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We study origin of Rashba spin-orbit interaction at SrTiO3 surfaces and LaAlO3/SrTiO3 interfaces
by considering the interplay between atomic spin-orbit coupling and inversion asymmetry at the
surface or interface. We show that, in a simple tight-binding model involving 3d t2g bands of Ti
ions, the induced spin-orbit coupling in the dxz and dyz bands is cubic in momentum whereas the
spin-orbit interaction in the dxy band has linear momentum dependence. We also find that the spin-
orbit interaction in one-dimensional channels at LaAlO3/SrTiO3 interfaces is linear in momentum
for all bands. We discuss implications of our results for transport experiments on SrTiO3 surfaces
and LaAlO3/SrTiO3 interfaces. In particular, we analyze the effect of a given spin-orbit interaction
term on magnetotransport of LaAlO3/SrTiO3 by calculating weak anti-localization corrections to
the conductance and to universal conductance fluctuations.

I. INTRODUCTION

The metallic interfaces1 between the insulators
LaAlO3 (LAO) and SrTiO3 (STO) exhibit both
superconductivity2 and magnetism3–6 and, for some car-
rier densities, they occur simultaneously5–7. Moreover,
there is evidence that there is significant spin-orbit inter-
action (SOI), as well8–10. If all three of these phenomena
are present, then the ingredients are in place for topolog-
ical superconductivity that could support Majorana zero
modes in confined structures11–16. Furthermore, strong
SOI could pave the way towards spintronics17 applica-
tions of devices based on oxide interfaces. In this paper,
we give a simple microscopic understanding of the SOI
at LAO/STO interfaces induced by the combined effects
of atomic spin-orbit coupling and the interfacial electric
field.

Caviglia et al.8,10 and Ben Shalom et al.9 made im-
portant experimental progress towards understanding
SOI effects at LAO/STO interfaces. They found evi-
dence that the magnetoconductance of LAO/STO inter-
faces could be interpreted as resulting from weak anti-
localization (WAL). The SOI that they deduced showed
strong dependence on gate voltage, peaking at or near
the gate voltage at which the superconducting Tc is max-
imized. Nakamura et al.18 measured magnetoconduc-
tance at the surface of STO and found that it could be
fitted to a cubic Rashba SOI. Zhong et al.19 performed a
density functional theory (DFT) calculation, from which
they derived an effective tight-binding Hamiltonian. A
key ingredient supplied by the DFT calculation is the
magnitude of inter-orbital hopping terms. They used the
resulting tight-binding Hamiltonian to deduce a Rashba-
type energy splitting between the two spin components
of ≈ 2 meV in the dxy band, and a much larger split-
ting ≈ 20 meV at the crossing point of the dxy and dxz
bands. Khalsa et al.20 further elucidated this by showing
that inter-orbital hopping terms are due primarily to the
polar lattice displacement at the interface.

In this paper, we give a simple analysis of the Rashba
SOI in an effective tight-binding Hamiltonian for the t2g
bands of STO surfaces and LAO/STO interfaces, in or-
der to better understand its basic qualitative features.
Within our effective model, we find that Rashba SOI is
linear in momentum in the dxy band, in agreement with
Refs. 19 and 20, and is cubic in momentum in dxz and
dyz bands.

We also consider one-dimensional(1D) channels at the
LAO/STO interface. Cen et al.21 have fabricated such
channels by ‘drawing’ them with an atomic force micro-
scope (AFM) tip. Superconductivity is observed in these
1D channels22,23. Fidkowski et al.24 proposed a theory
for magnetism and superconductivity in such channels in
which conduction electrons in the channels interact with
localized spins to catalyze magnetic order and interact
with local superconducting fluctuations in STO to stabi-
lize quasi-long-ranged superconducting order.(For other
theoretical perspectives, see Ref. 25–27.) In the presence
of strong SOI, such superconductivity can support Ma-
jorana zero modes at the ends of wires. Conduction in
such a channel will be dominated by mobile dxz or dyz
electrons, depending on the direction of the channel. We
show the SOI will be of linear-in-k Rashba form in this
case due to the broken rotational symmetry in the plane.

Based on the aforementioned conclusions regarding the
different forms of the Rashba SOI in various geometries,
we compute WAL correction to the magnetoconductance
and show how one can distinguish different forms of
Rashba SOI in transport experiments. We discuss the
relevance of these results to understanding experiments
at STO surfaces and LAO/STO interfaces. In the latter
case, the WAL signal can distinguish between transport
dominated by the dxy band; the dxz,yz bands; or 1D chan-
nels. The 1D case should apply to channels ‘drawn’ with
an AFM tip as well as to the 1D channels that appear
to occur in putatively two-dimensional(2D) systems28 al-
though, in the latter case, it will also be important to
account for the coupling between different 1D channels.

The paper is organized as follows. In Sec. II, we intro-
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FIG. 1. Dispersion of H0 for ∆E = 50 meV

duce our effective tight binding model. The calculation
of the effective spin-orbit interaction based on this model
is presented in Sec. III. In Secs. IV and V, we calculate
weak anti-localization corrections to the conductance and
discuss the manifestations of SOI in the context of recent
experiments8–10.

