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The resonant-level model represents a paradigmatic quantum system which serves as a basis for
many other quantum impurity models. We provide a comprehensive analysis of the non-equilibrium
transport near a quantum phase transition in a spinless dissipative resonant-level model, extending
earlier work [Phys. Rev. Lett. 102, 216803 (2009)]. A detailed derivation of a rigorous mapping
of our system onto an effective Kondo model is presented. A controlled energy-dependent renor-
malization group approach is applied to compute the non-equilibrium current in the presence of a
finite bias voltage V . In the linear response regime V → 0, the system exhibits as a function of
the dissipative strength a localized-delocalized quantum transition of the Kosterlitz-Thouless (KT)
type. We address fundamental issues of the non-equilibrium transport near the quantum phase
transition: Does the bias voltage play the same role as temperature to smear out the transition?
What is the scaling of the non-equilibrium conductance near the transition? At finite temperatures,
we show that the conductance follows the equilibrium scaling for V < T , while it obeys a distinct
non-equilibrium profile for V > T . We furthermore provide new signatures of the transition in
the finite-frequency current noise and AC conductance via a recently developed functional renor-
malization group (FRG) approach. The generalization of our analysis to non-equilibrium transport
through a resonant level coupled to two chiral Luttinger-liquid leads, generated by fractional quan-
tum Hall edge states, is discussed. Our work on the dissipative resonant level has direct relevance
to experiments on a quantum dot coupled to a resistive environment, such as H. Mebrahtu et al.,
Nature 488, 61, (2012).

PACS numbers: 72.15.Qm,73.23.-b,03.65.Yz

I. INTRODUCTION

Quantum phase transitions (QPTs)1,2 which separate
competing ground states represent generic phenomena in
solid-state systems at zero temperature. The transition
is frequently found to be continuous, often times giv-
ing rise to a quantum critical point. In the neighbor-
hood of a quantum critical point of a metallic system the
finite temperature properties as a rule show non-Fermi
liquid behavior3. In recent years, quantum phase transi-
tions at the nanoscale have attracted much attention4–15.
Much of the effort has been focused on the breakdown
of the Kondo effect in transport of a quantum dot due
to its coupling to a dissipative environment. However,
relatively less is known about the corresponding out-of-
equilibrium properties16–25. A finite bias voltage applied
across a nanosystem is expected to smear out the equi-
librium transition, but the current-induced decoherence
might act quite differently as compared to thermal deco-
herence at finite temperature T , resulting in exotic be-
havior near the transition.

Meanwhile, understanding the interplay of electron in-
teractions and non-equilibrium effects in quantum sys-
tems is one of the most challenging open questions in
condensed matter physics. Many of the theoretical ap-

proaches that have been proven so successful in treating
strongly correlated systems in equilibrium are simply in-
adequate once the system is out of equilibrium. The real-
time Schwinger-Keldysh formalism26 has been known
as the most successful approach to non-equilibrium dy-
namics since it offers a controlled perturbative expan-
sion of the density operator. However, care must be
taken to avoid the appearance of infrared divergences,
in the perturbative approaches. Though much is known
for quantum impurity systems in equilibrium, under-
standing their properties in non-equilibrium steady-state
is still limited. Nevertheless, significant progress has
been made by different approaches, such as (1) an-
alytical approximations: perturbative renormalization
group method (RG)27,28, Hamiltonian flow equations29,
functional RG30,31, strong-coupling expansions32, master
equations33; (2) exact analytical solutions: field theory
techniques34, the scattering Bethe Ansatz35, mapping
of a steady-state non-equilibrium problem onto an ef-
fective equilibrium system36–39, non-linear response the-
ory approach to current fluctuations40; (3) numerical
methods: time-dependent density matrix renormaliza-
tion group (RG)41, time-dependent numerical RG42, dia-
grammatic Monte Carlo43, and imaginary-time nonequi-
librium quantum Monte Carlo44.
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In this paper, we provide a comprehensive analy-
sis of the non-equilibrium transport near a quantum
phase transition in a dissipative resonant level model by
employing the recently developed frequency-dependent
RG27 and functional RG approaches31, and extending
our earlier work in Ref. 16. We aim to address several
fundamental questions related to the non-equilibrium
transport in quantum dot settings, such as: what is the
distinct non-equilibrium conductance profile at zero tem-
perature compared to that in equilibrium at finite tem-
peratures near the transition? Is there any scaling behav-
ior of the conductance at finite temperatures and finite
bias voltage near the transition?

For this purpose, we investigate three classes of typical
nano-models comprising a spinless resonant level coupled
to: (i) two non-interacting Fermi-liquid leads subject to
an Ohmic dissipative environment, where an Ohmic en-
vironment can be realized in a nanoscale resistor and has
many applications in physics ranging from mesoscopic
physics (See Refs. 8,10,11.) to biological systems45, (ii)
two interacting fermion baths, in particular two Frac-
tional Quantum Hall Edge (FQHE)46 leads, or the “chi-
ral Luttinger liquids” where electrons on the edge of a
2D fractional quantum Hall system show one-dimensional
chiral Luttinger liquid behaviors with only one species
of electrons (left or right movers), (iii) two interacting
Luttinger-liquid leads subject to an Ohmic dissipative
environment.

In the class (i) model, the QPT separating the con-
ducting and insulating phase for the level is solely driven
by dissipation, which can be modeled by a bosonic bath.
Dissipation-driven QPTs have been addressed theoret-
ically and experimentally in various systems, such as:
quantum dot systems9,47, Josephson junction arrays48–50,
superconducting thin film51–53, superconducting qubit54,
qubits or resonant level systems coupled to photonic
cavities55,56, and biological systems45,57. Very recently,
new Majorana physics in dissipative nano-structures has
attracted much attention58. Here, we focus on the non-
equilibrium properties of the system near a quantum
phase transition. Meanwhile, for the class (ii) model,
tunneling of electrons or quasi-particles between two
FQHE states may in general suffer from the electron-
electron interactions in FQHE. Interesting experimen-
tally relevant questions arise regarding how interaction
effects modify the nonequilibrium charge transport in
such systems. Furthermore, one can extend the above
two classes of models to a more general class (iii) model
where both electron-electron interactions and the dissipa-
tion are present in the FQHE setups4. Our results have
relevance for the recent experiment in Ref. 47 where the
electronic transport through a resonant level in a nan-
otube exhibits Luttinger liquid behavior, namely the con-
ductance demonstrates a non-trivial power-law suppres-
sion as a function of bias voltage.

This paper is organized as follows: In Section II A,
the model Hamiltonian of class (i) is introduced. In Sec-
tion II B, we establish rigorous mappings of our model

system, the class (i) model at a finite bias voltage, onto
the out-of-equilibrium anisotropic Kondo model as well
as onto class (ii) and (iii) model systems subject to a
finite voltage bias. We compute the current operator
in Section II C for these three classes of models. We
employ the nonequilibrium RG approach in Section III.
Our results on nonequilibrium transport near the quan-
tum phase transition both at zero and finite tempera-
tures are presented in Section IV, followed by the results
on the nonequilibrium finite-frequency current noise in
Section V. We make a few remarks on the important is-
sues of nonequilibrium quantum criticality in Section VI.
Finally, we draw conclusions in Section VII. The novel
aspect of this extended paper compared to our previous
work in Ref. 16 is the investigation of the finite-frequency
noise near the transition.

II. MODEL HAMILTONIAN

A. Dissipative resonant level model

Our Hamiltonian corresponding to the class
(i) model mentioned above takes the following
generic form:

H =
∑

k

∑

i=1,2

[ǫ(k)− µi]c̄
†
kic̄ki + tic̄

†
kid+ h.c.

+
∑

r

λr(d
†d− 1/2)(br + b†r) +

∑

r

ωrb
†
rbr,

(1)

where ti is the (real-valued) hopping amplitude between
the lead i and the quantum dot, c̄ki and d are electron
operators for the (Fermi-liquid type) leads and the quan-
tum dot, respectively, the Planck constant ~ is fixed to
unity. µi = ±V/2 is the chemical potential shift applied
on the lead i (V will denote the bias voltage through-
out this paper), while the dot level is at zero chemi-
cal potential. Here, br are the boson operators of the
dissipative bath with an Ohmic type spectral density8:
J (ω) = π

∑

r λ
2
rδ(ω − ωr) = 2παω. Note that usually

we introduce a cutoff via a exp(−ω/ωc) function in J (ω);
here, we assume that ωc is a large energy scale com-
parable to the energy bandwidth of the reservoir leads.
To simplify the discussion, we assume that the electron
spins have been polarized through the application of a
strong magnetic field. Our model can be realized exper-
imentally in a quantum dot coupled to resistive environ-
ment as shown in Ref. 47. Note also that our generic
Hamiltonian Eq. (1) is related to the other two
types of models (class (ii) and (iii)) via mappings
described in Section II B and Appendix A.
In this section, we briefly summarize the behavior of

our model system at equilibrium which means in the
absence of a finite bias voltage (V = 0). A dissipa-
tive resonant-level systems in equilibrium coupled to sev-
eral leads maps onto the anisotropic one-channel Kondo
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model8,10,11 where the dimensionless transverse Kondo
coupling g

(e)
⊥ is proportional to the hopping t between

the level and the leads and the longitudinal coupling

g
(e)
z ∝ 1 − √

α (the exact prefactors are given in Refs.
8,10,11; see also Section II B and Appendix A). Here,

the superscript (e) in g
(e)
⊥/z refers to the equilibrium cou-

plings. The model exhibits a Kosterlitz-Thouless (KT)
QPT from a delocalized (Kondo screened) phase for

g
(e)
⊥ + g

(e)
z > 0, with a large conductance, G ≈ e2/h,

to a localized (local moment) phase for g
(e)
⊥ + g

(e)
z ≤ 0,

with a small conductance, as the dissipation strength is

increased (see Fig. 1). For g
(e)
⊥ → 0, the KT transition

occurs at αc = 1. As α → αc, the Kondo temperature TK

obeys7: lnTK ∝ 1/(α − αc). Note that here we assume
our resonant level system exhibits the particle-hole (p-h)
symmetry; namely, the resonant-level energy ǫd is set to
be zero (ǫd = 0). However, in a more general resonant-
level model where p-h symmetry is absent, an additional
term of the form ǫdd

†d is present in the Hamiltonian Eq.
(1). In terms of its equivalent Kondo model, this p-h sym-
metry breaking term plays the role as an effective local
magnetic field Bz ∝ ǫd acting on the impurity spin in the
Kondo model11, which needs more involved treatments
and exceeds the scope of a simple and generic model sys-
tem considered in the present work.
In equilibrium, the dimensionless scaling functions

g
(e)
⊥ (T ) and g

(e)
z (T ) at the transition are obtained via the

renormalization-group (RG) equations of the anisotropic
Kondo model:

g
(e)
⊥,cr(T ) = −g(e)z,cr(T ) = (2 ln (D/T ))−1, (2)

where D = D0e
1/(2g⊥), with D0 being the ultraviolet

cutoff. Having in mind a quantum dot at resonance,
D0 = min(δǫ, ωc), with δǫ being the level spacing on
the dot and ωc the cut-off of the bosonic bath; D0 is
of the order of a few Kelvins16. At low temperatures
T ≪ D0, the conductance drops abruptly with decreas-
ing temperatures9:

Geq(αc, T ≪ D0) ∝
[

g
(e)
⊥,cr(T )

]2

∝ 1

ln2(T/D)
. (3)

Below, we analyze the non-equilibrium (V 6= 0)
transport of our model system at the KT transition and
in the localized phase in the double-barrier resonant
tunneling regime where the dissipative resonant level
couples symmetrically to the two leads (t1 = t2 = t).
Note, however, that when the dissipative resonant level
couples asymmetrically to the leads t1 6= t2, as has
been observed experimentally in Ref. 47, the system
reaches the single-barrier tunneling regime, leading to
Luttinger liquid behavior in conductance with power-law
dependence in bias voltage.

