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We present an investigation of the lattice dynamics of the charge-density-wave compound 2H-NbSe2. We analyze the 
precise nature of the wave vector dependent electron-phonon coupling (EPC) and derive the bare dispersion of the 
charge-density-wave (CDW) soft phonon mode using inelastic x-ray scattering combined with ab-initio calculations. 
Experimentally, phonon modes along the Γ – M line, i.e. q = (h, 0, 0) with 0 ≤ h ≤ 0.5, with the same longitudinal 
symmetry (Σ1) as the CDW soft mode were investigated up to 32 meV. In agreement with our calculations we 
observe significant EPC in the optic modes at h ≤ 0.2. We analyze the EPC in the optic as well as acoustic modes and 
show that the q dependences stem from scattering processes between two bands at the Fermi surface both having Nb 
4d character. Finally, we demonstrate that the soft mode dispersion at T = 33 K (= TCDW) can be well described on 
the basis of a strongly q dependent EPC matrix element and an acoustic-like bare phonon dispersion in agreement 
with observations near room temperature. 
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I. Introduction 

 Charge-density-wave (CDW) formation is one of the most 
common phenomena in solid state physics and relevant to a 
number of important issues in condensed matter physics, 
such as the role of stripes in cuprate superconductivity [1] 
and charge fluctuations in the colossal magnetoresistive 
manganites [2]. Static CDW order, i.e. a periodic 
modulation of the electronic density, can only be stabilized 
in case of a non-zero electron-phonon coupling, specifically, 
coupling of phonons to electrons in the conduction bands. 
Hence, the electronic modulation is accompanied by a lattice 
distortion involving a soft phonon mode with a zero energy 
at q = qCDW and T = TCDW’.  

2H-NbSe2 is a prototypical CDW compound. It was 
originally investigated over four decades ago as one of the 
first layered materials, in which superconductivity was 
observed (TSC (2H-NbSe2) = 7.2 K) [3]. Only afterwards it 
was realized that 2H-NbSe2 undergoes a CDW phase 
transition already at TCDW = 33 K [4], however, the exact 
distortion pattern at T < TCDW is still a subject of current 
research [5]. Original ideas on the origin of the CDW 
formation centered on the Fermi surface nesting, however, 
subsequent experiments found that CDW in some 
compounds appears without strong FS nesting [6]. Early on, 
an alternative mechanism based on a q-dependent 
enhancement of the electron-phonon coupling matrix 
element, 𝑔!, has been proposed. A prominent role of EPC 
and, in particular, the wave vector dependence of 𝑔! have 
been suggested [7,8,9]. Experimentally, however, the small 
size of 2H-NbSe2 single crystals allowed only a limited 
investigation of the CDW soft phonon mode close to TCDW 
by inelastic neutron scattering [10-12]. Earlier, we reported 
high-resolution inelastic x-ray scattering experiments 

showing evidence that in 2H-NbSe2 the wave vector 
dependence of 𝑔! is indeed at the origin of the CDW 
transition [13].  

Any realistic model of soft phonons in CDW compounds 
must begin with understanding the bare phonon dispersion, 
𝜔!"#$(𝑞), which is the dispersion without the interaction of 
the phonon with electrons in the conduction bands. It takes 
into account the screening of the ionic movements by the 
strongly bound core electrons but not the more subtle effects 
due to electronic scattering processes near the Fermi surface. 
Extracting 𝜔!"#$(𝑞) is not a trivial task, because it cannot 
be measured directly.  Furthermore, it is necessary to go 
beyond the simple assumption that the soft phonon must 
derive from an acoustic branch, because optic phonon can 
also soften to zero energy if they are coupled to conduction 
electrons strongly enough. 

In this report we derive the bare phonon dispersion 
𝜔!"#$(𝑞) of the CDW soft mode in NbSe2 from a detailed 
analysis of the wave vector dependent EPC, the correlated 
electronic scattering processes and the phonon displacement 
patterns. Since the soft phonon mode is not necessarily 
acoustic-like, optic phonons of the same symmetry as the 
soft mode had to be investigated as well. We have measured 
phonons with Σ1 symmetry up to 32 meV providing 
evidence of EPC in the optical branches at small wave 
vectors. These results are in good agreement with our ab-
initio calculations and we used the latter to further analyse 
the observed EPC in the optic as well as acoustic phonons. 
We found that the wave vector dependence of EPC in the 
investigated phonons is primarily due to electronic 
scattering processes between two Nb-4d derived bands at 
the Fermi surface. Further, the phonon patterns do not 
indicate an exchange of eigenvectors between optic and 
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acoustic phonons. Accordingly, the soft mode at T = TCDW is 
acoustic-like.  