II. THREE-BAND MODEL

The Fermi energy at STO surfaces or STO-based
interfaces lies in the 3d t2g bands of Ti ions near
the surface/interface. The t2g bands at the sur-
face/interface are confined in z-direction, which is normal
to the surface/interface; consequently, they form a two-
dimensional electron gas (2DEG). Here we consider only
the top layer of STO and its t2g bands. The Hamiltonian
for these bands takes the form29,30

H = H0 +HASO +Ha (1)

Here, H0 is comprised of nearest-neighbor hopping and
on-site interaction terms that are diagonal in orbital
space. In momentum space, it can be written in the
form H0 = h0 ⊗ σ0, where σ0 is the identity matrix in
spin space, and

h0 =


~2k2x
2mh

+
~2k2y
2ml

0 0

0
~2k2x
2ml

+
~2k2y
2mh

0

0 0
~2k2x
2ml

+
~2k2y
2ml
−∆E

 (2)

Here ∆E is the energy difference between the dxy band
and the dxz, dyz orbitals due to the confinement along
ẑ-direction. A recent DFT calculation19 suggests ml =
0.41me and mh = 6.8me for bulk STO. The second term
in Eq.(1) corresponds to the atomic spin-orbit coupling

term which can be written in the form:

HASO =
ZgµBe

16mec2r3πε0
~L · ~σ

= VASO
Za30
~

~L · ~σ
r3

(3)

where the dimensionful prefactor VASO = gµB~e
16mec2πε0a30

,

~L = ~r×~p and ~σ = 2~S/~ with Z being the effective nuclear
charge on the Ti atoms. The effective nuclear charge for
the d-orbital electron in a neutral Ti atom Z ≈ 8.1.

Atomic spin-orbit coupling projected to t2g orbital
bands can be treated as an on-site orbital mixing term.
Indeed, let’s consider the limit ml,mh → ∞ and com-
pute matrix elements of the Hamiltonian HASO between
different orbital states:

〈j, dxz, σ′|HASO|j, dxy, σ〉 =

VASO
Za30
~
〈j, dxz, σ′|

~L · ~σ
r3
|j, dxy, σ〉 (4)

where |j, dxy, σ〉 represents a state of an electron of spin
σ in the dxy orbital on site rj . Given that dxz and dxy
orbital wavefunctions are both odd in x, the matrix el-
ements vanish by symmetry: 〈j, dxz, σ′|Ly|j, dxy, σ〉 =
〈j, dxz, σ′|Lz|j, dxy, σ〉 = 0. The non-zero matrix element
involves dxz and dxy bands

〈j, dxz, λ′|HASO|j, dxy, λ〉

=VASO
Za30
~
〈j, dxz, λ′|

Lxσx
r3
|j, dxy, λ〉

=VASO[σx]λ′,λ
Za30
~
〈j, dxz|

ypz − zpy
r3

|j, dxy〉

=i∆ASO [σx]λ′,λ. (5)

In the last line, we have introduced the energy ∆ASO:

∆ASO = VASO f(Z) (6)

where the dimensionless form factor f(Z) is defined as

f(Z) =
Za30
i~
〈j, dxz|

ypz − zpy
r3

|j, dxy〉

= − 2Z8

812π

∫ ∞
−∞

dx dy dz
xz e−

Zr
3

r3

(
y
∂

∂z
− ∂

∂y
z

)
xy e−

Zr
3

=
Z4

405
. (7)

Taking the matrix elements of HASO between all three
t2g orbitals in a similar manner, an effective Hamiltonian

in these bands, H
t2g
ASO can be written as

H
t2g
ASO = ∆ASO

 0 iσz −iσy
−iσz 0 iσx
iσy −iσx 0

 (8)

Fig. 2 shows the non-degenerate band structure of
H0 +HASO for ∆ASO = 5 meV. From the above Hamil-
tonian, it may be seen that the lowest energy states and
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FIG. 2. Dispersion of H0 + HASO with ∆E = 50 meV and
∆ASO = 5 meV

highest energy states mix all three t2g orbitals (with se-
lected spins), but the middle states only contain dyz and
dxz with same spin.

We now turn to inter-orbital nearest-neighbor hopping
Ha, which induced primarily by polar lattice distortion
due to the external electric from inversion asymmetry.
We can qualitatively understand this as Ti-O-Ti hopping
process between two neighbor Ti orbitals with different
parity in z, for example, hopping between dxy − px− dxz
along y direction. Therefore, the effective form of Ha in
the basis of t2g orbital bands can be written as19,20

Ha = ∆z

 0 0 ikx
0 0 iky
−ikx −iky 0

⊗ σ0. (9)

Notice that Ha generates hopping terms from dxy to
dxz only in the y-direction and from dxy to dyz only in
the x-direction. Otherwise, the hopping matrix element
will be an integral of an odd function in x(or y) and will
vanish. Fig. 3 shows the spin splitted band structure of
H0 +HASO +Ha for ∆z = 10 meV and ∆ASO = 5 meV.

III. EFFECTIVE SPIN-ORBIT INTERACTION

A. Three-Band Model Near k ∼ 0

For simplicity, we neglect the k2 term in the energy
dispersion in comparison to linear-in-k terms. In this

limit, we find the eigenstates of H0(~k = 0) +HASO, and
then express Ha in that basis. The result is an effective
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FIG. 3. Band structure corresponding to the Hamiltonian
H0 + HASO + Ha with ∆E = 50 meV, ∆z = 10 meV and
∆ASO = 5 meV.

Rashba SOI, which takes the form:

HR

∆za
=


0 −β1ik− 0 β2k− 0 −β3ik+

β1ik+ 0 −β2k+ 0 β3ik− 0
0 −β2k− 0 0 0 −β4k−

β2k+ 0 0 0 β4k+ 0
0 −β3ik+ 0 β4k− 0 β1ik+

β3ik− 0 −β4k− 0 −β1ik− 0


(10)

Here k± = kx ± iky and the order of H0(~k = 0) +HASO

eigenstates is from highest energy to lowest energy. That
means (1, 0, 0, 0, 0, 0) and (0, 1, 0, 0, 0, 0) correspond to

the highest energy eigenstates of H0(~k = 0) + HASO.

