduced in the spin
model, but we assume that these terms commute with P̂
and thus respect the Z2 symmetry. The situation with
weak interactions is then essentially identical to that an-
alyzed by Basko, et al. [10], who show that many-body
localization is stable to weak nonzero interaction λ as
long as the localization length of the single-particle states
is finite.

If the disorder is weak, the localization will be de-
stroyed by strong enough interaction, making the ex-
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tended, thermal phase at weak disorder and high en-
ergy density, as shown in Fig. 1. In terms of the Ising
model, in the extended phase the spin-spin correlations
within a thermal eigenstate are short-range. If we assume
the eigenstate phase transitions are continuous (not first-
order), then there must be two transitions, as indicated
in Fig. 1. Starting in the extended thermal phase and
increasing the disorder, first we reach the localization
transition. Once we enter the localized phase, the spin-
spin correlations in the eigenstates can start increasing to
longer range than they are at thermal equilibrium. The
transition to the MBL spin-glass phase is when the spin
correlations develop long-range order.

C. Spectral transition in the ordered phase

In the MBL spin-glass phase, all eigenstates come in
parity-related pairs |n,±〉 which differ only by their oc-
cupation of the single particle edge mode created by O†.
The energy of the edge mode is exponentially small in
the chain length, EO ∼ exp(−L/ξ), where ξ is the local-
ization length of the edge mode. Thus, the level split-
ting within such a pair is EO ∼ exp(−L/ξ). Mean-
while, the typical many-body level spacing is of order
δE ∼ exp(−sL), where s is the thermodynamic entropy
per site that would result if the system equilibrated at
the given energy density. Thus, tuning ξ or s leads to a
spectral transition. For strong disorder and thus small
localization length ξ and/or for low energy density and
thus low entropy s, the spectrum is ‘paired’. Here the
edge mode level splitting is less than the typical level
spacing so the many-body spectrum at large L consists
of nearly-degenerate doublets with Poisson inter-doublet
level spacing statistics. The level spacing within each
doublet is exponentially small in system size compared to
the typical level spacing between doublets. Meanwhile,
for weaker disorder and/or higher entropy, the spectrum
is unpaired. In this unpaired regime, the energy of the
single particle edge mode is exponentially larger than the
typical many body level spacing, and as a result we have
Poisson statistics for all of the individual many-body en-
ergy levels. The Poisson (or paired Poisson) level statis-
tics themselves are also a diagnostic for MBL, since in the
thermal phase, the level statistics are instead those of a
random matrix ensemble, for example the Gaussian or-
thogonal ensemble (GOE) for the models we are presently
considering.

The spectral transition is illustrated in Fig. 2. It does
not involve a change in the symmetry or topological or-
der of the eigenstates, but rather involves a change in
the many-body spectral statistics of the Hamiltonian. It
may be detected in numerics by examining the ratio of
two consecutive gaps, r = min(δn, δn+1)/max(δn, δn+1),
where δn is the energy gap between the nth and (n+1)th

many body eigenstates. This ratio will have average value
(2 ln 2−1) in the ‘unpaired’ localized regime [12], whereas
the average value in the paired regime will be exponen-

Unpaired)spectrum) Paired)spectrum)

E) E)

FIG. 2: An illustration of the spectral transition between
paired and unpaired many-body spectra, driven for example
by tuning disorder strength.

tially small in system size (zero in the infinite volume
limit). Thus the ratio of two consecutive gaps provides a
sharp diagnostic for the spectral transition.