For the sake of convenience, we set the following units
throughout the rest of the paper: e = ~ = D0 = kB = 1.

B. Useful Mappings

Our generic model Hamiltonian Eq. (1) in fact can be
mapped onto various related model systems as we shall
discuss below, including the anisotropic Kondo model
(class (i)), the class (ii) and (iii) systems mentioned
above. Here, we will address the non-equilibrium trans-
port through a dissipative resonant level based on one of
the equivalent models: the two-lead anisotropic Kondo
model. The mappings for the three classes of models dis-
cussed below will be derived in an analogous way. The
general scheme of these mappings is via bosonization fol-
lowed by re-fermionization (or in the opposite order)59,60.

1. Mapping the dissipative resonant level model

onto the anisotropic Kondo model

First, we envision a non-equilibrium mapping reveal-
ing that the leads are controlled by distinct chemical po-
tentials. Through similar bosonization and refermioniza-
tion procedures as in equilibrium, our model is mapped
onto an anisotropic Kondo model7,8,10,11 with the effec-
tive (Fermi-liquid) left (L) and right lead (R)62 (see Ap-
pendix A for details):

HK =
∑

k,γ=L,R,σ=↑,↓
[ǫk − µγ ]c

†
kγσckγσ

+ (J
(1)
⊥ s+LRS

− + J
(2)
⊥ s+RLS

− + h.c.)

+
∑

γ=L,R

Jzs
z
γγS

z,

(4)

where c†kL(R)σ is the electron operator of the effective

lead L(R), with σ the spin quantum number, γ = L,R is
the index for the effective non-interacting fermionic leads,
S+ = d†, S− = d, and Sz = Q− 1/2 where Q = d†d de-
scribes the charge occupancy of the level. Additionally,

s±γβ =
∑

α,δ,k,k′
1
2c

†
kγασ

±
αδck′βδ are the spin-flip operators

between the effective leads γ and β, J
(1),(2)
⊥ ∝ t1,2 em-

body the transverse Kondo couplings, Jz ∝ (1−1/
√
2α∗),

and µγ = ±V
2

√

1/(2α∗). It should be noted that this
mapping is exact near the phase transition where α → 1
or α∗ ≡ 1

1+α → 1/2, and thus µγ = ±V/2. Note that
the above mapping takes a spinless dissipative resonant
level model with spinless fermionic baths c̄α=1,2 to the
anisotropic Kondo model with a “spinful” quantum dot
(with spin operator given by S+,−,z) and “spinful” con-
duction electron leads cσγ=L,R. The appearance of the
“pseudo-spin” degrees of freedom in the effective Kondo
model can be understood in terms of the ”charge Kondo”
effect: the tunneling between a resonant level (which can
be represented by a “qubit” or a “spin”) and the spin-
polarized leads plays an equivalent role as the “pseudo-
spin” flips between spin of a quantum dot and that of the
conduction electrons; and the coupling of the charge of
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the resonant level to the bosonic environment acts as the
Ising coupling between z-components of the pseudo-spins
on the dot and in the effective leads7,8. Meanwhile, as
mentioned above, when the resonant-level model shows
p-h asymmetry, an additional term ǫdd

†d appears in the
Hamiltonian, which is equivalent to a local magnetic field
acting on the impurity spin ǫdd

†d → BzSz via the iden-
tification: d† = S+, d = S−, and d†d − 1/2 = Sz. For
simplicity, we do not intend to study further this p-h
asymmetry term and focus mainly on the effective Kondo
model in the absence of magnetic field. Note also that
the mapping has been derived earlier in Ref. 16 and is
well-known at equilibrium (Ref. 8). In Appendix A, we
will provide more details regarding the different theoret-
ical steps, in particular with a finite bias voltage.

2. Mapping for a resonant level coupled to a FQHE

Our analysis for the non-equilibrium transport of a dis-
sipative resonant level model is applicable for describing
a resonant level quantum dot coupled to two chiral Lut-
tinger liquid leads, which is relevant for describing quasi-
particle tunneling between two Fractional Quantum Hall
Edge (FQHE) states46 (the class (ii) model mentioned
above). In the absence of bias voltage, this case has been
studied in Refs. 8,11. Via the standard bosonization59,

c̄α(0) =
1√
2πa

Fαe
i
ϕα(0)

K (5)

where Fα is the Klein factor that guarantees the
fermionic anti-commutation relations of electron
operators, the Hamiltonian of such system can be writ-
ten as7,8,11,46 (see Appendix A.):

HFQHE = Hchiral +Ht +Hµ, (6)

where the lead term Hchial describes two chiral Luttinger
liquid leads with lead index α = 1, 2, Ht denotes the
tunneling term and the bias voltage term Hµ is given
respectively by:

Hchiral =
1

2

∫ +∞

−∞

∑

α=1,2

(

dϕα

dx

)2

dx,

Ht = t1e
iϕ1/

√
Kd+ t2e

iϕ2/
√
Kd+ h.c.

Hµ = −V

2

1√
K

(∂ϕ1 − ∂ϕ2),

(7)

where the boson field ϕα=1,2 denotes the chiral Luttinger
liquid in lead α, the tunneling between lead and the
resonant level is given by tα, V is the bias voltage,
and K refers to the Luttinger parameter. Here, we set
2πa = 1 throughout the paper with a being the lattice
constant. Through the similar refermionization, we
arrive at the effective Kondo model as shown in Eq. (4)

with the bare Kondo couplings J
(1),(2)
⊥ = te

i(
√
2− 1√

K
)ϕ2,1 ,

Jz = 1 − 1/
√
2K. We can further map this model

backwards onto the dissipative resonant level
model Eq. (1) following Appendix A with the
identification 1

K = 1
Kb

+ 1 where Kb ≡ 1
α with α

being the dissipation strength defined in Eq. (1).
The non-equilibrium RG scaling equations for HFQHE

have the same form as in Eq. (14).

3. Mapping for a dissipative resonant level coupled

to interacting leads

So far, we consider here just a dissipative resonant
single-level coupled to two non-interacting leads. Nev-
ertheless, the mapping can be straightforwardly gener-
alized to the same system but with a spinless quantum
dot which contains many energy levels. In this case, the
effective Luttinger liquid parameter K ′ is modified as:
1
K′ =

1
K+1 (see Eq. (A22) in Appendix A). The mapping

can be further generalized to the system of a single-level
or many-level spinless quantum dot with Ohmic dissi-
pation coupled to two chiral Luttinger liquid leads with
Luttinger parameter K (the class (iii) model mentioned
above), giving rise to the effective Luttinger liquid pa-

rameter K̃ defined as (see Eq. (A24) in Appendix A):

1

K̃
=

1

K
+ 1 +

1

Kb
(8)

for a many-level spinless quantum dot and

1

K̃
=

1

K
+

1

Kb
(9)

for a spinless quantum dot with a single resonant level.
Here, Kb = 1

α with α being the dissipation strength de-
fined in Eq. (1). Details of the mapping are given in
Appendix A.

C. Average current

We may compute the non-equilibrium current operator
in the effective models through the mappings. We will
first compute the current operator within the effective
anisotropic Kondo model as it is the main focus of this
paper. From the mapping described in Section II. B 1.,
we can establish the invariance of the net charge on the
resonant level upon the mapping: N1 −N2 = NL −NR,

where Ni =
∑

ki c̄
†
kic̄ki represents the charge in lead i =

1, 2, whereas Nγ =
∑

k c
†
kγσckγσ represents the charge in

the effective lead γ = L,R. This allows us to check that
the averaged currents within the Keldysh formalism26 are
the same in the original and in the effective Kondo model
(see Appendix B for details):

I = i [QL −QR, HK ]

= iJ
(1)
⊥ (s−LRS

+ − s+RLS
−)− (1 → 2, L → R).

(10)
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Thus, the current I can be computed from the Kondo
model due to the invariance of the average current upon
the mapping mentioned above. Note that through the
various mappings mentioned above, it is straightforward
to see that the current operator for other related models–
resonant level coupled to FQHE leads and dissipative res-
onant level (both small and large in size) coupled to inter-
acting Luttinger liquid leads–take exactly the same form
as shown in Eq. (10).

III. NON-EQUILIBRIUM RG APPROACH

A. RG equations

Now, we employ the non-equilibrium RG approach to
the effective Kondo model27 in Eq. (4). In this approach,
the Anderson’s poor-man scaling equations are general-
ized to non-equilibrium RG equations by including the
frequency dependence of the Kondo couplings and the
decoherence due to the steady-state current at finite bias
voltage27. The fact that the running Kondo cou-
plings acquire energy dependence in the presence
of a finite bias voltage is related to the existence of
two different Fermi levels at the left (right) lead,
each of them hosting a Kondo resonance peak.
A full treatment of the energy dependence re-
quires a functional RG formulation involving in-
tegrals over energy31. For the sake of simplicity, we
assume that the resonant level (quantum dot) is symmet-
rically coupled to the right and to the left lead, t1 = t2
(or J

(1)
⊥ = J

(2)
⊥ ≡ J⊥). We will discuss in Appendix

C the more general case with t1 6= t2. The dimension-
less Kondo couplings as a function of frequency ω exhibit
an extra symmetry due to the particle-hole symmetry of
the effective Kondo model: g⊥(z)(ω) = g⊥(z)(−ω) where
g⊥(z)(D0) = N(0)J⊥(z) is the initial value, with N(0)
being the density of states per spin of the conduction
electrons. Here, we suppress the upper script symbol (e)

in the Kondo couplings since we will now focus on the
non equilibrium case V not zero. We obtain27:

∂gz(ω)

∂ lnD
= −

∑

β=−1,1

[

g⊥

(

βV

2

)]2

Θω+ βV
2
,

∂g⊥(ω)

∂ lnD
= −

∑

β=−1,1

g⊥

(

βV

2

)

gz

(

βV

2

)

Θω+ βV
2
, (11)

where Θω = Θ(D−|ω+ iΓ|), D < D0 is the running cut-
off. Here, Γ is the decoherence (dephasing) rate at finite
bias which cuts off the RG flow27. In the Kondo model,
Γ corresponds to the relaxation rate due to spin flip pro-
cesses (which are charge flips in the original model), de-
fined as the broadening Γ = Γs of the dynamical trans-
verse spin susceptibility χ⊥(ω) in the effective Kondo
model63:

χ⊥(ω) = χ0
iΓs

ω + iΓs
(12)

10
-3

10
-2

10
-1

10
0

D / D
0

0.06

0.08

0.1

g⊥ (V/2)

VΓ

FIG. 1: RG flow of g⊥,cr(V/2) at the transition as a function
of bandwidth cutoff D (in unit of D0); the bare couplings are
g⊥ = −gz = 0.1 (in unit of D0). We have set V = 0.72 (in
unit of D0). The decoherence rate Γ is around 0.00117D0 .

with χ⊥(ω) being the time Fourier transform of the
spin susceptibility χ⊥(t) = iθ(t)〈[S−(t), S+(0)]〉 =

iθ(t)〈[f †
↓ (t)f↑(t), f

†
↑ (0)f↓(0)]〉, and χ0 being χ⊥(ω = 0).