Note that there are three energy eigenvalues for H0(~k =
0) +HASO, with two Kramers-degenerate eigenstates for
each. From this Hamiltonian we expect linear in momen-
tum Rashba SOI (linear Rashba SOI) in bottom and top
bands and cubic in momentum SOI(cubic Rashba SOI)
(∆ ∼ α3k

3) in the middle band. The absence of linear
Rashba SOI in the middle band is due to the fact that
the middle band at k ∼ 0 contains only dxz and dyz com-
ponents and, therefore, is odd in z-direction.

The coupling coefficients βi depend on ∆ASO and ∆E .
When the band splitting ∆E is much larger than ∆ASO,
the lowest band is primarily dxy-like near k ∼ 0, and we
can estimate the size of k−linear Rashba coupling in the
lowest energy bands α1 = ∆z a β1 from the second-order
perturbation, i.e. first-order in HASO and first-order in
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Ha in orbital basis as follows:

〈k, dxy, σ′|H(2)|k, dxy, σ〉 =∑
k′,σ′′

〈k, dxy, σ′|Ha|k′, dxz, σ′′〉〈k′, dxz, σ′′|HASO|k, dxy, σ〉
Edxz (k

′)− Edxy (k)

+ (dxz → dyz)

=
∆ASO∆z

∆BG(k)
(〈σy〉 sin(kxa)− 〈σx〉 sin(kya))

∼ α1(~k × ~σ) · ẑ (11)

where

∆BG(k) = Edxz (k)− Edxy (k) ∼ ∆E (12)

α1 ∼
∆ASO∆z

∆E
a (13)

This perturbative description of the Rashba SOI breaks
down at the band crossings of H0, and we find dramatic
changes in the strength of SOI as we will see in Sec IV.
with exact diagonalization analysis. However, we find
linear Rashba SOI dominates cubic Rashba SOI for small
k. To see this in more detail, we restore the k2 energy
dispersion in Eq. (10) and compute HR retaining both
linear and cubic terms. We take ∆E = 320 meV19 and
plot the strength of SOI α1 as a function of carrier density
for several values for ∆ASO and ∆z as we can see in
Fig. 4. Here α1 = ∆R/kx where ∆R is the Rashba
SOI-induced energy splitting of the bottom bands. The

FIG. 4. α1 (meV·Å) vs n (1012cm−2) at STO surfaces. Up-
per curve: ∆z = 10 meV, ∆ASO = 5 meV. Middle curve:
∆z = 5 meV, ∆ASO = 15 meV. Bottom Curve: ∆z = 10 meV,
∆ASO = 10 meV.

linear Rashba coupling can be identified as the value of
α1 at k = 0. The slope of the plot is proportional to the
cubic Rashba effect. For various values for ∆ASO and
∆E , we see that the contribution from the cubic term is
dominated by the linear term.
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FIG. 5. Band structure of 4-band model with ∆ASO = 9 meV
and ∆z = 20 meV. The first dxy sub-band(dashed lines) is
assumed to be localized.

B. Four-Band Model

We can extend our theory to four-band model in which
two dxy sub-bands lies below dxz and dyz band due to
the strong confinement along z-axis(See Fig. 5). Recent
DFT calculation19 shows the first (second) dxy sub-band
has ∆E = 250(50) meV for LAO/STO interface. Most
of the electrons coming from the polar catastrophe∼
1014 cm−2 are localized in the first dxy sub-band as sug-
gested in density functional calculation of Ref. 31 and
32. The main difference with the three-band model is
that the second dxy sub-band has a much smaller ∆z

since they do not see the large electric field that the first
sub-band electrons see. Hence, those light electrons do
not contribute to the anti-localization effect in our pic-
ture.

C. Effective Model for Quasi-One-Dimensional
Channel

Now we will consider a quasi one-dimensional sys-
tem at the LAO/STO interface which can be related
to a nanowire artificially drawn using AFM tip with
LAO(3.u.c.)/STO interface21,33. We assume there is a
confinement in y-direction such that wavevector in y-
direction is quantized as kny = πn

w , and degeneracy be-
tween dxz and dyz bands at k = 0 is lifted. With quan-
tized ky, dispersion relations can be written as,

Exz(kx) =
~2k2x
2ml

−∆Ey

Eyz(kx) =
~2k2x
2mh

(14)

Exy(kx) =
~2k2x
2ml

−∆Ez

where ∆Ey(∆Ez) is the energy splitting due to the y(z)-
direction confinement. Since the degeneracy is lifted, the
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dxz-like band also has k−linear spin-orbit coupling, and
it seems hard to distinguish it from dxy-like band with
weak anti-localization measurement. However, we find
that the relation between chemical potential and spin-
orbit coupling strength strongly depends on the band.
As may be seen in Fig.6, if the transport is still domi-

FIG. 6. SOI strength versus chemical potential for quasi
one-dimensional system. The inset shows dispersion of H0.
Dashed(Solid) curve is dxy(dxz)-like band. ∆Ey = 30 meV,
∆Ez = 50 meV, ∆ASO = 9 meV and ∆z = 20 meV are used.
SOI of dxz-like band changes sign at crossing point of dxz and
dyz band(two solid lines in inset).

nated by dxz-like band, we can see that strength of SOI
goes to zero at specific value of µ0(or k0) because the
degeneracy between dxz and dyz band is recovered at the
band crossing point of H0. When the transport is domi-
nated by dxy-like band, the evolution of SOI strength as
increasing chemical potential does not have any nodes.