D. Magnetic response

One curious feature of these pairs |n,±〉 of feline
eigenstates is that the states |n, ↑〉 have a typical z-

magnetization m that scales as ∼
√
L. A longitudinal

magnetic field B added to the Hamiltonian thus acts on
the Hilbert space of a pair (in the B = 0 eigenstate basis)
as

Heff ∼
(

E B
√
L

B
√
L E + h̄e−L/ξ

)
(9)

It is easy to verify that the energy eigenstates each have
an adiabatic magnetic susceptibility χ = (∂m/∂B)B=0
that is exponentially large in L, but is of opposite sign be-
tween the two paired eigenstates. The feline nature of the
eigenstates is thus destroyed by an exponentially small
(in L) longitudinal field. Interestingly, this makes this
system a possibly very sensitive magnetic field sensor. If
a state with a nonzero z-magnetization is prepared, it
will be localized and stable as long as the magnitude of
the longitudinal field B is larger than ∼ e−L/ξ. However,
once the magnitude of the longitudinal field drops be-
low this level, then the system’s many-body eigenstates,
although still localized, are feline and the magnetiza-
tion will decrease. The main caveat to this apparently
exponentially-fine-in-L field sensitivity is that the result-
ing magnetization dynamics is exponentially slow in L,
and the utility of this idea will be limited by the deco-
herence rate of any real system. We note however that,
in our three dimensional world, three dimensional MBL
systems where only the boundary is coupled to the envi-
ronment should be protected from environmental deco-
herence, since the effects of the environment should only
propagate into the system up to one localization length.
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E. Localization in the paramagnetic phase

We now turn our attention to the disordered regime,
h −

√
σ2
h � J . In this regime, the (Ising) ground state

has all spins aligned on average along the x axis, and the
elementary excitations are spin flips. A similar analysis
to above leads one to conclude that all spin flips are lo-
calized in the non-interacting model, as long as δ2

h 6= 0.
Localization is robust against weak enough interactions
so long as the localization length ξ is finite. Thus, the
eigenstates of the disordered Ising paramagnet can also
be MBL. However, these eigenstates do not break Z2

symmetry and do not come in pairs. Likewise, there is no
edge mode in the fermion language, and no topological
order.

These results can also be understood in terms of the
well known self-duality of the one dimensional Ising
model [24], which swaps h and J . In particular, it follows
from self duality that if the ordered phase is MBL, the
disordered phase is also MBL. However, the spectrum in
the paramagnetic phase is not paired. This is because the
pair of parity related MBL eigenstates |n,±〉 on the or-

dered side differ by the edge mode Ô, and the self duality
acts non-locally on the edge mode, mapping the ‘parity
related pair’ of ordered states to disordered states with
different boundary conditions. Thus, the disordered side
(with specified boundary conditions) has states that do
not come in pairs and do not have edge modes, and are
separated from their counterparts on the ordered side by
a phase transition.

F. The phase transition

In the absence of interactions (λ = 0) there is a con-
tinuous transition between localized phases, which pro-
ceeds via an infinite randomness critical point even for
highly excited states. We begin by discussing this non-
interacting picture, before examining the effect of inter-
actions. The critical regime is treated using the strong
disorder renormalization group (SDRG) [28]. The SDRG
proceeds by sequentially identifying the strongest bond or
field in the Hamiltonian, diagonalizing it, and determin-
ing the coupling to the rest of the system perturbatively.
This procedure can be shown to be asymptotically exact,
because the system flows to strong disorder.

When looking for ground states [28], after diagonal-
izing a particular bond or field, we should truncate to
the lower energy subspace. However, this method can be
easily generalized to obtain excited states, by sometimes
truncating into the higher energy subspace instead [16].
It can be verified that this does not change the flow equa-
tions for |Ji| or |hi|, but merely introduces some extra
minus signs (some renormalized bonds become antiferro-
magnetic and some renormalized fields point along −x).
We thus recover the flow equations [28] for the proba-
bility distributions P (h) and P (J) as flow equations for
P (|h|) and P (|J |). The flow [28] is to strong disorder, so

the transition should proceed via an infinite randomness
critical point, for all excited states.