Here, we take the pseudo-fermion representation of the
spin operators S+,−,z = 1

2fασ
+,−,z
αβ fβ with fσ=↑,↓ being

the pseudo-fermion operator and σ+,−,z being the Pauli
matrices27.

In the original model the decoherence rate Γ corre-
sponds to the charge flip rates, defined as the broadening
Γd of the resonant-level (d−electron) Green’s function
(or equivalently the imaginary part of the resonant-level
self-energy Im(Σd(ω))): Γ = Γd = Im(Σd(ω)) where the
self-energy Σd(ω) of the d−electron Green’s function is
defined via: 1/Gd(ω) ∝ ω+ǫd+Re(Σd(ω))+iIm(Σd(ω))
with Gd(ω) being the Fourier transform of the resonant-
level Green’s function Gd(t) = iθ(t)〈[d(t), d†(0)]〉. These
two definitions for Γ agree with each other with the
proper identification: d = S−, d† = S+.
Note that these RG equations in the present context

were already discussed in the short Ref. 16, but now we
will elaborate the methodology. The configurations of
the system out of equilibrium are not true eigenstates,
but acquire a finite lifetime. The spectral function of
the fermion on the level is peaked at ω = ±V/2, and
therefore we have g⊥(z)(ω) ≈ g⊥(z)(±V/2) on the right
hand side of Eq. (11). Other Kondo couplings are not
generated. From Ref. 27 via the Fermi’s golden rule of
the spin-flip rates Γ in the Kondo model, we identify:

Γ =
π

4

∑

γ,γ′,σ

∫

dω
[

nσg
2
z(ω)fω−µγ (1− fω−µγ′ ) (13)

+nσg
2
⊥(ω)fω−µγ (1− fω−µγ′ )

]

,

where fω is the Fermi function. Here, γ = γ′ for the g2z(ω)
terms while γ 6= γ′ for the g2⊥(ω) terms with γ, γ′ being L
or R. We have introduced the occupation numbers nσ for
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-0.6 -0.4 -0.2 0 0.2 0.4 0.610
-6
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-4

0.01 -0.09
0.02 -0.08
0.03 -0.07
0.04 -0.06
0.05 -0.05
0.05 -0.03
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Γ

ω

⊥ gzg

/ D
0

(    )ω

FIG. 2: (Color online) Γ(ω) at T = 0 versus ω across the
KT transition. The bias voltage is fixed at V = 0.32D0.
Γ(ω) develops a peak (dip) at ω = 0 in the delocalized (local-
ized) phase, respectively. At ω ≈ ±V (vertical dotted lines),
Γ(ω) shows peaks (for localized phase) or dips (for delocal-
ized phase). Note that Γ(ω) weakly depends on ω for |ω| < V ,
Γ(|ω| < V ) ≈ Γ(ω = 0).

up and down spins satisfying n↑+n↓ = 1 and Sz = (n↑−
n↓)/2. In the delocalized phase, we get n↑ = n↓ = 1/2, in
agreement with the quantum Boltzmann equation27. At
the KT transition, we can use that g⊥(ω) = −gz(ω) from
the symmetry of the Kondo model and that

∑

σ nσ = 1.
Finally in the localized phase, we have g⊥ ≤ −gz, and nσ

satisfies |Sz | → 1/2 (see Refs. 7,8,10,11), which remains
true at a finite bias voltage.

B. Solutions to RG equations

Following the scheme of Ref. 27, we solve Eqs.
(11) and (13) self-consistently. First, we compute
g⊥(z)(ω = ±V/2) for a given cutoff D. We then
substitute the solutions back into the RG equations to
get the general solutions for g⊥(z)(ω) at finite V , and
finally extract the solutions in the limit D → 0. When
the cutoff D is lowered, the RG flows are not cutoff by
V but they continue to flow for Γ < D < V until they
are stopped for D ≤ Γ.

In Fig.1 we show a typical RG flow of g⊥(V/2) at the
KT transition as a function of bandwidth D with the
analytical approximation: g⊥(V/2) ≈ 1

2 ln D
D

for D > V ,

g⊥(V/2) ≈ 1

ln D2

DV

for Γ < D < V , and g⊥(V/2) ≈ 1

ln D2

V Γ

for D < Γ. Here, D = D0e
1/(2g⊥), with D0 being the

ultraviolet cutoff, and D is the running cutoff scale set
by the RG scaling equations for g⊥/z. This clearly shows
that the RG flow of g⊥(V/2) is stopped at Γ, a much
lower energy scale than V .

Note that the charge (or pseudospin) decoherence
rate Γ is a function of frequency, Γ(ω) in the more

10
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0

D / D
0
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0.0012

0.0014

0.0016

0.0018

0.002

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

V / D
0

10
-16

10
-12

10
-8

10
-4

Γ

Γ

V0

( D )

FIG. 3: (Color online) RG flow of Γ(D) at T = 0 versus D
(in unit of D0) at a fixed bias voltage V0 = 0.72D0 (vertical
dashed line) at the KT transition with bare Kondo couplings
g⊥ = 0.1 = −gz. Under RG, Γ approaches a constant value
as D → 0: Γ(D → 0) ≈ 0.00117D0 . Inset: Γ as a function of
V for the same bare Kondo couplings.

general and rigorous functional renormalization group
(FRG) framework31. Here, Γ = Γ(ω = 0) within FRG.
Nevertheless, we find Γ(|ω| ≤ V ) at T = 0 depends
weakly on ω and can be well approximated by its value
at ω = 0, Γ(T = 0, ω) ≈ Γ(T = 0, ω = 0) (see Fig. 2).
We have checked that the non-equilibrium current
I (V, T = 0) and conductance G(V, T = 0) obtained from
this approximation (Γ(T = 0, ω) ≈ Γ(T = 0, ω = 0))
agrees very well with that from the more rigorous FRG
approach based on the frequency-dependent decoherence
rate Γ(T = 0, ω) (see Eq. (36) below) as a consequence of
the fact that the current and conductance are integrated
quantities over the frequencies, and they are insensitive
to weak frequency-dependence of Γ. In Fig. 3 we show
the RG flow of the decoherence rate Γ(ω = 0) as a
function of D, using the same parameter as in Fig. 1.
One observes that Γ tends to a finite value as D → 0.
The inset shows Γ as a function of V (see also section
VI). Note that, unlike the equilibrium RG at finite
temperatures where RG flows are cutoff by temperature
T , here in non-equilibrium the RG flows will be cutoff by
the decoherence rate Γ, an energy scale typically much
higher than T , but much lower than V , T ≪ Γ ≪ V .
Moreover, Γ(V ) is a non-linear function in V . (For
example, at the KT transition ΓKT (V ) ∝ V/[ln(DV )]2.
) The unconventional properties of Γ(V ) lead to a
non-equilibrium conductance (G(V, T = 0)) distinct
from that in equilibrium (G(T, V = 0)) near the KT
transition16. In contrast, the equilibrium RG will lead
to approximately frequency independent couplings, (or
“flat” functions g⊥(ω) ≈ g⊥,z(ω = 0)).

Notice that the mapping mentioned above works near
the KT transition, α∗ ≡ 1

1+α → 1/2. However, for a
general case deep in the localized phase, the effective

Kondo couplings acquire an additional phase J
(1),(2)
⊥ ∝
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g
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ω / D
0

FIG. 4: g⊥,cr(ω) = −gz,cr(ω) at the transition at various bias
voltages V (in unit of D0); the bare couplings are g⊥ = −gz =
0.1 (in unit of D0). Here, g⊥,cr(ω) = g⊥,z(ω,D → 0). The
arrows give the values of g⊥(ω = 0) at these bias voltages.
Inset: Dips of g⊥,cr(ω) near ω = 0 for V = 0.01 (green)
where separation of the two dips, given by V , is comparable
to the width of the dip Γg (defined in the text), i.e. V ≈ Γg,
and for V = 0.00008 (magenta) where two dips are not well
separated, V ≪ Γg.

t1,2e
i(
√
2− 1√

K
)φ̃s;2,1 where the more general form of J

(1),(2)
⊥

and its phase φ̃s;2,1 are derived and defined in Eq. (A10)
of Appendix A.. This results in a nonzero bare scal-

ing dimension59 for J
(1),(2)
⊥ , [J

(1),(2)
⊥ ] = 1

2 (
√
2 − 1√

K
)2 =

1−
√

2
K + 1

2K . This slightly modifies the non-equilibrium

RG scaling equations to the following form:

∂gz(ω)

∂ lnD
= −

∑

β=−1,1

[

g⊥

(

βV

2

)]2

Θω+βV
2

∂g⊥(ω)

∂ lnD
= −

∑

β=−1,1

[(1− 1√
2K

)2g⊥

(

βV

2

)

+ g⊥

(

βV

2

)

gz

(

βV

2

)

]Θω+ βV
2

(14)

where the linear term 1
2 (1 −

√

2
K + 1

2K )g⊥
(

βV
2

)

in Eq.

(14) for g⊥(ω) comes from the bare scaling dimension of

J
(1),(2)
⊥ terms mentioned above, and it vanishes in the

limit of K → 1/2, as expected. In fact, this term applies
to the three models (case (i), (ii) and (iii)) through the
mappings. Note that the above scaling equations may be
cast in the same form as in Eq. (11) through redefinition

of the coupling gz: gz → ḡz = gz +
1
2 (1−

√

2
K + 1

2K ). All

the previous results remain valid upon the above shift of
gz.
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V / D
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I(V) via Eq. (17)
I(V) via Eq. (15)
Linear fit

10
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V / D
0

2×10
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4×10
-3

I/V

FIG. 5: Non-equilibrium current at the localized-delocalized
transition. The näıve approximate analytical expression Eq.
(17) fits well with the numerical result at low bias voltages up
to V ≈ Γ ≈ 10−2D0, see Inset). However, it starts to deviate
from the numerical result at higher bias voltages.

IV. NON-EQUILIBRIUM CONDUCTANCE

In the section, we present our results for non-
equilibrium conductance. All explicit results will be
obtained for the KT transition point and the localized
phase, but not for the delocalized phase.

A. Non-equilibrium conductance at the KT

transition

At the KT transition, we both numerically and analyti-
cally solve Eqs. (11) and (13) (in the limit of D → 0). In
particular, the approximated analytical solution within
the approximation ΘV ≈ Θ(D − V ) due to Γ ≪ V is
obtained:

g⊥,cr(ω) ≈
∑

β

Θ(|ω − βV/2| − V )
1

4 ln
[

D
|ω−βV/2|

] (15)

+ Θ(V − |ω − βV/2|)×
[

1

ln[D2/V max(|ω − βV/2|,Γ)] −
1

4 ln D
V

]

.

The solutions at the transition (denoted g⊥,cr and gz,cr)
are shown in Fig. 4. Since g⊥,cr(ω) decreases under the
RG scheme, the effect of the decoherence leads to min-
ima; the couplings are severely suppressed at the points
ω = ±V

2 . We also check that g⊥,cr(ω) = −gz,cr(ω).