IV. EFFECT OF SPIN ORBIT INTERACTION
ON MAGNETOCONDUCTIVITY

A. Quantum Corrections to Conductivity in Two
Dimensions

The presence of significant SOI changes the universal-
ity class of the Hamiltonian, and results in a dramatic dif-
ference in weak field magnetoconductance predictions34.
Indeed, it is well known that SOI leads to a sign change
of the quantum correction to conductivity ∆σ. This
phenomenon, known as WAL, can be used a diagnos-
tic for the presence of SOI in a conductor. In princi-
ple, modification of band structure by SOI can be ob-
served in Shubnikov-de Haas oscillations, but this effect
will be washed out if impurity scattering is too large.
The frequency difference between the two Fermi surfaces,
∆ω must satisfy ∆ω τ � 1. On the other hand, WAL
is observable under the much less stringent condition,

σxx � e2

h . From a detailed fit of the dependence of WAL
as a function of the density, it is possible to deduce the
form of SOI, i.e. in our context whether SOI is linear or
cubic in momentum and, in the former case, whether it
is due to 1D or 2D transport.

In the subsections that follow, by treating the magnetic

field as a long-distance cutoff, we derive (relatively) sim-
ple closed forms of the WAL corrections to the conduc-
tivity in the limits of (a) purely linear 2D Rashba SOI;
(b) purely cubic 2D Rashba SOI; and (c) linear quasi-1D
Rashba SOI. In the first two regimes and in the limit of
small magnetic fields, we recover the Iordanskii, Lyanda-
Geller, Pikus (ILP) theory35, which treats the magnetic
field more precisely by summing over Landau levels. In
the third regime, we obtain similar results to those of
Kettemann36.

We argue that it is essential to use these forms to fit
WAL data for STO surfaces and LAO/STO interfaces.
The ILP theory was used by Nakamura et al.18 to deduce
the cubic k-dependence of Rashba SOI at the surface of
STO. (See Eq. (S1) of Ref. 18.) However, Caviglia et
al.8 used the Maekawa-Fukuyama (MF) theory37, which
incorporates the SOI simply as a spin relaxation time,
following Hikami, Larkin, Nagaoka (HLN) theory34. In
the limit of weak SOI and weak Zeeman splitting. the MF
theory gives similar results to the ILP theory with dom-
inant SOI given by cubic Rashba. Therefore, Caviglia et
al.’s analysis8 could be understood as an indication that
their results fit the ILP theory with cubic Rashba, as at
the surface of STO.

However, since the MF theory and the HLN theory,
on which it was based, were clearly formulated for a
physically-distinct situation that is not applicable to the
LAO/STO interface, it is necessary to compare magne-
toconductance data to an appropriate theory that takes
as its starting point either linear or cubic Rashba SOI (in
2D or 1D). We perform such an analysis in the subsec-
tions that follow and suggest a method for fitting WAL
at LAO/STO interfaces in the low carrier density region
which lead us to distinguish the contribution from lin-
ear and cubic Rashba effects. We discuss experimental
results from this perspective in the following section.

1. Weak anti-localization due to linear Rashba spin-orbit
interaction

Assuming that the dominant contribution to current
transport is coming from dxy band, we only need to
consider k-linear Rashba SOI for small carrier density.
Therefore, the effective Hamiltonian reads:

H =
~2k2

2ml
+ ~σσσ ·ΩΩΩR1 (15)

where σσσ = (σx, σy) is a vector of Pauli spin matrices,
ΩΩΩR1 = ΩR1(sin θ,− cos θ) is an effective magnetic field

of linear Rashba SOI, k =
√
k2x + k2y, ΩR1 = α1k/~ and

tan θ = kx/ky. We now consider scattering on short-
range impurities. For uncorrelated Gaussian disorder
potential V (x), characterized by the correlation function
〈V (x)V (x′)〉 = 1

2πντ0
δ(x − x′), quantum corrections to
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the dc conductivity are given by34

∆σ = −2e2

h
D
∑
α,β

∫
d2q

(2π)2
2πντ20Cαββα(q). (16)

Here D, ν and τ0 are the diffusion constant, 2D density of
states and elastic mean-free time, respectively; Cαββα(q)
is disorder-averaged Cooperon propagator with α, β be-
ing spin indices. Following ILP’s approach3538, the ma-
trix equation for the zeroth harmonic of the Cooperon
propagator which gives the dominant contribution to
WAL in the diffusive limit, reads

L̂Ĉ0(q) =
1

2πντ20
. (17)

It is convenient to rewrite Cooperon propagator in the
angular momentum basis, in which the singlet J = 0 and
triplet J = 1 sectors are decoupled. The eigenvalue for
the singlet contribution can be readily obtained E0 =
D(q2 + q2φ) where q2φ = 1/Dτφ with τφ being the inelastic
scattering time. Henceforth, we consider the triplet J =
1 sector, and find the corresponding eigenvalues. The
latter requires to diagonalize L̂J=1

L̂J=1=Dq
2+

1

τφ
+2Ω2

R1τ1(Ĵ2−Ĵ2
z )+ivF τ1ΩR1(Ĵ+q−−Ĵ−q+),

(18)

1

τ0
=

∫
W (ϕ)dϕ,

1

τn
=

∫
W (ϕ)(1− cos(nϕ))dϕ,

Ĵ± = Ĵx ± iĴy, q± = qx ± iqy.