In either phase we have already argued that the non-
interacting system is localized. However, at criticality
(ε = 0), the spectrum of the non-interacting Hamilto-
nian contains states with all localization lengths and the
single-fermion states in the limit of zero energy have a
diverging localization length. Nonetheless, the critical
point of the non-interacting Hamiltonian (1,2,3) is lo-
calized in the following sense. Almost all single-fermion
wave functions are localized, with only the limiting zero-
energy states having infinite localization length. The en-
tanglement entropy (within a many-body eigenstate) of
a subregion is thus sub-extensive, unlike a thermal state,
which has extensive entanglement entropy [21]. In fact,
since the RG flow for P (|J |), P (|h|) is the same in the
excited eigenstates as for the ground state, the entangle-
ment entropy is also the same in the excited eigenstates
as in the ground state. As determined in [29], the entan-
glement entropy of a subregion at the infinite random-
ness critical point has a leading term that scales as lnL,
whereas a thermal state would have an entanglement en-
tropy that scales as L. Thus, the (non-interacting) criti-
cal point violates the ETH, and can be considered local-
ized.

We now discuss whether localization can survive inter-
actions at the critical point. The key question is whether
the presence of a subextensive number of critical modes
can cause the rest of the degrees of freedom to delocalize,
by mediating resonances between distant near-degenerate
localized modes. In the supplement of [16], it was deter-
mined that the mediated interactions fall off exponen-
tially with distance, whereas the typical level spacing
decreases as a power law of distance. Thus, the medi-
ated interaction between distant near-degenerate modes
should be weaker than the level splitting, and mediated
interactions should be unable to delocalize the formerly
localized degrees of freedom. This argument suggests
that the critical point separating two MBL phases can
itself be MBL. A slice through the phase diagram is pre-
sented in Fig.1. For more detail on the phase transition
within the MBL regime, see [26].

G. Topological order in the fermion language

Translating to the Majorana and Dirac fermion lan-
guages, we again conclude that all bulk modes are lo-
calized, with localization lengths equal to those calcu-
lated above. The bulk normal modes are Dirac fermions.
Meanwhile, the nearly-degenerate pairs of excited eigen-
states are states where the single particle edge mode
created by Ô† is either occupied or unoccupied. Thus,
the eigenstates of (2,3) have topological order. The exis-
tence of topological order follows trivially in these non-
interacting models, because the edge mode does not in-
teract with anything in the bulk, and is bilocalized as
two Majorana modes, one near each end of the chain.
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In the clean system, the addition of arbitrarily weak in-
teractions destroys the topological order at any nonzero
temperature, since the Majorana end modes can couple
through the thermally-excited and delocalized domain
walls. However, in the disordered system, we will show
that many body localization protects the topological or-
der.

H. Localization protects topological order

We now demonstrate that the edge Majoranas remain
localized in the presence of interactions, even in the ab-
sence of a gap. We assume that the interaction is local
and commutes with P̂ . It therefore conserves fermion
number modulo 2, and is thus a product of an even num-
ber of Majorana operators. Before turning on interac-
tions, there are an odd number of quasi-zero-energy Ma-
jorana modes localized at each edge. We cannot turn this
into an even number of Majoranas by acting with an even
number of Majorana operators, so the edge Majorana
must survive the addition of interactions. The Majorana
cannot disappear because of hybridization with localized
bulk modes because the bulk modes are Dirac. The only
way to make the topological order disappear is to couple
the two Majoranas at either edge. However, the inter-
action cannot do this because it is short range, and the
Majorana cannot be passed from one bulk Dirac mode to
another, until it reaches the other Majorana at the oppo-
site end of the chain, because the bulk is MBL, and does
not allow energy or particles to propagate. Thus, MBL
in the bulk protects topological order in highly-excited
localized states, just as a bulk gap can protect topolog-
ical order in ground states. This is in sharp contrast to
the clean (non-MBL) system, where the Majorana edge
modes can hybridize with each other through delocalized
bulk modes in any excited state. The localization protec-
tion of the edge Majoranas in quantum states other than
ground states might be useful for experiments designed to
exploit topological order. In particular, it might be use-
ful for experiments designed to detect Majorana fermions
in quantum wires [30].