II. Theory 

Calculations using density-functional-perturbation-theory 
(DFPT) were performed in the framework of the mixed 
basis pseudopotential method.[14] The exchange-correlation 
functional was treated in the local-density approximation 
(LDA).  Norm-conserving pseudopotentials for Nb and Se 
were constructed including 4s and 4p semicore states in the 
valence space in the case of Nb.  The deep potentials can be 
efficiently treated in the mixed-basis scheme, which 
combines local functions together with plane waves for the 
representation of the valence states. Local functions of s, p, 
and d symmetry at the Nb sites and of s and p symmetry on 
the Se sites, respectively, were combined with plane waves 
up to 24 Ry. 

Phonon energies and electron-phonon coupling were 
calculated using the linear response technique or density 
functional perturbation theory (DFPT)[15] in combination 
with the mixed-basis pseudopotential method.[16] To 
resolve fine features related to the Fermi surface geometry, 
Brillouin-zone (BZ) integrations were performed with a 
dense hexagonal 24×24×8 k-point mesh (244 points in the 
irreducible BZ). The standard smearing technique was 
employed with a Gaussian broadening of 0.1 eV. Tests with 
the denser k-point mesh confirmed sufficient convergence 
for both phonon energies and line widths.  All results were 
obtained for the fully optimized hexagonal structure 
(a=b=3.40 Å, c=12.09 Å).  

Imaginary phonon energies, shown as the negative roots of 
the square phonon energies in Fig. 1, appear in the 
calculation, because of an anharmonic double-well potential 

reflecting the CDW instability. At zero temperature the 
lattice will distort into a CDW and sit in one of the minima. 
However, the calculation assumes that the lattice is 
undistorted, i.e. that it sits in the middle (i.e. local 
maximum) of the double well potential. Negative curvature 
of the potential at atomic positions of the high temperature 
structure is what gives an imaginary calculated energy for 
the phonon whose eigenvector is close to the CDW 
distortion. 

III. Experiment 

The IXS experiments were carried out at the XOR 30-ID 
HERIX beamline of the Advanced Photon Source, Argonne 
National Laboratory, with a focused beam size of 30 µm. 
The incident energy was 23.724 keV [17] and the 
horizontally scattered beam was analysed by a set of 
spherically curved silicon analysers (Reflection 12 12 12) 
[18]. The full width at half maximum (FWHM) of the 
energy and wave vector space resolution was about 1.5 meV 
and 0.066 Å-1, respectively, where the former is 
experimentally determined by scanning the elastic line of a 
piece of plastic and the latter is calculated from the 
experiment geometry and incident energy. The components 
(Qh, Qk, Ql) of the scattering vector are expressed in 
reciprocal lattice units (r.l.u.) (Qh, Qk, Ql = (h*2π/a, k*2π/a, 
l*2π/c) with the lattice constants a = b = 3.443 Å and c = 
12.55 Å of the hexagonal unit cell, space group P63/mmc. 
Measurements were made in the constant-wave vector Q 
mode, i.e. as energy scans at constant wave vector Q = τ + 
q, where τ is a reciprocal lattice point and q the reduced 
wave vector. Measurements were done in the Brillouin 
zones adjacent to τ = (3, 0, 0) and (3, 0, 1), i.e. Q = (3-h, 0, 
0) and (3-h, 0, 1). We used a high-quality single crystal 
sample of about 50 mg (2 x 2 x 0.05 mm³) with a TCDW of 33 
K determined from the temperature dependence of the 
superlattice reflections [13] in agreement with previous 
results [19]. The sample was mounted in a closed cycle 
refrigerator and measurements reported here were done at 
various temperatures 33 K ≤ T ≤ 250 K. 

Measured energy spectra were fitted using a pseudo-Voigt 
function for the elastic line with a variable amplitude and 
fixed line shape established by scanning through the CDW 
superlattice peak at T = 8 K and reference scans of a piece 
of plastic. Phonon peaks were fitted by a damped harmonic 
oscillator (DHO) function [20] 

𝑆 𝑄,𝜔 = ! ! !! ! ! !!!/!