From the Keldysh calculation up to second order in the
tunneling amplitudes, the current reads:

I =
π

8

∫

dω
[

∑

σ

4g⊥(ω)
2nσ × (16)

fω−µL(1− fω−µR)
]

− (L ↔ R).
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FIG. 6: Non-equilibrium conductance G = dI/dV at the KT
transition. G0 is the equilibrium conductance at the transi-
tion for T = D0: G0 = Geq(αc, T = D0) = 0.005π with the
bare couplings g⊥ = −gz = 0.1D0.

At T = 0, it simplifies as I = π
2

∫ V/2

−V/2
dωg2⊥(ω). Then, we

numerically evaluate the non-equilibrium current. The
differential conductance is obtained as G(V ) = dI/dV .
The T = 0 results at the KT transition are shown in
Fig. 5 and Fig. 6.
First, it is instructive to compare the non-equilibrium

current at the transition to the (näıve) approximation:

Icr ≈ πV

2
[g⊥,cr(ω = 0)]

2 ≈ π

8

V

(ln2(D/V ))
. (17)

As shown in Fig. 5, our numerically obtained non-
equilibrium current fits well with the above analytical
approximation for V < 0.01D0. However, it starts to
deviate from its numerically obtained values for higher
bias voltages V > 0.01D0 (see Inset of Fig. 5). This
deviation is due to the fact that the equilibrium form of
the conductance at the transition is obtained by treat-
ing gcr⊥(ω) a flat function within −V/2 < ω < V/2:
gcr⊥(ω) ≈ gcr⊥(ω = 0) ≈ geqcr⊥(T → V ). We have
checked that the equilibrium coupling gcr⊥(ω = 0) in-
deed corresponds to geq⊥ (T = V ), therefore the transport
recovers the expected equilibrium form for V → 0. How-
ever, since g⊥(ω) is not a flat function for −V/2 < ω <
V/2 (it has two minima at ω = ±V/2), with increas-
ing V (say for V ≈ 0.01D0) the non-equilibrium current
exhibits a distinct behavior due to the frequency depen-
dence of the coupling.
Note that the crossover in conductance from

equilibrium to non-equilibrium profile happens
when separation of the two dips at ω = ±V/2 in
g⊥(ω), given by the voltage bias V , is comparable
to the width of the dip Γg, i.e. V ≈ Γg (see Fig. 4
and the Inset therein). Here, Γg is estimated as
the width of ω in g⊥(ω) such that the magnitude
of the dip |g⊥ − g⊥(ω = V/2)| is reduced by about
20%. For the parameters used in Fig. 4 and Fig.
5 (g⊥ = 0.1D0 = −gz), we find the crossover occurs
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g g⊥ z

⊥ zg g

c

(b)(a)
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FIG. 7: Conductance in the localized phase (in units of
π). (a) G(V ) at low bias follows the equilibrium scaling
(dashed lines). (b) The conductance G(V )/Gc is a func-
tion of V/T ∗ where we have defined Gc = G(αc, V ) and

T ∗ = D0e
−π/
√

g2z−g2⊥ .

for V ≈ Γg ≈ 0.01D0. In general, Γg is a function
of voltage bias V , the decoherence rate Γ, and
initial (bare) Kondo couplings (see, for example
Eq. (15)). Hence, the crossover scale occurs at
a different voltage V when different initial (bare)
couplings are considered.
In fact, the more accurate approximate expression for

the non-equilibrium current at the transition is found to
be:

I(αc, V ) ≈ πV

2

(π

4
[g⊥,cr(ω = 0)]

2
)

+
πV

2

(

(1− π

4
) [g⊥,cr(ω = V/2)]

2
)

,

(18)

where

g⊥,cr(ω = V/2) ≈ 1/ ln(
D2

ΓV
)

g⊥,cr(ω = 0) ≈ 2

(

1

ln(2D2/V 2)
− 1

4 ln(D/V )

)

.

(19)

Here, we have treated g⊥,cr(ω)
2 within the interval

−V/2 < ω < V/2 as a semi-ellipse.
As demonstrated in Fig. 6, the conductance G(V ) ob-

tained via the approximation in Eq. (18) fits very well
with that obtained numerically over the whole range of
0 < V < D0. In the low-bias V → 0 (equilibrium)

limit, since g⊥,cr(ω = 0) ≈ g
(e)
⊥,cr(T = V ) ≪ 1, we have

I(αc, V ) ≈ πV
2

(

g
(e)
⊥,cr(T = V )

)2

; therefore the scaling of

G(αc, V ) is reminiscent of the equilibrium expression in
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(solid lines) is distinct from the equilibrium form (dashed
lines). The dot-dashed lines stem from an analytical approx-
imation via Eq. (26).

Eq. (3), G(αc, V ) ≈ π
2

(

g
(e)
⊥,cr(T = V )

)2

= π
8

1
ln2(D/V )

.

This agreement between equilibrium and non-equilibrium
conductance at low V persists up to a crossover scale
V ≈ 0.01D0 (determined for the parameters used in Fig.
6). At larger biases, the conductance shows a unique non-
equilibrium profile; see Eq. (18). We find an excellent
agreement of the non-equilibrium conductance obtained
by three different ways — pure numerics, analytical so-
lution Eq. (15) and the approximation in Eq. (18).

For large bias voltages V → D0, since
g⊥,cr(ω) approaches its bare value g⊥, the non-
equilibrium conductance increases rapidly and
reaches G(αc, V ) ≈ G0 = π

2 g
2
⊥. Note that the

non-equilibrium conductance is always smaller than
the equilibrium one, G(αc, V ) < Geq(αc, T = V ),
since g⊥(ω = ±V/2) < g⊥(ω = 0). Additionally,
in the delocalized phase for V ≫ TK > 0, the RG
flow of g⊥ is suppressed by the decoherence rate, and
G ∝ 1/ ln2(V/TK) (Ref. 27).

B. Non-equilibrium conductance in the localized

phase

In the localized phase, we first solve the equilibrium
RG equations of the effective Kondo model analytically,
resulting in

G
(e)
loc(T ) =

π

2

(

g
(e)
⊥,loc(T )

)2

(20)

g
(e)
⊥,loc(T ) =

2cg⊥(c+ |gz|)
(c+ |gz|)2 − g2⊥(

T
D0

)4c
(
T

D0
)2c

(21)

where c =
√

g2z − g2⊥. We introduce the energy scale

T ∗ = D0e
−π/

√
g2
z−g2

⊥ (which vanishes at the KT transi-

tion) such that g
(e)
⊥,loc(T ) ∝ (T/T ∗)2c for T → 0, leading

to G
(e)
loc(T ) ∝ (T/T ∗)4c.

At a finite bias, we then solve for the self-consistent
non-equilibrium RG equations both analytically and nu-
merically, resulting in:

g⊥,loc (ω = V/2) ≈ g⊥ +
A

2c
[V 2c

√

c2 +A2V 4c (22)

−
√

A2 + c2] +
B

2c
[Γc

√

c2 +B2Γ2c

− V c
√

c2 +B2V 2c]

+
c

2
ln

[

BΓc +
√
c2 +B2Γ2c

BV c +
√
c2 +B2V 2c

]

+
c

2
ln

[

AV 2c +
√
c2 +A2V 4c

A+
√
c2 +A2

]

,

g⊥,loc (ω = 0) ≈ g⊥ +
A

2c
[V 2c

√

c2 +A2V 4c (23)

−
√

A2 + c2] +
B

c
[(
V

2
)c
√

c2 +B2(
V

2
)2c

− V c
√

c2 +B2V 2c]

+
c

2
ln





B(V2 )
c +

√

c2 +B2(V2 )
2c

BV c +
√
c2 +B2V 2c





+
c

2
ln

[

AV 2c +
√
c2 +A2V 4c]

[A+
√
c2 +A2

]

,

and similarly we get

gz,loc (ω = V/2) ≈ gz +
A2

2c
[1− V 4c] (24)

+
B2

2c
V 2c[1− (

Γ

V
)2c],

gz,loc (ω = 0) ≈ gz +
A2

2c
[1− V 4c] (25)

+
B2

c
V 2c[1− 2−2c],

where we unambiguously identify A = g⊥
2 + cg⊥

c+|gz| ,

B = AV c; in this expression, V and Γ have been
normalized to D0.

The non-equilibrium current in the localized phase
Iloc(V ) is obtained via the same approximation leading
to Eq. (18) at the KT transition:

Iloc(V ) ≈ πV

2

(π

4
[g⊥,loc(ω = 0)]

2
)

(26)

+
πV

2

(

(1− π

4
) [g⊥,loc(ω = V/2)]2

)

.
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FIG. 9: Scaling of the conductance G(V ) at the KT transi-
tion (same unit as in Fig. 6). (a). For V ≫ T , the conduc-
tance follows the non-equilibrium scaling G(αc, V ). (b). For
V < T , now the conductance follows the equilibrium scaling
Geq(αc, T ).

As shown in Fig. 7, we numerically obtain the non-
equilibrium conductance in the localized phase. For very
small bias voltages V → 0, we find that the conductance

reduces to the equilibrium scaling: G(V ) → G
(e)
loc(T =

V ) ∝ (V/T ∗)4c (see Fig. 7 (a) and (b)). For g⊥,loc ≪
|gz,loc| and α∗ = 1

1+α → 1/2, we get that the exponent
4c ≈ 2α∗ − 1, in perfect agreement with that obtained
in equilibrium at low temperatures: G(T ) ∝ T 2α∗−1

(Ref. 9). At higher bias voltages 0.01D0 < V < D0,
the conductance now follows a unique non-equilibrium
form (consult Fig. 8) whose qualitative behavior is sim-
ilar to that at the KT transition. Our non-equilibrium
conductance obtained numerically in this phase is in very
good agreement with that from the above approximated
analytical solutions in Eq. (26) (see Fig. 8).

C. Non-equilibrium conductance at finite

temperatures

We have also analyzed the finite temperature profile
of the non-equilibrium conductance at the transition and
in the localized phase. We distinguish two different be-
haviors. At the KT transition, for V > T , the conduc-
tance G(V, T ) exhibits the same non-equilibrium form as
T = 0, G(V, T = 0) (see Fig. 9(a)); while as for V < T
it saturates at the value for the equilibrium conductance
(V = 0) at finite temperatures (see Fig. 9(b). In the
localized phase, while for V < T the conductance satu-
rates at G(V = 0, T ) (Fig. 10(a)), for V > T , however,
G(V, T ) exhibits universal power-law scaling:

G(V, T )/G(V = 0, T ) ∝ (V/T )4c (27)
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FIG. 10: Scaling of the conductance in the localized phase
with g⊥ = 0.08, gz = −0.12 (in unit of D0). (a). For V ≫ T ,
the conductance follows the non-equilibrium scaling G(α, V ).
(b). For V ≪ T , now the conductance follows the equilibrium
scaling Geq(αc, T ).