III. d ≥ 2-DIMENSIONAL SYSTEMS

The ideas discussed above have a straightforward ex-
tension to the Ising model in more than one dimension. A
major difference is that in two or more dimensions, ther-
modynamic Z2 symmetry breaking persists to nonzero
excitation-energy densities even in the extended (ther-
mal) phase of an Ising ferromagnet. As a result, the
phase diagram contains another type of phase transition -
the usual thermodynamic phase transition between states
with and without ferromagnetic order. A slice through
the (d > 1)-dimensional phase diagram is presented in
Fig. 3.
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FIG. 3: A (schematic) slice through the (d > 1)-dimensional
phase diagram at non-zero λ and typical h/J < 1. In addi-
tion to the eigenstate phase transitions and spectral transi-
tion present in one dimension (Fig. 1), now there is also the
usual thermodynamic phase transition between phases with
and without ferromagnetic order, i.e. net spontaneous mag-
netization. The presence of ferromagnetic order is labelled by
F .

As in Fig. 1, we assume that the eigenstate phase tran-
sitions are continuous (not first-order). This again im-
plies that a localized paramagnetic phase exists between
the extended (thermal) paramagnetic phase and the lo-
calized spin glass in the higher-energy regime above the
ferromagnetic phases. Moving across this phase by in-
creasing disorder, the spin-spin correlation length grows
continuously from the finite thermal value of the ex-
tended phase and diverges at the transition to the spin
glass. We note that this symmetry-breaking paramagnet-
to-spin-glass phase transition in the localized Ising model
in d ≥ 2 is also governed by an infinite randomness
fixed point [31,32] which again should extend to finite
energy density states and lead to sub-thermal entangle-
ment. We believe that localization persists here too, al-
though a more detailed analysis is desirable. Assum-
ing the symmetry-breaking transition in the localized
phase out of the paramagnet is indeed in the infinite-
randomness universality class, there should be localized
domain walls in the ordered phase just across the tran-
sition. The higher-energy eigenstates with these domain
walls present are spin-glass states. This is why we believe
the spin-glass phase always exists between the param-
agnet and the ferromagnet in the localized regime, as
shown in Fig. 3. We also note that unlike in d = 1, the
nearest-neighbor transverse-field Ising model in d ≥ 2 is
an interacting system on its own.

A. Topological Order in d ≥ 2

From our results thus far we can immediately draw
some interesting conclusions about topologically ordered
systems in d ≥ 2 by simply dualizing the Ising model.
This leads to MBL protected topological order in higher
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dimensions, as we now discuss.
Let us begin in d = 2 where the “Ising model” of a

system that exhibits topological order is the the Z2 lattice
gauge theory with matter, governed by the Hamiltonian
[24,33,34]

−H =
∑
p

Kp

∏
l∈∂p

σzl +
∑
l

Γlσ
x
l (10)

+
∑
l

Jlσ
z
l

∏
s∈∂l

τzs +
∑
s

ΓMs τ
x
s

supplemented by the constraint that we restrict its action
to “gauge invariant” states defined by

Gs|ψ〉 = |ψ〉 , Gs = τxs
∏
l:s∈∂l

σxl . (11)

In the above the gauge (σil) and matter (τ is) operators
act in spin-1/2 Hilbert spaces that live on the links l
and sites s of the square lattice with plaquettes p and
∂p and ∂l are the boundaries of the corresponding ob-
jects. On dualizing the Ising model, we get the Z2 gauge
theory without matter, obtained from (10) by dropping
the matter degrees of freedom entirely. In this case the
parameters Kp and Γl are, numerically, the on-site fields
and bond interactions of the dual Ising model.