Here D = v2F τ1/2 is 2D diffusion constant, W (ϕ) is scat-

tering rate for an angle ϕ, and Ĵi are vector compo-
nents of the total angular momentum operator. The SOI
mixes different components of the J = 1 manifold of the
Cooperon propagator. By diagonalizing L̂, one finds

E0

D
= q2 + q2φ (19)

E1
0

D
= q2 + q2φ + q2so

E1
−
D

= q2 + q2φ +
3

2
q2so −

√
4q2q2so +

q4so
4

E1
+

D
= q2 + q2φ +

3

2
q2so +

√
4q2q2so +

q4so
4
,

where E0 and E1
m are eigenvalues of L̂ corresponding

to total angular momentum J = 0 and J = 1 sectors,
and q2so = 2Ω2

R1τ1/D = 2α2k2F τ1/~2D characterizes the
strength of SOI. Using these results, one can obtain WAL
correction to conductivity:

∆σ = −2e2

h
D

∫ qmax

qmin

d2q

(2π)2
2πντ20 Tr[Ĉ(q)]

= −2e2

h
D

∫ qmax

qmin

d2q

(2π)2

(
− 1

E0
+

1∑
m=−1

1

E1
m

)
. (20)

Here qmax and qmin are ultra-violet and infra-red cutoffs,
respectively, with qmax = 1/vF τ1. If magnetic field is
weak, one can simplify the calculation by including mag-
netic field as IR cutoff given by qmin = qB . (If magnetic
field is large, one has to perform the summation over the
Landau levels35). In this paper, we focus on weak mag-
netic field limit, in which case one can obtain analytical
expression for the quantum correction to magnetocon-
ductivity:

∆σ(B)−∆σ(0) = − e2

2πh
(−∆I0 + ∆I10 + ∆I1− + ∆I1+)

∆I0 = ln

[
q2φ

q2φ + q2B

]
, ∆I10 = ln

[
q2φ + q2so

q2φ + q2so + q2B

]
,

∆I1− = ln

[
q2φ + q2so

q2φ + q2so + q2B

]
+ F−(qso, qB , qφ),

∆I1+ = ln

[
q2φ + 2q2so

q2φ + 2q2so + q2B

]
+ F+(qso, qB , qφ). (21)

Here q2B ∼ eB/~, and the functions F−(qso, qB , qφ) and
F+(qso, qB , qφ) are defined as

F−(qso, qB , qφ) = −4πqso
qF

[
1− 1√

1 + 16(qB/qF )2

]

− 8qso
qF

arctan

(
3qso
qF

)
−

arctan

(
3qso√
q2F+16q2B

)
√

1 + 16(qB/qF )2


F+(qso, qB , qφ) =

4πqso
qF

[
1− 1√

1 + 16(qB/qF )2

]

− 8qso
qF

arctan

(
5qso
qF

)
−

arctan

(
5qso√
q2F+16q2B

)
√

1 + 16(qB/qF )2

 .
with q2F = 7q2so + 16q2φ. The magnetic field cutoff q2B
depends on an arbitrary coefficient a1 that enters the
definition q2B = a1eB/~. By comparing Eq. 21 with the
ILP theory in the limit q2φ � q2B � q2so, we find that

our results coincide if one takes a1 = e−γ with γ being
Euler’s constant.

2. Weak anti-localization due to cubic Rashba spin-orbit
interaction

According to our four-band model, there are two types
of carriers contributing to the transport. One is the sec-
ond level dxy band electrons with negligible SOI, which
we therefore neglect, and the other is middle (dxz + dyz)
band electrons with k-cubic Rashba SOI. In this case, the
effective Hamiltonian for middle band derived from Eq.
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10 can be written as

H =
~2k2

2m∗
+ ~σσσ ·ΩΩΩR3, (22)

where ΩΩΩR3 = ΩR3(sin 3θ,− cos 3θ) with ΩR3 = α3k
3
F /~

now gives correction to third harmonic of Cooperon, and
resulting matrix equation for Cooperon in the triplet sec-
tor can be written as Eq. 17 with

L̂J=1 = Dq2 +
1

τφ
+ 2Ω2

R3τ3(J2 − J2
z ). (23)

Now L̂J=1 is readily diagonal in the original basis of J
and Jz, and its eigenvalues are

E0

D
= q2 + q2φ,

E1
−1
D

= q2 + q2φ + q2so3,

E1
0

D
= q2 + q2φ + 2q2so3,

E1
1

D
= q2 + q2φ + q2so3,

where q2so3 = 2Ω2
R3τ3/D = 2α2

3k
6
F τ3/~2D. Then the

magnetoconductivity can be written as,

∆σ(B)−∆σ(0) = − e2

2πh
(−∆I0 + ∆I10 + ∆I1− + ∆I1+)

∆I0 = ln

[
q2φ

q2φ + q2B

]
, ∆I10 = ln

[
q2φ + 2q2so3

q2φ + 2q2so3 + q2B

]
,

∆I1− = ln

[
q2φ + q2so

q2φ + q2so3 + q2B

]
,

∆I1+ = ln

[
q2φ + q2so3

q2φ + q2so3 + q2B

]
(24)

Again, taking q2B = e−γBe/~ reproduces HLN theory34

for strong SOI and small magnetic field.

Clearly, WAL corrections to the magnetoconductance
are different for linear and cubic Rashba SOI. Therefore,
by comparing fits of the experimental data to the above
expressions, one can try to distinguish between the two
scenarios. This, in turn, can shed light on the origin of
superconductivity at the LAO/STO interface.

B. Universal Conductance Fluctuations in Two
Dimensions

Another transport signature of the spin-orbit interac-
tion is its effect on universal conductance fluctuations
(UCF) in small systems (see Ref .39 and references
therein). The variance of the conductivity in a meso-
scopic system, δσ2, has dominant contributions from the
two types of connected diagrams shown in Fig. 7. We
assume that our system has size L in each direction so
that its area V is given by V = L2. The contributions
from those diagrams can written in the form

δσ2 ∼
(
e2

h

)2

· D
2

V

∫ qmax

qmin

d2q

(2π)2

(
Tr[D̂(q)]2 + Tr[Ĉ(q)]2

)
(25)

𝛼 

𝛽 

FIG. 7. a) Diagrams corresponding to two dominant contri-
butions to UCF: a) particle-hole channel b) particle-particle
channel.

where Dαβ(q) = δαβ/D(q2 + q2IR) is a Diffuson prop-

agator, and Ĉ(q) is a Cooperon propagator derived in
the previous section. We will assume qmax = 1/l → ∞,
qIR = max[1/L, 1/lφ]; the cutoff qmin = 0 and qmin = qB
for Diffuson and Cooperon propagators, respectively.