(see Fig. 10(b)). This universal power-law scaling be-
havior in G(V, T ) looks qualitatively similar to that from
the recent experiment on the transport through a dis-
sipative resonant level in Ref. 47. However, these two
power-law behaviors in conductance at a finite bias and
temperature are different in their origins: The authors in
Ref. 47 studied the quantum critical behavior of a dis-
sipative resonant level in the regime of the delocalized
phase (α < αc = 1). As the resonant level is detuned
from the Fermi level, the system at low temperatures ex-
hibits power-law scaling in conductance at a large bias
voltage V > T : G(V/T ) ∝ (VT )2α with 0 < α < 1.
They showed further that this behavior is equivalent to
that for a single-barrier tunneling of electrons through a
Luttinger liquid. By contrast, the Luttinger-liquid-like
power-law scaling in G(V, T ) (see Eq. (27)) we find here
is the generic feature of a dissipative resonant level in
the localized phase (α > αc = 1), which has not yet
been explored experimentally. Therefore, our theoreti-
cal predictions on the nonequilibrium transport at a dis-
sipative quantum phase transition offer motivations for
further experimental investigations in the regime of our
interest. The above two qualitatively different behav-
iors in conductance for V < T and V > T crossover at
V = T . Note that similar behavior has been predicted
in a different setup consisting of a magnetic Single Elec-
tron Transistor (SET) in Ref. 22 where a true quantum
critical point separates the Kondo screened and the local
moment phases.
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FIG. 11: (Color online) Diagram for the FF current noise
S(ω). The solid lines represent conduction electron propaga-
tors; the dashed lines denote the pseudo-fermion propagators.
The current vertex functions Lαβ(ω1, ω2) are denoted by the
shaded squares.

V. NON-EQUILIBRIUM FINITE-FREQUENCY

CURRENT NOISE

In addition to non-equilibrium current and conduc-
tance near the localized-delocalized transition addressed
above, further insight on the phase transition can be ob-
tained from the current fluctuations (or noise). The zero
frequency shot noise has been used to probe the frac-
tional charge of quasiparticle excitations in FQHE state
tunnelings65,66. However, even more useful information
can be found in the finite-frequency (FF) current noise,
which can be used to probe the crossover between differ-
ent quantum statistics of the quasiparticles. Recently,
there has been theoretical studies on the FF current
noise of a non-equilibrium Kondo dot67–69. So far, these
studies have not been extended to the non-equilibrium
FF current noise of a dissipative quantum dot. In this
section, we perform completely new calculations (com-
pare to those presented in Ref. 16) to provide further
signatures of the transition in FF current noise spectrum.

A. Functional RG approach

To address this issue, we combine recently developed
functional renormalization group (FRG) approach in
Refs. 17,31 and the real-time FRG approach in Ref. 69.
Within our FRG approaches, as the system moves
from the delocalized to the localized phase, we find
the smearing of the dips in current noise spectrum
for frequencies ω ≈ ±V ; more interestingly, we find a
peak-to-dip crossover in the AC conductance at ω ≈ ±V .
These features are detectable in experiments and can
serve as alternative signatures (besides conductance)
of the QPT in the dissipative resonant level quantum dot.

First, via the above mapping, the current through the
dissipative resonant level quantum dot is given by the
transverse component of the current Î⊥(t) in the effective
anisotropic Kondo model as shown in Eq. (10)16. Fol-
lowing the real-time RG approach in Ref. 69 the Keldysh
current operator through the left lead in the effective
Kondo model (via a generalization of Eq. (10)) is given
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FIG. 12: (Color online) Diagram for renormalization of the
current vertex function Lαβ(ω1, ω

′
1) (the squares). The solid

lines represent conduction electron propagators; the dashed
lines denote the pseudo-fermion propagators. Here, the
Kondo couplings g(ω) are denoted by the circles.

by: Î⊥L (t):

Î⊥L (t) =
e

4

∑

κ

∫

dt1dt2
∑

α,β

∑

dt1dt2L
⊥
αβ(t1 − t, t− t2)

× [s+αβ(t1, t2)S
−
f (t) + h.c.] (28)

with α, β = L,R, ~Sf (t) = fκ†(t)~σfκ(t), s±αβ(t1, t2) =

cκ†α (t1)σ
±cκβ(t2). Here, Lαβ(t1−t, t−t2) is the left current

vertex matrix with bare (initial) matrix elements: L0⊥
LL =

L0⊥
RR = 0, L0⊥

LR = −L0⊥
RL = ig0LR ≡ g⊥, L0z

LL = L0z
RR ≡ gz,

L0z
LR = −L0z

RL = 0, and κ = ±1 being the upper and lower
Keldysh contour, respectively. The emission component
of the non-equilibrium FF noise of a Kondo quantum dot,
S<(t), is given by the current-current correlator:

S<
LL(t) ≡ 〈Î⊥L (0)Î⊥L (t)〉 (29)

Similarly, the absorption part of the noise is defined as:
S>(t) ≡ 〈Î⊥L (t)Î⊥L (0)〉. Note that the current operator

Î⊥L (t) is non-local in time under RG; the current vertex
function Lαβ(t1− t, t− t2) therefore acquires the double-
time structure: it keeps track of not only the times elec-
trons enter (t1) and leave (t2) the dot, but also the time
t at which the current is measured69. The double-time
structure of the current operator automatically satisfies
the current conservation: Î⊥L (t) = −Î⊥R (t) (Ref. 69).
The frequency-dependent current noise S(ω) is computed
via the second-order renormalized perturbation theory
(see diagram in Fig. 11). Note that due to the double-
time structure of the current vertex function Lαβ(t1, t2),
in the Fourier (frequency) space, Lα,β(ǫ+ω, ǫ) has a two-
frequency structure; it depends on the incoming (ǫ + ω)
and outgoing (ǫ) frequencies of the electron (see Fig. 11).
The result reads:

S<(ω) =
∑

α,β=L,R

−2Re(Dαβ(ω)
<) (30)

where the correlatorDαβ(ω) is computed by the diagram
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FIG. 13: (Color online) 3D plot for LLR(ω1, ω2) at zero tem-
perature in the delocalized phase with bare Kondo couplings
being g0⊥ = 0.05D0, g

0

z = 0.05D0. The bias voltage is fixed at
V = 0.32D0 .

in Fig. 11:

Dαβ(ω)
< =

∫

dΩ

2π
[χαβ(Ω, ω)χf (Ω)]

<,

χαβ(Ω, ω) =

∫

dǫ

2π
Ĝα(ǫ)Ĝβ(ǫ+Ω + ω)

× L⊥
αβ(ǫ+ ω, ǫ)L⊥

βα(ǫ, ǫ+ ω),

χf (Ω) =

∫

dν

2π
Ĝf (ν)Ĝf (ν + Ω), (31)

where Ĝ is the Green’s function in 2× 2 Keldysh space,
and its lesser and greater Green’s function are related to
its retarded, advanced, and Keldysh components by:

G< = (GK −GR +GA)/2

G> = (GK +GR −GA)/2 (32)

The lesser (G<) and greater (G>) components of Green’s
function of the conduction electron in the leads and of the
quantum dot (impurity) are given by:

G<
L/R(ǫ) = iAc(ǫ)fǫ−µL/R

G>
L/R(ǫ) = iAc(ǫ)(1− fǫ−µL/R

)

G<
fσ(ǫ) = 2πiδ(ǫ)nfσ(ǫ)

G>
fσ(ǫ) = 2πiδ(ǫ)(nfσ(ǫ)− 1), (33)

where Ac(ǫ) = 2πN0Θ(D0 − ǫ) is the density of states of
the leads, nfσ(ǫ) = 〈f †

σfσ〉 is the occupation number of
the pseudofermion which obeys nf↑ + nf↓ = 1, nfσ(ǫ →
0) = 1/2 in the delocalized phase and nf↑(ǫ → 0) → 0,
nf↓(ǫ → 0) → 1 in the localized phase16,18. Here, the
pseudofermion occupation number nfσ and the occupa-
tion number on the dot nd are related via 〈nf↑ − nf↓〉 =
〈nd〉 − 1/2 (Refs. 16,17). The renormalized current ver-
tex function L⊥

αβ(ω1, ω2) and the Kondo couplings g⊥(ω),
gz(ω) are obtained from the non-equilibrium functional

FIG. 14: (Color online) 3D plot for LLR(ω1, ω2) at zero tem-
perature in the localized phase with bare Kondo couplings
being g0⊥ = 0.05D0 , g

0

z = −0.1D0. The bias voltage is fixed
at V = 0.32D0.

RG approaches in Ref. 69 and Refs. 27,31, respectively.
Carrying out the calculations, the finite-frequency noise
spectrum reads:

S<(ω) =
∑

α,β=L,R

3

8

∫

dǫL⊥
αβ(ǫ+ ω, ǫ)L⊥

βα(ǫ, ǫ+ ω)

× fǫ−µα(1 − fǫ−µβ
), (34)

where fǫ−µα is the Fermi function of the lead α = L/R

given by fǫ−µα = 1/(1+ e(ǫ−µα)/kBT ). The symmetrized
noise spectrum reads:

S(ω) =
1

2
[S<(ω) + S>(ω)] (35)

with the relation between emission and absorption parts
of the noise spectrum in frequency space S<(ω) =
S>(−ω) being used.
The frequency-dependent Kondo couplings g⊥,z(ω)

and current vertex functions L⊥
αβ(ω1, ω2) are obtained

self-consistently within the FRG approaches, which can
be divided into two parts. First, the Kondo couplings
g⊥,z(ω) are solved via Eq. (11)17,27,31 together with the
generalized frequency-dependent dynamical decoherence
rate Γ(ω) appearing in Θω = Θ(D − |ω + iΓ(ω)|) in Eq.
(11). Here, Γ(ω) is obtained from the imaginary part of
the pseudofermion self energy17,31,63:

Γ(ω) =
π

4

∫

dǫ g⊥(ǫ + ω)g⊥(ǫ)[f
L
ǫ − fR

ǫ+ω]

+ gz(ǫ+ ω)gz(ǫ)[f
L
ǫ − fL

ǫ+ω]

+ (L → R). (36)

Note that the zero-frequency decoherence rate Γ(ω = 0)
corresponds to the decoherence rate Γ obtained in Eq.
(13)27. We have solved the RG equations Eq. (11)
subject to Eq. (36) self-consistently72.
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FIG. 15: (Color online) S(ω) at zero temperature versus ω
across the KT transition. The bias voltage is fixed at V =
0.32D0. Inset: S(ω) at zero temperature versus ω normalized
to S0 = S(ω = 0).