Let us briefly review some salient facts about the
non-random system. The paramagnetic and ferromag-
netic ground states of the Ising model dualize, respec-
tively, to the (topologically ordered) deconfined and
(non-topological) confined phases of the gauge theory,
where the terminology refers to the energy needed to sep-
arate two test charges to infinity. For our purposes, it is
more useful to consider the standard equal-time diag-
nostic, which can be evaluated in individual eigenstates,
namely the Wilson loop [24] for a contour C

W [C] = 〈
∏
l∈C

σzl 〉 (12)

which exhibits a perimeter/area (P/A) law decay,
logW [C] ∝ −P/−A, in the topological/non-topological
phase. A useful picture of the ground states and excita-
tions is obtained by thinking in the basis of eigenstates
of σxl . At Γ � K, the non-topological ground state has
σxl = 1 on all bonds. The elementary excitations are
small loops of bonds where σxl = −1, which we refer
to as bonds with Z2 “electric” flux. These loops are
dual to domain walls above the ferromagnetic state in
the Ising language. As we pass to the topological phase
at Γ � K, the loops/domain walls proliferate and their
condensation signals the transition. The elementary ex-
citations in the topological phase are visons, plaquettes
where

∏
P σ

z
l = −1.

Now the translation is straightforward and we conclude
that with sufficient randomness in the couplings there ex-
ist both MBL localized topological and non-topological
phases in the Z2 gauge theory without matter. [In Fig-
ure 3, we can simply relabel the paramagnetic and spin

Č"

C"

s" s’"L"

FIG. 4: The contours used to define the Fredenhagen-Marcu
order parameter for a translationally non-invariant system.

glass phases as topological and non-topological respec-
tively.] Of maximum interest is the MBL topological
phase whose topological order is protected by localiza-
tion and would not exist in its absence at nonzero energy
densities (the dual of the thermal paramagnet phase in
Fig. 3 is a phase where topological order is destroyed
by thermal fluctuations). In the MBL topological phase,
which is usefully described as a state with a finite density
of localized visons, the eigenstates display a “spin glass”
version of the perimeter law in which the magnitude of
W [C] decays exponentially with perimeter but with a
sign that depends on how many localized visons are en-
circled by the loop. By contrast, in the non-topological
phase, W [C] exhibits an area law.

This account of the Z2 topological phase can be ex-
tended in two directions. First, one can include gauge
charged matter, as in (10), which is known to leave
the clean system topologically ordered at T = 0 when
J � ΓM . In the presence of sufficient randomness, we
expect that the matter excitations will be localized and
we will obtain an MBL protected topological phase in
the presence of dynamical matter at nonzero energy den-
sities. However this phase can no longer be diagnosed by
examining the Wilson loop, which exhibits a perimeter
law in all phases in the presence of matter. Instead we
turn to a version of the Fredenhagen-Marcu order param-
eter [34], which measures the “line tension” of Z2 electric
fields specified by their distribution in an eigenstate. The
version needed for our random setting is

R(L) =
〈τzs
(∏

l∈C σ
z
l )τzs′〉〈τzs

(∏
l∈Č σ

z
l )τzs′〉

〈
∏
l∈C∪Č σ

z
l 〉

(13)

where the notation is explained in Figure 4 and the ex-
pectation values are taken in a particular eigenstate of
the Hamiltonian. Extending the discussion in [34] to the
present case we propose that R(L→∞) = 0 in the topo-
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logical phase, but not in the confined phase.
The second extension we propose involves two other

common diagnostics of topological order in the clean
system—a ground state topological degeneracy of 4g on
closed manifolds of genus g and a topological entangle-
ment entropy of log 2 [35]. In the MBL Z2 topologically
ordered phase we expect that the dominant finite size
effect in large systems of linear dimension L will arise
from O(e−L) tunneling between clusters of 4g finite en-
ergy density states which (roughly) exhibit the same pat-
tern of localized excitations but differ in the presence or
absence of visons threading the non-contractible loops on
the manifold. Likewise we expect individual eigenstates
to exhibit an area law in entanglement and a topolog-
ical constant piece of size log 2 which can be detected
by means of the subtraction procedure outlined, e.g. in
[36,37].