1. UCF for linear Rashba spin-orbit coupling

Taking into account finite-size effects in Eq. (18), one
finds Cooperon propagators for linear Rashba SOI

C0
0 =

1

D(q2 + q2IR)
, C1

0 =
1

D(q2 + q2IR + q2so)

C1
1 =

1

D(q2 + q2IR + 3
2q

2
so +

√
4q2q2so + q4so)

, (26)

C1
−1 =

1

D(q2 + q2IR + 3
2q

2
so −

√
4q2q2so + q4so)

.

By integrating over momenta in Eq.(25), one finds

δσ2∼


(
e2

h

)2[
4+ 1

1+L2q2B
+ 1

1+L2(q2B+q
2
so)

+ F1(L) + F2(L)
]
, lφ � L

(
e2

h

)2 l2φ
L2

[
4+ 1

1+l2φq
2
B

+ 1
1+l2φ(q

2
B+q

2
so)

+ F1(lφ) + F2(lφ)
]
, lφ � L

(27)
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where

F1(l) = − 1

3(1 + l2(q2B + q2so))
+

64

3(16 + l2(16q2B + 7q2so))
+

64lqso arctan

(
3lqso√

16+l2(16q2B+7q2so)

)
(16 + l2(16q2B + 7q2so))

3/2
,

F2(l) =
1

5(1 + l2(q2B + q2so))
+

64

5(16 + l2(16q2B + 7q2so))
+

64lqso arctan

(
5lqso√

16+l2(16q2B+7q2so)

)
(16 + l2(16q2B + 7q2so))

3/2
.

FIG. 8. Plot of UCF strength versus qSO and qB with linear
Rashba SOI at lφ � L limit.

The dependence of UCF as a function of SOI and mag-
netic field is shown in Fig. 8. One can notice a suppres-
sion of δσ2 by factor of 5/8 for large SOI due to the sup-
pression of the triplet contributions in the Cooper chan-
nel. The magnetic field suppresses the singlet Cooperon
contribution, and δσ2/δσ2(0) converges to 1/2 under
strong magnetic field.

2. UCF with cubic Rashba SOI

Following similar steps as in the previous subsection,
we compute Cooperon propagators with cubic Rashba
SOI in a finite system:

C00 =
1

D(q2 + q2IR)
, C10 =

1

D(q2 + q2IR + 2q2so3)
,

C11 =
1

D(q2 + q2IR + q2so3)
, C1−1 =

1

D(q2 + q2IR + q2so3)
.

By integrating over momenta in Eq.(25), one obtains

δσ2∼


(
e2

h

)2 [
4 + 1

1+L2q2B
+ 2

1+L2(q2B+q2so3)
+ 1

1+L2(q2B+2q2so3)

]
, lφ � L

(
e2

h

)2 l2φ
L2

[
4 + 1

1+l2φq
2
B

+ 2
1+l2φ(q

2
B+q2so3)

+ 1
1+l2φ(q

2
B+2q2so3)

]
, lφ � L

(28)

The dependence of UCF on magnetic field and SO cou-
pling is plotted in Fig. 9. The suppression of the triplet
channel contribution is steepr for cubic Rashba SOI than
for linear Rashba coupling, as may be seen by comparing
Fig. 9 to Fig. 8.

C. Quantum corrections to conductivity in quasi
one-dimensional structures

In this section, we consider quasi-one-dimensional sys-
tem confined along the y-direction(−W2 < y < W

2 ). In
this geometry, as previously discussed, the SOI in dxy and
dxz bands at small carrier density is dominated by lin-
ear Rashba contribution. We, therefore, concentrate on
this situation. Given the confinement along y-direction,

we need to solve Eq.(17) in real space and impose ap-
propriate boundary conditions. The singlet component
of the Cooperon is not affected by SOI, and, thus, the
corresponding eigenvalue is E0 taken at qy = 0. We now
concentrate below on J = 1 subspace. The matrix equa-
tion for the J = 1 components of the Cooperon reads

L̂J=1(r)Ĉ0(r, r′) =
1

2π~ντ20
δ̂(r, r′) (29)

L̂J=1(r)=
1

τφ
+D

[
(−i∂x − qsoĴy)2 + (−i∂y + qsoĴx)2

]
.
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FIG. 9. Dependence of UCF on magnetic field and cubic
Rashba SOI in lφ � L limit.

Here r = (x, y). The solution of above equation is given
by,

Ĉ (r, r′) =
1

2π~ντ20

1∑
m=−1

|ψm(r)〉〈ψm(r′)|
Em

(30)

L̂J=1(r)|ψm(r)〉 = Em|ψm(r)〉 (31)

with boundary conditions,

(−i∂y + qsoĴx)|ψm(r)〉|y=±W2 = 0 (32)

implying zero current in the direction normal to the
boundary for each spin eigenstates. We note that qy = 0
does not satisfy the boundary conditions. To find the
Cooperon propagator in this case, we first perform a
gauge transformation36,40 and simplify boundary condi-
tions. Let’s perform the canonical transformation defined

by Û(y) = eiqsoĴxy and introduce |ψ̃m(r)〉 = U(y)|ψm(r)〉
and L̃(r) = Û(y)L̂J=1(r)Û†(y) where L̃