The solutions for g⊥(ω), gz(ω) and Γ(ω) close to
the KT transition are shown in Refs. 16,17 (see also
Fig. 2 and Fig. 4). As the system goes from
the delocalized to localized phase, the features
in g⊥(ω = ±V/2) undergo a crossover from sym-
metric double peaks to symmetric double dips,
while the two symmetric peaks in gz(ω = ±V/2)
still remain peaks (see Fig. 4). The finite-frequency
non-equilibrium decoherence rate Γ(ω) monotonically in-
creases with increasing ω, it shows logarithmic singular-
ities at |ω| = V in the delocalized phase17. As the sys-
tem moves to the localized phase, the overall magnitude
of Γ(ω) decreases rapidly and the singular behaviors at
ω = ±V get smeared out17.
Next, following Ref. 69, we generalize the RG scaling

equation for the general current vertex function Lαβ(ω)
for the anisotropic Kondo model (see diagrams in Fig. 12
and also in Fig. 1 of Ref. 69). The RG scaling equa-

tions for the general vertex functions L⊥,z
αβ (ω1, ω2) can

be simplified as:

dLαβ(ω1, ω2)

dlnD
=

∑

γ=L,R

Lαγ(ω1, ω2)Θµγ (ω2)gγβ(ω2)

+ gαγ(ω1)Θµγ (ω1)Lγβ(ω1, ω2) (37)

where we make the following identifications:
gLR/RL(ω) → g⊥LR/RL(ω) ≡ g⊥(ω), gαα(ω) →
gzLL/RR(ω) ≡ gz(ω). Similarly, LLR/RL(ω1, ω2) →
L⊥
LR/RL(ω1, ω2) refers to only the transverse compo-

nent of the current vertex function Lαβ(ω1, ω2); while
LLL/RR → Lz

LL/RR refers only to the longitudinal part

of Lαα. Here, the frequency-dependent Kondo couplings
g⊥,zσ(ω) in Eq. (37) are obtained from Eq. (11) and Eq.
(36). Note that the scaling equations for Lαβ(ω1, ω2)
via Ref. 69 can also be expressed within the RG ap-
proach in Ref. 27 via a straightforward generalization
by allowing for the two-frequency dependent vertex
functions Lαβ(ω1, ω2) where ω1(2) refers to the incoming
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FIG. 16: (Color online) (a) The zero-temperature AC con-
ductance GAC(ω) defined in Eq. (38) versus ω across the KT
transition. (b) GAC(ω) at zero temperature versus ω nor-
malized to G0 ≡ GAC(ω = 0). The bias voltage is fixed at
V = 0.32D0.

(outgoing) frequency (see Fig. 11 and Fig. 12).

B. Results

We solved the self-consistent RG scaling equations Eq.
(37) for the current vertex functions with the help of
the solutions for the renormalized Kondo couplings via
Eq. (11) and Eq. (36). The typical results at zero tem-
perature are shown in Fig. 13 and Fig. 14; they exhibit
the following symmetry: Lαβ(ω1, ω2) = −Lβα(ω2, ω1).
Note that since the initial conditions for the current
vertex function have the following structures: L0

αα = 0,
L0
LR 6= 0, we find Lαα(ω1, ω2) ≪ LLR(ω1, ω2). In the

delocalized (Kondo) phase, a sharp peak is developed
in LLR(ω1, ω2) for (ω1, ω2) = (V/2,−V/2), while a
small dip (valley) is formed at (ω1, ω2) = (V/2, 0)
(see Fig. 13). Meanwhile, in general LLR(ω1, ω2) is
maximized at ω1(2) = ±V/2 for fixed ω2(1). This agrees
perfectly with the result in Ref. 69. In the localized
phase, however, we find the opposite: LLR(ω1, ω2)
develops a sharp dip at (ω1, ω2) = (V/2,−V/2); and it
is minimized ω1(2) = ±V/2 for fixed ω2(1). The peak-dip
structure of the current vertex function Lαβ plays a
crucial role in determining the noise spectrum both in
delocalized and in the localized phases.

Substituting the numerical solutions for Lαβ(ω1, ω2)
and gαβ(ω) into Eq. (34), we get the zero-temperature
FF noise S(ω). The results at zero temperature are
shown in Fig. 15. First, the overall magnitude of S(ω)
decreases rapidly as the system crosses over from the de-
localized to the localized phase. This can be understood
easily as the current decreases rapidly in the crossover,
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FIG. 17: (a) Γ

V
and (b) Γ as a function of V/D0 near the KT

transition.

leading to a rapid decrease in the magnitude of noise.
For |ω| > V , S(ω) in both phases increases monotoni-
cally with increasing ω due to the increase of the photon
emission at higher energies69. For |ω| ≤ V , however, it
changes from a peak to a dip centered at ω = 0 as the sys-
tem crosses overs from delocalized to localized phase (see
Fig. 15). At |ω| = V , S(ω) exhibits a dip (minima) in
the delocalized phase, a signature of the non-equilibrium
Kondo effect; while as the system crosses over to the
localized phase the dips are gradually smeared out and
they change into a “kink”-like singular point at ω = ±V ,
connecting two curves between ω < V and ω > V .
We furthermore computed the non-equilibrium AC con-
ductance at zero temperature69,70:

GAC(ω) =
S<(ω)− S>(ω)

ω
(38)

across the transition. Note that G(ω = 0) = dI/dV
corresponds to the non-equilibrium differential con-
ductance. As shown in Fig. 16 (a), in the delocalized
phase the splitted peaks in GAC(ω) at ω = ±V are
signatures of the Kondo resonant at finite bias, and are
consistent with the dips at seen in the noise spectrum.
As the system moves to the localized phase, the overall
magnitudes of GAC(ω) as well as the pronounced
splitted Kondo peaks at ω = ±V get suppressed;
they change into dips deep in the localized phase (see
Fig. 16 (b)). In response to this change in the splitted
Kondo peaks, the overall shape of GAC(ω → 0) shows
a dip-to-hump crossover near ω = 0. Note that the
suppression of the Kondo peaks for GAC(ω) at ω = ±V
corresponds to the smearing of the dips at ω = ±V
shown in the noise spectrum S(ω) (see Fig. 15). The
above evolution in the noise spectrum matches well
with the non-equilibrium transport properties studied
in Refs. 16,18, and can serve as alternative signatures of
the localized-delocalized transition in future experiments.

VI. DISCUSSIONS

We would like to make a few remarks before we
conclude. Firstly, the distinct non-equilibrium scaling
behavior seen here is in fact closely tied to the non-trivial
(non-linear) V dependence of the decoherence rate Γ(V )
which cuts off the RG flow (see Fig. 17 (a) and (b)).
The decoherence rate Γ near the transition clearly plays
a very different role as compared to the temperature
near the transition. In particular, at T = 0 we find that
Γ ∼ 1

2I is a highly non-linear function in V , resulting
in the observed deviation of the non-equilibrium scaling
from that in equilibrium. In fact, we can obtain the
analytical form via the approximation in Eq. (18)
and Eq. (26). At the KT transition, Γ/V shows a
logarithmic decrease as V decreases (see Eqs. (18),
(19)); while in the localized phase it exhibits a combined
power-law and logarithmic dependence on V (see Eqs.
(22), (23), (24), (25), (26)).

By contrast, the equilibrium decoherence rate Γ(V =
0, T ) shows a clear power-law behavior in the localized
phase at low temperatures, T → 0 (see Eq. (21)):

Γ(V = 0, T ) ∝
(

T

T ∗

)1+4c

, (39)

which is consistent with the prediction made in Ref. 74
for the electron lifetime in Luttinger liquids.

Meanwhile, at the KT transition and in the localized
phase, since Γ ≪ V , the RG flow for g⊥/z are cut off at
an energy scale Γ much lower than V , leading to smaller
renormalized couplings g⊥/z in magnitude compared to

their corresponding equilibrium values g
(e)
⊥/z(T = V ),

|g⊥/z| < |g(e)⊥/z(T = V )|. This results in smaller conduc-

tance than that in equilibrium, G(V ) < Geq(T ).

Secondly, it is of fundamental importance to study fur-
ther the possible scaling behaviors in non-equilibrium
dynamical quantities near the transition, such as the
ω/T scaling in dynamical charge susceptibility at the
KT transition and in the localized phase. In particular,
the question has been raised on the existence of the con-
cept of “effective temperature” that allows one to extend
the fluctuation-dissipation theorem in equilibrium to the
non-equilibrium (non-linear) regime73. It is also interest-
ing to address the crossover between delocalized phase
with G(V ) ∝ 1/ ln2(V/TK) where lnTK ∝ 1/(α− αc) to
KT point with G(V ) ∝ 1/ ln2(T/D) and further to the lo-
calized phase with power-law conductance G(V ) ∝ V β .
To date, the full crossover function of the conductance
is not known yet. Further study is therefore needed to
investigate these issues.
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VII. CONCLUSIONS

In summary, we have investigated the non-equilibrium
transport at a QPT using a standard nano-model, the
dissipative resonant level model. By employing an
exact mapping onto the anisotropic Kondo model and
by applying a controlled energy-dependent RG and
functional RG approaches to our model system we have
calculated the renormalized coupling functions g⊥,z(ω),
the decoherence rate Γ, the current I, differential con-
ductance G(V, T ), and the current noise spectrum S(ω).
For V → 0, the conductance G follows the equilibrium
behavior; by increasing V , the frequency-dependence
of the couplings begins to play an important role and
therefore we systematically find scaling behavior of the
non-equilibrium conductance very distinct from that of
the equilibrium counterpart. We have also analyzed the
finite temperature profile of G(V, T ) at the transition
as well as in the localized phase and found that the
conductance shows different behaviors for V > T and
V < T ; it exhibits V/T scaling behavior for V ≪ T .

Regarding transport properties of our system near
the transition, the role played by the bias voltage is
very different from that played by the temperature.
The key to these very different behaviors lies in the
fact that the non-equilibrium charge (or effective spin)
decoherence rate, which serves as a cutoff for the RG
flows of the Kondo couplings, is a highly non-linear
function of the bias voltage. Further investigations
are needed to address the full crossover function in
conductance as well as the scaling behaviors of the
dynamical quantities near the transition in a search for
the existence of the “effective temperature” that allows
one to generalize the equilibrium fluctuation-dissipation
theorem to the non-equilibrium regime. Furthermore, we
provide signatures of the localized-delocalized transition
in the finite-frequency current noise spectrum and the
AC conductance. Our results have a direct experimental
relevance for dissipative two-level systems; moreover,
they are applicable for describing non-equilibrium trans-
port of a resonant level coupled to interacting chiral
Luttinger liquid generated by fractional quantum Hall
edge states via the mappings discussed in Appendix A.
Finally, our model system has direct relevance for the
recent experiment in a quantum dot coupled to resistive
environment as shown in Ref. 47. Our work motivates
future experimental as well as theoretical investigations
on dissipative quantum phase transitions in nanosystems.
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Appendix A: Useful mappings

In this Appendix, we provide detailed derivations on
various mappings mentioned in Section II. Via bosoniza-
tion and refermionization techniques, the three mappings
described below will follow one from the other, but there
are a few technical details that will change.

1. Mapping a dissipative resonant level model onto

anisotropic Kondo model

We provide details on the mapping of the dissipative
resonant level model in Eq. (1) onto the anisotropic
Kondo model in Eq. (4). Our goal is to connect the
parameters of these two equations in the main text.
We first start from Eq. (1):

H =
∑

k,i=1,2

(ǫ(k)− µi)c̄
†
kic̄ki + tic̄

†
kid+ h.c. (A1)

+
∑

r

λr(d
†d− 1/2)(br + b†r) +

∑

r

ωrb
†
rbr,

where ti is the (real-valued) hopping amplitude between
the lead i and the quantum dot, c̄ki and d are (spinless)
electron operators for the (Fermi-liquid type) leads and
the quantum dot, respectively. µi = ±V/2 is the chem-
ical potential applied on the lead i (V denotes the bias
voltage), while the dot level is at zero chemical poten-
tial. Here, br are the boson operators of the dissipative
bath with an Ohmic type spectral density. It proves to
be more convenient to re-express the dissipative boson

fields br and b†r in terms of the canonical fields φ̂0(x, t)

and Π̂0(x, t) as
7,61:

φ̂0(x, t) =

∫ ∞

−∞

dp

2π
√

2|p|
[bpe

ipx + b†pe
ipx]e−a|p|/2

Π̂0(x, t) = ∂tφ̂0(x, t)

(A2)

where ωr = vbpr with vb being the phonon velocity, and

the boson fields φ̂0(x, t) and Π̂0(x, t) satisfy the commu-
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tation relation: [φ̂0(x, t), Π̂0(x
′, t)] = iδ(x − x′). The

dissipative boson bath can therefore be re-expressed as:

Hdiss =
∑

r

ωrb
†
rbr =

∫

dp

2π
|p|b†pbp

=
1

2

∫

dx[(∂xφ̂0)
2(x, t) + Π̂2

0(x, t)]. (A3)

Here, the velocity of the boson field φ̂0 is set to be 1.