Dualizing the Ising model in d > 2 will yield a d-form
gauge theory [41] with a topological phase with pointlike
excitations and MBL stabilized topological order. Get-
ting to a more conventional gauge theory in d > 2 how-
ever requires some fresh thinking. For example, in d = 3
we need to consider the localization of stringlike excita-
tions (vison loops) and one cannot simply appeal to the
body of results to date in this paper or elsewhere.

Finally, we would draw the reader’s attention to [39,40]
where the dynamical localization of excitations in Z2

gauge theory with matter has been discussed in the lan-
guage of the perturbed toric code relevant to quantum
information storage.

IV. CONCLUSIONS AND OUTLOOK

Thus we have shown that eigenstates of MBL systems
come in many flavors, and may be classified in terms of
broken symmetries, topological order, and criticality, just
like extended states. Localization itself can protect order
through the intuitive mechanism of localizing excitations
that would disrupt it. We have also identified another
kind of transition - the spectral transition, involving a
change in the spectral statistics of the Hamiltonian. The
protection of order and quantum coherence by localiza-
tion might open the door to a new generation of quantum
devices that are immune to environmental noise, and are
not restricted to ground states or low-energy states. It
may also be useful for ongoing experiments attempting
to observe Majorana fermions in quantum wires [30].

We have focused, for pedagogical clarity, on broken
Z2 global symmetry and Z2 topological order. Gener-
alizations should be straightforward to other problems
where the elementary excitations subversive of ordering
can be localized at all energies by sufficiently random

couplings. Immediate examples are p ≥ 3 Zp clock mod-
els in d ≥ 1 and dual parafermionic systems in d = 1
[23] and Zp gauge theories in d ≥ 2. Farther afield we
should flag other models with broken discrete symme-
tries and also topologically ordered systems with discrete
gapped excitations such the Levin-Wen models that ex-
hibit non-abelian phases [38]. However, it is essential for
our purposes that the system should not support long-
range interactions, including those which might be me-
diated by Goldstone modes or gapless gauge excitations
(“photons”) that do not localize [42]. Thus, an extension
of these ideas to systems with broken continuous sym-
metries and continuous gauge groups looks problematic.
However, an extension to continuous symmetries might
be possible if the Goldstone mode were gapped out by the
Anderson-Higgs mechanism, or by placing the system on
a Bethe lattice, where Goldstone bosons are absent [43].
We defer further consideration of these issues to future
work.

While this work has focused on MBL eigenstates, an
experimental construction of a system with a Hamilto-
nian that displays many body localization will necessar-
ily start with an initial state that is not an exact eigen-
state of the Hamiltonian. We expect, based on analogies
to the ‘diagonal ensemble’ viewpoint advocated in [44],
that for many initial states the density matrix at long
times can be treated as being diagonal in the basis of en-
ergy eigenstates. However, a detailed understanding of
the dynamical evolution of an initial superposition state
(or mixed state) is an important topic for future work.

A final set of interesting open questions involves
whether continuous phase transitions between distinct
MBL phases necessarily proceed via a localized critical
point. We have argued that for MBL phases in the one-
dimensional random Ising model, phase transitions be-
tween MBL states proceed via an infinite-disorder criti-
cal point that is itself MBL. It remains to be determined
to what extent this holds true for more complex models.
Another open question involves the nature of the phase
transition between extended (thermal) and MBL phases,
which to our knowledge has not yet been determined in
any system.

V. ACKNOWLEDGEMENTS

We would like to thank Ehud Altman, Anushya Chan-
dran, Ignacio Cirac, Arun Nanduri and Gil Refael for dis-
cussions and suggestions. This research was supported in
part by the National Science Foundation under DMR 08-
19860 (DAH), DMR-0955714(VO) and DMR 10-06608
and PHY-1005429 (SLS), and by the DARPA OLE pro-
gram (DAH).

1 L. D. Landau and E. M. Lifshitz, Statistical Physics
(Course of Theoretical Physics: Volume 5), 3rd edition,

(Butterworth-Heinemann, 1980).