L̃(r) =
1

τφ
+D[(−i∂x)2 + (−i∂y)2]

−2Dqso[e
iqsoĴxyĴye

−iqsoĴxy](−i∂x)

+Dq2so[e
iqsoĴxyĴ2

ye
−iqsoĴxy]. (33)

In terms of the new eigenstates, the boundary condition
reads

(−i∂y)|ψ̃m(r)〉|y=±W2 = 0 (34)

and, thus, the zero mode qy = 0 now satisfies the above
boundary condition. If the width satisfies W � 1/qφ
as 1/qφ being dephasing length, one can neglect higher
harmonics, ny ≥ 1, because they are suppressed by a
factor of Wqφ. In this regime, the dominant contribution
comes from qy ∝ ny = 0 mode. Furthermore, in the

limit W � 1/qso, L̃(r) is a slowly varying function of y,

and can be approximated by its average over ŷ-direction.
Then, we find that

L̃(qx, 0)

D
=

1

DW

∫ W/2

−W/2
dyL̃(qx, y) = q2φ + q2x + Ĝ1 + Ĝ2,

Ĝ1 =−2qsoqx
2 sin( qsoW2 )

qsoW
Ĵy,

Ĝ2 =
q2so
4

 3− sin(qsoW )
qsoW

0 −1+ sin(qsoW )
qsoW

0 2+2 sin(qsoW )
qsoW

0

−1+ sin(qsoW )
qsoW

0 3− sin(qsoW )
qsoW

 .

The eigenvalues of L̃(qx, 0)/D are given by

E1
0/D = q2φ + q2x +

q2so
2
tso,

E1
±/D = q2φ + q2x +

q2so
4

(
4− tso ±

√
t2so +

64q2x
q2so

(1− cso)2
)
,

tso = 1− sin(qsoW )

qsoW
∼ (qsoW )2

6
,

cso = 1−
2 sin( qsoW2 )

qsoW
∼ (qsoW )2

24
.

With the Cooperon propagator in hand, we can now com-
pute quantum corrections to the conductivity

∆σ1D = −2e2D

h

∫ qmax

qmin

dqx
2π

(
− 1

E0
+

1∑
m=−1

1

E1
m

)
(35)

At non-zero magnetic field, this expression is modifed by
introducing an additional cutoff q2B :

∆σ1D(B) = −e
2

h

[
− 1√

q2φ + q2B

+
1√

q2φ + q2B + 2rq2so

+
2√

q2φ + q2B + rq2so

]
, (36)

where r is a width-dependent coefficient that charac-
terizes the effective strength of the spin-orbit coupling,
r = (qsoW )2/12. The magnetic field cutoff is also
modified and becomes width-dependent. For weak fields
B � h/eW 2, the cutoff q2B ∼ e2B2W 2/h2 whereas for
large fields B � h/eW 2, it remains the same as in 2D,
i.e. q2B ∼ eB/h.

Throughout this section, we have assumed that the sys-
tem is in the diffusive regime (i.e. all lengths are longer
than the elastic mean free path) and have derived the
Cooperon propagator in a quasi-1D system in this limit,
i.e. assuming that q−1so �W � le, where le is the mean-
free path. The results of our calculation can be extended
to a quasi-1D nanowire whose width is comparable with
the mean free path le; see, for example, Ref. 41. In
this regime, the magnetic field cutoff should be mod-
ified due to the flux cancellation effect. In the weak
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(B � ~/eWle) and strong (B � ~/eWle) magnetic field
limit, the cutoff qB becomes q2B = 2e2B2W 3/(C1~2le)
and q2B = 2eBW 2/(C2~l2e), respectively. Here, the coef-
ficients C1 = 9.5 and C2 = 4.8 are obtained for specular
boundary condition.

D. Universal Conductance Fluctuations in a
Quasi-One Dimensional System

Using the expressions for Cooperon propagators de-
rived in the previous section, we now evaluate UCF in
a quasi-one dimensional system with width W � 1/qφ,
1/qso and L � lφ. For a mesoscopic system with length
L � lφ, we need to change qφ → 1/L in the expressions
for the Cooperon propagator. Then, we find that the
quasi one-dimensional conductivity variance is given by

δσ2
1D ∼

(
e2

h

)2

· D
2

L

∫ qmax

qmin

dq

2π

(
Tr[D̂(q)]2 + Tr[Ĉ(q)]2

)
(37)

We evaluate the momentum integral numerically, assum-
ing a fixed ratio of W and L. The dependence of the
variance of the conductivity on SO coupling and mag-
netic field for L = 30W is shown in Fig. 10. We find

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.6

0.7

0.8

0.9

1.0

qBW

∆Σ
2

∆Σ
2 H0L

qsoW=0.8

qsoW=0.6

qsoW=0.4

qsoW=0.2

qsoW=0

FIG. 10. Plot of δσ2/δσ2(0) versus magnetic field for various
SOI strength at L = 30W .

that UCF in a quasi-1D system depends on the mag-
netic field in a manner similar to its dependence in 2D,
i.e. δσ2

1D/δσ
2
1D(0) converges to the same value 1/2 under

strong magnetic field.

V. DISCUSSION OF EXPERIMENTAL
RESULTS

A. Weak Anti-Localization Measurements at STO
Surfaces

Nakamura et al.18 recently reported evidence of a cu-
bic Rashba SOI at a low carrier density (kFa < 0.3) STO
surface. They concluded that the bottom dxy-like band

has cubic Rashba SOI. However, as may be seen in Fig.
4, we found that the SOI of bottom dxy-like band is dom-
inated by linear Rashba SOI in the region of small carrier
density probed in the experiment.