We continue the mapping by bosonizing the fermionic
operators in the leads:

c̄α(0) =
1√
2πa

Fαe
iϕα(0), (A4)

where we have introduced the (standard) Klein factors
Fα ensuring anti-commutation relations and a is a short-
distance cutoff (lattice spacing). The fermionic baths of
conduction electrons can be re-written as:

Hleads =
∑

k,i=1,2

(ǫ(k)− µi)c̄
†
ki c̄ki

=
1

2

∫

dx
∑

α=1,2

[(∂xϕα)
2(x, t) + Π2

α(x, t)](A5)

where the Fermi velocity of the electrons is set to be 1.

The level on the quantum dot can be mapped onto a
pseudo-spin: d = FdS

− and Sz = d†d − 1/2; α = 1, 2
represent the two leads. The coupling between the dot
and the dissipation bath (λi term) can be absorbed in the
tunneling part of the Hamiltonian through the unitary
transformation UB

7:

UB = e
i

√

1
Kb

Szφ̂0
(A6)

H̃t = U †
BHtUB

=
∑

i=1,2

tiF
†
i Fde

i

√

1
Kb

φ̂0
eiϕα(0)S− +H.c.

with Kb ≡ 1
α . Here, α refers to the strength of the cou-

pling between the resonant level and the dissipative bo-
son bath, and we set 2πa = 1 for simplicity.

We can simplify our variables even further by combin-
ing the above fields describing the leads and the noise:

φ̃s,α =
√
K(ϕα +

√

1
Kb

φ̂0), φ̃a,α =
√
K(

√

1
Kb

ϕα − φ̂0),

where 1
K = 1

Kb
+1 = α+1 ≡ 1

α∗ . Note that here K may
be interpreted as the effective Luttinger liquid parame-
ter as the effect of Ohmic dissipation on the quantum dot
plays a similar role as interactions in the Luttinger liquid
leads coupled to the dot with the identification K = 1

1+α .

The combined bosonic and fermionic bath H̃bath can be

re-expressed in terms of these new boson fields:

H̃bath ≡ Hleads +Hdiss

=
1

2

∫

dx
∑

α=1,2

[(∂xϕα)
2(x, t) + Π2

α(x, t)]

+
1

2

∫

dx[(∂xφ̂0)
2(x, t) + Π̂2

0(x, t)]

=
1

2

∫

dx
∑

α=1,2

[(∂xφ̃s,α)
2(x, t) + Π̂2

s,α(x, t)

+ (∂xφ̃a,α)
2(x, t) + Π̂2

a,α(x, t)], (A7)

where Πs(a),α fields are canonically conjugate to the fields

φ̃s(a),α. Note that as we shall see below only the fields

from symmetric combinations φ̃s,α and Πs,α couple to the
tunneling and chemical potential terms, the antisymmet-
ric combinations φ̃a,α and Πa,α are de-coupled from the
rest of the Hamiltonian.
The tunneling and chemical potential parts of the

Hamiltonian now become:

H̃t = U †
BHtUB =

∑

α=1,2

tαF
†
αFde

i
φ̃s,α√

K S− +H.c.(A8)

H̃µ = U †
BHµUB = −V

2

√

1

K
(∂xφ̃s,1 − ∂xφ̃s,2)

Close to α∗ = 1/2 (transition), we can map our
model onto the 2-channel anisotropic Kondo model. Af-
ter applying the two unitary transformations U1 =

e
i(

φ̃s,1√
K

−
√
2φ̃s,1)Sz and U2 = e

i(
φ̃s,2√

K
−
√
2φ̃s,2)Sz , we obtain:

H̃
′′

t = U †
2U

†
1H̃tU1U2 (A9)

= [t1F
†
1Fde

i(
√
2− 1√

K
)φ̃s,2ei

√
2φ̃s,1

+ t2F
†
2Fde

i(
√
2− 1√

K
)φ̃s,1ei

√
2φ̃s,2 ]S− +H.c.

− (
√
2− 1√

K
)(∂xφ̃s,1 + ∂xφ̃s,2)Sz

Note that there are additional phase factors

e
i(
√
2− 1√

K
)φ̃s,α in the hopping terms. Since we are in-

terested in the physics close to the localized-delocalized
transition, i.e., K = α∗ → 1/2, we may drop these phase
factors in the following analysis. The chemical potential
term after the above two transformations now becomes

H̃
′′

µ = U †
2U

†
1H̃µU1U2 (A10)

= −V

2

√

1

2K
[∂x(

√
2φ̃s,1)− ∂x(

√
2φ̃s,2)]

Note that since the hoping H̃” and chemical potential H̃”
µ

terms involve only φ̃s,α fields, φ̃a,α fields are decoupled
from the Hamiltonian.
Now, we can refermionize the bosons and map our

transformed Hamiltonian

H̃RLM ≡ H̃bath + H̃
′′

t + H̃
′′

µ (A11)
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onto the anisotropic Kondo model in Eq. (4) via the
following identifications:

−
√
2φ̃s,1 = Φ↑

L − Φ↓
R (A12)

−
√
2φ̃s,2 = Φ↑

R − Φ↓
L

cσL/R(0) = F σ
L/Re

iΦσ
L/R

where F σ
L/R is the Klein factor for the effective lead L

and R, respectively.

To see the equivalence between these two models, we
bosonize Eq. (4) and compare it with Eq. (A11):

HK = Hleads +HJ⊥ +HJz ,

Hleads =
∑

k,γ=L,R,σ=↑,↓
[ǫk − µγ ]c

†
kγσckγσ

=
1

2

∫

dx
∑

α=L,R

[(∂xΦα)
2(x, t) + Π2

α(x, t)]

− V

2

√

1

2K

∑

σ=↑,↓
[∂xΦ

σ
L − ∂xΦ

σ
R],

HJ⊥ = J
(1)
⊥ s+LRS

− + J
(2)
⊥ s+RLS

− + h.c.

= J
(1)
⊥ F †↑

L F ↓
Re

iΦ↑
L−iΦ↓

R + J
(2)
⊥ F †↑

R F ↓
Le

iΦ↑
R−iΦ↓

L ,

HJz =
∑

γ=L,R

Jzs
z
γγS

z

= −Jz
∑

α=L,R

[∂xΦ
↑
α − ∂xΦ

↓
α]

(A13)

With the proper redefinitions of the Klein factors:

F †
1Fd ≡ F †↑

L F ↓
R, F †

1Fd ≡ F †↑
R F ↓

L, and the identifica-

tions: d = S−, d† = S+, d†d − 1/2 = Sz, J
(α)
⊥ = tα,

Jz = 1 − 1√
2K

, we finally establish the equivalence be-

tween a Kondo model with the effective left (L) and right
lead (R) in Eq. (4) and a dissipative resonant level model
in Eq. (A11).

2. Mapping a dissipative resonant level model onto

a resonant level coupled to FQHE

We provide details here on the mapping of a dissipative
resonant level model Eq. (1) onto a resonant level cou-
pled to Fractional Quantum Hall Edge states (FQHE) as
shown in Eq. (6).
We start from the Hamiltonian Eq. (6) describing a

resonant level coupled to two FQHE states:

HFQHE = Hchiral +Ht +Hµ, (A14)

where the lead term Hchiral describes two chiral Lut-
tinger liquid leads with lead index α = 1, 2, Ht denotes

the tunneling term and the bias voltage term Hµ is given
respectively by:

Hchiral =
1

2

∫ +∞

−∞

∑

α=1,2

(

dϕα

dx

)2

dx,

Ht = t1e
iϕ1/

√
Kd+ t2e

iϕ2/
√
Kd+ h.c.

Hµ = −V

2

1√
K

(∂ϕ1 − ∂ϕ2),

(A15)

where the boson field ϕα=1,2 denotes the chiral Luttinger
liquid in lead α, the tunneling between lead and the res-
onant level is given by tα, V is the bias voltage, and K
refers to the Luttinger parameter.
Via similar Unitary transformations shown in Eq.

(A11), U1 = e
i(

ϕ1√
K

−
√
2ϕ1)Sz and U2 = e

i(
ϕ2√
K

−
√
2ϕ2)Sz ,

Eq. (6) now becomes:

H̄FQHE = U †
2U

†
1HFQHEU1U2 = Hchiral + H̄t + H̄µ,

(A16)
where the tunneling term Ht in Eq. (A15) becomes (as-
suming t1 = t2 = t):

H̄t = t[e
i(
√
2− 1√

K
)ϕ2ei

√
2ϕ1 (A17)

+ e
i(
√
2− 1√

K
)ϕ1ei

√
2ϕ2 ]S− + h.c.

− (1−
√

1

2K
)(∂

√
2ϕ1 + ∂

√
2ϕ2)Sz,

and the chemical potential term in Eq. (A15) becomes

H̄µ = −V

2

√

1

2K
[∂x(

√
2ϕ1)− ∂x(

√
2ϕ2)]. (A18)

The equivalence between a resonant level coupled to
FQHE Eq. (6) and a dissipative resonant level model Eq.
(1) is established by comparing the transformed Hamil-
tonian H̄FQHE in Eq. (A16) for the former model and

H̃RLM (see Eqs. (A7), (A10), and (A11)) for the latter
one.

3. Mapping a dissipative resonant level onto a

dissipative resonant level coupled to chiral Luttinger

liquid leads

Below we provide details on the mapping of a large dis-
sipative resonant level onto a large resonant level (spin-
less quantum dot) with Ohmic dissipation coupled to two
chiral Luttinger liquid leads. The mapping is easily ex-
tended to the latter case with a small (single-level) reso-
nant level.
First, we take the same dissipative boson environment

as shown in Eq. (A3). Via standard bosonization (see
Eq. (5)), the Luttinger leads and the chemical potential
term take the same bosonized form as Eq. (A5) and Eq.
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(7), respectively. The remaining parts of the Hamiltonian
are modified as follows:

Hdot = Hd +Ht +Hdb,

Hd =
∑

k

ǫdk
d†kdk,

Ht =
∑

k,k′,α=1,2

tαc̄
†
k,αdk′S− + h.c., (A19)

Hdb =
∑

r,k′

λr(d
†
k′dk′ − 1/2)(br + b†r),

where ǫdk
refers to the energy spectrum of the many-

level dot, the electron destruction operator on the dot
d(0) is defined as: d(0) =

∑

k dk, and spin-flip operator
S± represents for the hopping of charge between lead and
the dot7. We then bosonize the electron operators in the
leads (see Eq. (5)) and on the dot: d(0) = 1√

2πa
Fde

iφd .