9

2 X. G. Wen, Quantum Field Theory of Many-body Systems,
(Oxford University Press, 2004).

3 A. Kitaev, AIP Conf. Proc., 1134, 22 (2009).
4 S. Ryu, A. Schnyder, A. Furusaki and A. W. W. Ludwig,
New J. Phys. 12, 065010 (2010).

5 L. Fidkowski, and A. Kitaev, arXiv:1008.4138 (unpub-
lished).

6 X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Science 338,
1604 (2012).

7 A. M. Turner and A. Vishwanath, arXiv:1301.0330 (un-
published).

8 P. W. Anderson, Phys. Rev. 109, 1492-1505 (1958).
9 P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57,

287-337 (1985).
10 D. M. Basko, I. L. Aleiner and B. L. Altshuler, Annals of

Physics 321, 1126 (2006).
11 I. V. Gornyi, A. D. Mirlin and D. G. Polyakov, Phys. Rev.

Lett. 95, 206603 (2005).
12 V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
13 M. Znidaric, T. Prosen and P. Prelovsek, Phys. Rev. B 77,

064426 (2008).
14 M. Aizenman and S. Warzel, Comm. Math. Phys. 290,

903-934 (2009).
15 A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
16 R. Vosk and E. Altman, Phys. Rev. Lett. 110, 067204

(2013).
17 I. L. Aleiner, B. L. Altshuler and G. V. Shlyapnikov, Nat.

Phys. 6, 900 (2010).
18 J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
19 M. Srednicki, Phys. Rev. E 50, 888 (1994).
20 M. Rigol, V. Dunjko and M. Olshanii, Nature 452, 854-858

(2008).
21 J. Eisert, M. Cramer and M. B. Plenio, Rev. Mod. Phys.

82, 277 (2010).
22 We call these many-body systems that possess a repre-

sentation in terms of non-interacting particles“integrable”,
although the localized single-particle states that are the
“constants of motion” may need to be obtained numer-

ically for any specific realization of the quenched ran-
domness. See e.g. D. A. Huse and V. Oganesyan, arXiv:
1305.4915 and M. Serbyn, Z. Papic and D.A.Abanin,
arXiv: 1305.5554

23 P. Fendley, J. Stat. Mech. P11020 (2012).
24 J. B. Kogut, Rev. Mod. Phys. 51, 659-713 (1979).
25 K. Binder and A. P. Young, , Rev. Mod. Phys. 58, 801-976

(1986).
26 D. Pekker et al., in preparation.
27 In the opposite, dilute limit, domain walls do not overlap,

do not interact, and localization is trivially robust.
28 D. S. Fisher, Phys. Rev. B 51, 6411-6461 (1995).
29 G. Refael and J. E. Moore, Phys. Rev. Lett. 93, 260602

(2004).
30 M. Franz, Nature Nanotechnology, 8, 149 (2013).
31 O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fisher,

Phys. Rev. B 61, 1160 (2000).
32 I. A. Kovacs and F. Igloi, Phys. Rev. B 83, 174207 (2011).
33 E. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682-3697

(1979).
34 K. Gregor, D. A. Huse, R. Moessner and S. L. Sondhi,New

J. Phys. 13, 025009 (2011).
35 A. Chandran et al., in preparation.
36 M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405

(2006).
37 A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404

(2006).
38 M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).
39 J. R. Wootton and J. K. Pachos, Phys. Rev. Lett. 107,

030503 (2011).
40 C. Stark, L. Pollet, A. Imamoglu and R. Renner, Phys.

Rev. Lett. 107, 030504 (2011).
41 F. J. Wegner, J. Math. Phys. 12, 2259 (1971).
42 V. Gurarie and J. T. Chalker, Phys. Rev. B 68, 134207

(2003).
43 C. R. Laumann, S. A. Parameswaran and S.L. Sondhi,

Phys. Rev. B 80, 144415 (2009).
44 A. Polkovnikov, Annals. Phys. 326, 486-499 (2011).