FIG. 11. Dependence of spin-orbit coupling α3 (eV·Å3)
and spin-orbit energy ∆R (meV) on electron density
n (×1012cm−2) in the middle band of STO surfaces. For
energy spectrum see Fig. 3. Here we used ∆z = 35 meV,
∆ASO = 6 meV.

Since this is in contradiction with the data of Naka-
mura et al.18, we assume, instead, that electrons in the
bottom band are localized (or very poorly conducting)
and that the observed transport is due to the middle
band. In that case, WAL should be due to a cubic Rashba
term since the middle band has only cubic Rashba SOI.
The calculated values for the cubic Rashba coupling coef-
ficient as a function of carrier density are plotted in Fig.
11.

B. Weak Anti-Localization Measurements at
LAO/STO Interface

We now discuss SOI using our model for LAO/STO in-
terfaces and apply it to explain rapidly increasing Rashba
SOI observed in recent experiments8–10. We consider
a three-band model, as we did for the surface of STO,
and take the values ∆E = 50 meV from x-ray absorption
spectroscopy42 and ∆ASO = 9 meV and ∆z = 20 meV
from the DFT calculations of Ref. 19. The dependence
of the strength of SOI, following from the three-band
model, on chemical potential is shown in Fig. 12. Dashed
and solid curves correspond, respectively, to bottom (lin-
ear Rashba SOI) and middle (cubic Rashba SOI) bands.
Comparison our results with the experiment provides two
possible explanations for the rapid increase of SOI at a
specific gate voltage. The first hypothesis is that the
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FIG. 12. Calculated α1(∆R/kx) vs µ(meV). Dashed (solid)
plots correspond to bottom (middle) band.

transport at that gate voltage is due to the bottom dxy-
like band. This band has linear Rashba SOI at k ≈ 0
and a much larger SOI near the avoided crossing with
the dxz,yz bands. Approaching the crossing causes reduc-
tion of the gap, which, in turn, leads to an enhancement
of SOI. For this hypothesis to agree with the observed
data8, superconductivity would have to be suppressed
once electrons start populating the middle band since
the superconducting transition temperature starts to de-
crease right after the sharp increase of SOI. It is not clear
why this should be the case. Furthermore, the observed
carrier density of the bottom band, as deduced by Hall
measurements, ∼ 1013 cm−2 seems to be much smaller
than the polar catastrophe theory suggests ∼ 1014 cm−2.
Moreover, it is not easy to see why there should be a
sharp onset density at which superconductivity starts to
appear.

The other hypothesis is that these observations are
dominated by transport from the middle heavy electron
band. We now apply our four-band model, and assume
that most of the ∼ 1014 cm−2 electrons predicted by the
polar catastrophe argument are localized at the interface.
A much smaller number ∼ 1013 cm−2 of electrons pop-
ulates the middle band and dominates transport. Elec-
trons in the second dxy sub-band may contribute to the
Hall effect, but the WAL phenomena seen in experiments
would be due to cubic Rashba for small mobile carrier
density, as at the STO surfaces. This picture also sug-
gests that superconductivity arises as a result of the ap-
pearance of electrons in the middle band.

Yet another possibility to consider is transport in
quasi-one-dimensional channels, as in wires ‘drawn’ with
an AFM tip21, or appearing spontaneously and are re-
lated to the formation of tetragonal domains formed in
the STO below 105 K28. As we discussed above, Rashba
SOI is always linear in momentum in quasi-1D geome-
try, regardless of the band index. There is, however, an
important feature of transport in the quasi-1D case that
does distinguish between carriers in the different bands.
At the values of the chemical potential at which the dxz
and dyz bands become degenerate, the spin-orbit interac-

tion in these bands vanishes, as shown in Fig. 6. There-
fore, it would be interesting to revisit WAL data and fit
the magnetoconductance having a particular scenario in
mind.

VI. CONCLUSIONS

The origin of the physics underlying the ordering
phenomena of LAO/STO interfaces, namely magnetism
and superconductivity, is still unclear and controversial.
However, spin-orbit interaction may provide a window
into understanding these properties. As we have seen,
the electrons in the different bands of the LAO/STO in-
terface have Rashba (i.e. interface-induced) SOI with
different momentum dependences. Moreover, this depen-
dence is a strong function of the effective dimensionality
of the carriers. The momentum-dependence and effective
dimension are, in turn, reflected in transport measure-
ments through the dependence of WAL effects on an ap-
plied magnetic field. In this paper, we have given a simple
explanation for both the nature of SOI in LAO/STO and
the surface of STO and also for its WAL signature.

We find that the sharp increase in the strength of the
SOI with gate voltage is consistent with conduction that
is dominated by either the dxy or dxz,yz bands. However,
the spin-orbit energy scale is predicted to decrease at still
higher gate voltages. This decrease would steeper in the
case of the dxy band. Therefore, if it were possible to in-
crease the gate voltage until the spin-orbit coupling peaks
and begins to decrease (as the superconducting transi-
tion is observed to do), it would be possible to distin-
guish between these two scenarios. In the quasi-1D case,
the difference between the dxy and dxz,yz bands may be
even more dramatic since the SOI vanishes in the latter
case at one value of the chemical potential. If nominally
2D transport is actually quasi-1D, as suggested by re-
cent measurements28, then there may be a third possible
functional form against which WAL data on LAO/STO
interfaces could be measured. However, there are, at
present, too many unknowns (such as the wire width and
spacing) to make a meaningful comparison between the-
ory and experiment. Finally, we note that we have made
concrete predictions for the dependence of universal con-
ductance fluctuations on the mangetic field, spin-orbit
interaction, and device size, which could be compared to
experiments if the dependence on these parameters coud
be measured in experiments similar to those reported re-
cently in Ref. 43.
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