Via the unitary transformation UB defined in Eq. (A7),
we arrive at:

H̃t = U †
BHtUB (A20)

=
∑

α=1,2

tαF
†
αFde

i

√

1
Kb

φ̂0
e
i(ϕα(0)√

K
−φd)S− +H.c.

To further simplify the hoping term, we define new boson
fields φs(a),α via linear combinations of the fields (ϕα(0)
and φd):

φa,α =
√
K ′(

ϕα(0)√
K

− φd),

φs,α =
√
K ′(

ϕα(0)√
K

+ φd) (A21)

with 1
K′ = 1

K + 1. The combined fermionic baths of the
leads and the dot are given by:

Hf ≡ Hleads +Hd

=
1

2

∫

dx
∑

α=1,2

[(∂xφs,α)
2(x, t) + Π̃2

s,α(x, t)

+ (∂xφa,α)
2(x, t) + Π̃2

a,α(x, t)], (A22)

where Π̃s(a),α are canonically conjugate boson fields to
φs(a),α fields. In terms of the new fields φs(a),α, the hop-
ing and chemical potential terms now become:

H̃t =
∑

α=1,2

tαF
†
αFde

i

√

1
Kb

φ̂0
e
i
φa,α√

K′ S− +H.c.,

Hµ → H̃µ

= −V

2

√

K

K ′ [∂x(φa,1)− ∂x(φa,2)]. (A23)

We may furthermore combine the boson fields from the

leads φa,α and from the dissipative bath φ̂0 via the fol-

lowing definitions:

φ̃s,α =
√

K̃(
φa,α

K ′ +

√

1

Kb
φ̂0),

φ̃a,α =
√

K̃(
φa,α

K ′ −
√

1

Kb
φ̂0), (A24)

where 1
K̃

= 1
K′ +

1
Kb

. Upon applying the unitary transfor-

mation, the combined fermionic and bosonic baths terms
become:

Hf =
1

2

∫

dx
∑

α=1,2

[(∂xφ̃s,α)
2(x, t) + Π̄2

s,α(x, t)

+ (∂xφ̃a,α)
2(x, t) + Π̄2

a,α(x, t)], (A25)

where Π̄s(a),α are canonically conjugate boson fields to

φ̃s(a),α fields.
Meanwhile, the corresponding hopping and chemical

potential terms become:

H̃t =
∑

α=1,2

tαF
†
αFde

i
φ̃s,α√

K̃ S− +H.c., (A26)

Hµ → H̃µ

= −V

2

√

K ′

K̃
[∂x(φ̃s,1)− ∂x(φ̃s,2)]. (A27)

Via the similar Unitary transformation shown in Eq.

(A11), U1 = e
i(

φ̃1√
K̃

−
√
2ϕ1)Sz

and U2 = e
i(

φ̃2√
K̃

−
√
2φ̃s,2)Sz

,
the tunneling term becomes (assuming t1 = t2 = t):

Ht = t[e
i(
√
2− 1√

K̃
)φ̃s,2

ei
√
2φ̃s,1 (A28)

+ e
i(
√
2− 1√

K̃
)ϕ1

ei
√
2φ̃s,2 ]S− + h.c.

− (1−
√

1

2K̃
)(∂

√
2φ̃s,1 + ∂

√
2φ̃s,2)Sz .

The chemical potential term therefore becomes

Hµ → H̃µ

= −V

2

√

K ′

2K̃
[∂x(

√
2φ̃s,1)− ∂x(

√
2φ̃s,2)].(A29)

We may now follow the same refermionization procedure
as shown in Eq. (A13) to map our Hamiltonian onto the
anisotropic Kondo model in the same form as Eq. (4)
with the following identifications:

J
(1),(2)
⊥ ∝ tαe

i(
√
2− 1

K̃
)φ̃s;2,1 ,

Jz ∝ 1− 1

2K̃
,

µ → µ̃ =
V

2

√

K ′

K̃
. (A30)

The above mapping can easily be generalized to a small
quantum dot with single resonant level with K̃ given by
Eq. (9) where the contribution from the many-level big
dot is absent here.
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Appendix B: Average currents.

In this Appendix, we prove that the average currents
in the original model Îori is equivalent to that in the
effective Kondo model ÎKondo. The current operators in
both models are given by:

Îori = d/dt(N1 −N2) (B1)

= it1
∑

k

(c̄†k1d− d†c̄k1)− (1 → 2)

ÎKondo = d/dt(NL −NR) (B2)

= iJ
(1)
⊥ (s−LRS

+ − s+RLS
−)− (1 → 2, L → R)

On the other hand, from the bosonized forms of the
two models, (at the transition) we have:

〈Îori〉 = 〈d/dt(N1 −N2)〉 (B3)

=

∫

dx〈 d
dt

[∂xϕ1 − ∂xϕ2]〉

=

∫

dx

√

1

2K
〈 d
dt
[∂x(

√
2φ̃s,1)− ∂x(

√
2φ̃s,2)]〉

〈ÎKondo〉 = 〈d/dt(NL −NR)〉 (B4)

=

∫

dx 〈d/dt
∑

σ=↑,↓
[∂xΦ

σ
L − ∂xΦ

σ
R]〉

=

∫

dx 〈d/dt[∂x(
√
2φ̃s,1)− ∂x(

√
2φ̃s,2)]〉

Therefore, we have

〈Îori〉 =
1√
2K

〈ÎKondo〉 (B5)

(or 〈Îori〉 = 1√
2α∗ 〈ÎKondo〉). The above relation ob-

tained so far from the mapping is exact at finite bias
voltages. In the limit of our interest K = α∗ → 1/2,

〈Îori〉 = 〈ÎKondo〉.

We can also prove this equivalence through Keldysh
perturbation theory. We now would like to prove that

〈ÎKondo〉K = 〈Îori〉ori (B6)

where

〈IKondo(t)〉K =
1

ZK
(B7)

× Tr[e−βHKTc(S
K
c (−∞,∞)IKondo(t))]

ZK = Tr[e−βHKTc(S
K
c (−∞,∞))]

SK
c (−∞,∞) = e−i

∫

c
dt′Heq

K (t′) (B8)

and

〈Îori(t)〉ori =
1

Zori
Tr[e−βHTc(S

ori
c (−∞,∞)Îori(t))]

Zori = Tr[e−βHTc(S
ori
c (−∞,∞))]

Sori
c (−∞,∞) = e−i

∫

c
dt′Heq(t′) (B9)

Here Heq
K (Heq) is the Kondo (original) Hamiltonian in

equilibrium (µ = 0), Tc(· · · ) orders the operators along
the Keldysh contour c.
1. We first show that ZK = Zori (the two partition

functions from the original and the effective Kondo mod-
els are equivalent) where

Zori = Tr[e−βHTc(S
ori
c (−∞,∞))]

Sori
c (−∞,∞) = e−i

∫

c
dt′Heq(t′) (B10)

To prove this, we first note that the original and
the effective Kondo models are related by the above-
mentioned unitary transformations: HK = U †HU with
U = U2U1UB. The similar relation holds for the current
operators: ÎKondo = U †ÎoriU . To carry out the calcula-
tion in Eq. (B10), we apply the following two identities:

e −
∫ β
0

dτU†(τ)H(τ)U(τ)

=

∞
∑

n=0

(−1)n

n!
[

∫ β

0

dτ(U †(τ)H(τ)U(τ)]n , (B11)

and

Tr[Â(τ)B̂(τ)Ĉ(τ)] = Tr[Ĉ(τ)Â(τ)B̂(τ)]

= Tr[B̂(τ)Ĉ(τ)Â(τ)] = · · ·
(B12)

with τ = it the imaginary time and Â, B̂, Ĉ being any
quantum mechanical operators. Via Eqs. (B10), (B11),
and (B12), it becomes clear that ZK = Zori.
2. In a similar way, we can prove that:

Tr[e−βHKTc(S
K
c (−∞,∞)IKondo(t))] (B13)

= Tr[e−βHTc(S
ori
c (−∞,∞)Iori(t))]

where we have used Eq. (B11) and ÎKondo = U †ÎoriU .
From 1. and 2. mentioned above, we conclude

that 〈ÎKondo(t)〉K = 〈Îori(t)〉ori holds for all orders in
Keldysh perturbation theory.

Appendix C: Non-equilibrium current for t1 6= t2.

In this Appendix, we derive the general expression for
the average current for t1 6= t2. From Eq. (B3), the
average current in the Kondo model is given by:

〈Î〉 =
∫ ∞

−∞

∑

k

J
(1)
⊥ (G<

k,d(ω)−G
<
d,k(ω))− (1 → 2, L → R)

(C1)
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where G
<
k,d(t) = i〈s−LRSd(t)〉. Following Ref.64, Dyson’s

equation for G<
k,d(ω) is given by:

G
<
k,d(ω) = J

(1)
⊥ [χ+−

LR

t
(ω)χ+−

d

<
(ω) (C2)

− χ+−
LR

<
(ω)χ+−

d

t̃
(ω)]− (1 → 2, L → R)

where χ+−
LR

<
(t) = 〈s−LRs

+
LR(t)〉, χ+−

LR

<
(t) = 〈s−LR(t)s

+
LR〉,

χ+−
d

<
= 〈S−

d S+
d (t)〉, χ+−

LR

t
(ω), and χ+−

d

t̃
are time-

order and anti-time-ordered Green’s functions, respec-
tively. The following relations hold among these correla-
tion functions:

χ<(ω) + χ>(ω) = χt(ω) + χt̃(ω) (C3)

χ>(ω)− χ<(ω) = χR(ω)− χA(ω)

where χR/A(ω) is the retarded (advanced) Green’s func-
tion, respectively. Straightforward calculation gives:

χ+−
LR

<
(ω) = 2πfω−µL(1− fω−µR)δ(ω − ǫ(k)) (C4)

χ+−
LR

>
(ω) = −2πfω−µR(1− fω−µL)δ(ω − ǫ(k))

The average current reads

〈Î〉 =

∫ ∞

−∞
[fω−µL(1− fω−µR)Γ̃1 (C5)

− fω−µR(1 − fω−µL)Γ̃2](χ
R
d (ω)− χA

d (ω))

+ (Γ̃1 − Γ̃2)χ
<
d (ω)

where Γ̃1,2 = 2πρ0(J
(1),(2)
⊥ )2 with ρ0 being the constant

density of states of the leads.
Following Ref. 64, for Γ̃1 = λΓ̃2, we have

〈Î〉 =

∫ ∞

−∞
(fω−µL − fω−µR)Γ̃(ω)(χ

R
d (ω)−χA

d (ω)) (C6)

where Γ̃(ω) = (2πρ0)
2 (g1

⊥(ω)g2
⊥(ω))2

(g1
⊥(ω))2+(g2

⊥(ω))2
. Note that the

Kondo couplings have been generalized to be frequency
dependent following the nonequilibrium RG approach.
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10 P. Cedraschi and M. Büttiker, Ann. of Phys. (NY) 289, 1
(2001).

11 A. Furusaki and K. A. Matveev, Phys. Rev. Lett. 88,
226404 (2002).

12 M. Goldstein, Y. Gefen, and R. Berkovits, Phys. Rev. B
83, 245112 (2011).

13 P. Cedraschi, V. V. Ponomarenko, and M. Büttiker, Phys.
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