!!!!!!
!
!!!!!!

     (1) 

where Q and ω are the wave vector and energy transfer, 
respectively, n(ω) is the Bose function, Γ is the imaginary 
part of the phonon self-energy, 𝜔! is the phonon energy 
renormalized by the real part of the phonon self-energy and 
Z(Q) is the phonon structure factor. This function covers the 
energy loss and energy gain scattering by a single line shape 
and was convoluted with the experimental resolution. The 
intensity ratio of the phonon peaks at 𝐸 = ±𝜔! is fixed by 
the principle of detailed balance. The energy 𝜔! , of the 
damped phonons is obtained from the fit parameters of the 
DHO function by 𝜔! = 𝜔!! − Γ!  (Ref. [21]). Here, 𝜔!is 

Figure 1: (a) Calculated phonon dispersion along the 
(100) direction in NbSe2. Different line types (colors) 
denote branches with different symmetries (see 
legend). (b) Branches with longitudinal symmetry (Σ1) 
(solid lines in (a)). Labels are given corresponding to 
the discussion. Vertical bars denote the calculated 
electronic contribution to the phonon line width 2γ 
scaled by a factor of 10 for the sake of visibility. 
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the phonon energy renormalized by the real part of the 
susceptibility, Re χ, whereas 𝜔!is renormalized by both the 
real and imaginary part of the susceptibility.  

 
IV. Results 

IV.1 Density functional perturbation theory 

Our calculated phonon dispersions are in good agreement 
with previous calculations [22]. In Fig. 1(a) we show the 
dispersion along the crystallographic (100) direction 
including the CDW wave vector qCDW = (0.329,0,0) [19]. 
Due to the double layered structure within the hexagonal 
unit cell of NbSe2, we observe pairs of branches with very 
small differences in absolute energy and dispersion except 
for the acoustic modes. As reported previously [13], our 
calculations predict a broad range of wave vectors with 
imaginary phonon energies indicating the structural 
instability. Nonetheless we discuss our results within the 
undistorted high temperature structure because we are 
interested in the lattice dynamics leading to the phase 
transition at and just above the phase transition.  

Fig. 1(b) focuses on the longitudinal branches along the 
(100) direction having Σ1 symmetry. Here, we also plot the 
momentum and energy resolved calculated electronic 
contribution to the line width of the phonons, which is a 
direct measure of the EPC. Sizeable contributions of EPC to 
the phonon line widths for the longitudinal acoustic (LA) 
and optic (LO) phonon branches are calculated. In the two 
highest LO modes we see very little wave vector 
dependence of EPC, whereas the two LO branches starting 
at the zone centre at 27.13 meV and 28.43 meV exhibit a 
clear decrease of EPC along the Γ – M line (Fig. 1b). 
Moreover, the EPC of the LA and lowest LO branches 
strongly increase in the wave vector range where the line 
widths of the LO branches starting out at 27.13 meV and 
28.43 meV are reduced (h = 0.2 – 0.25 r.l.u.). We point out 
that the wave vectors where the dispersion of the LA mode 
has its maximum and the ones of the LO branches starting 
out at 27.13 meV and 28.43 meV have a minimum in their 
dispersions are in the same wave vector range 0.2 ≤ h ≤ 
0.25. Hence, an exchange of eigenvectors, which is possible 
for modes of the same symmetry, between the medium 
energy LO modes and the LA branch cannot be excluded 
although the energy gap is quite large (12 - 14 meV). Note 
that such an exchange of eigenvectors would completely 
change the discussion of the bare phonon energy in sect. V. 
Instead of the softening of the LA branch, we would have to 
consider the softening of an LO phonon over more than 20 
meV from the zone centre to qCDW.   

For a more detailed analysis, and because both, the 
experimental results for phonon energies and line widths, 
are in good agreement with the predictions of DFPT (see 
sec. IV.2), we looked into the calculated phonon 
eigenvectors of the three investigated modes taking into 
account the respective electronic contributions to the phonon 
line width γ. The calculated absolute atomic displacements 
uatom for the LO1, LO2 and the acoustic branches along the 
Γ – M line are shown in Fig. 2(a)-(c). In panels (d)-(f) of the 

same figure, γ’s (half width at half maximum, HWHM) of 
the three phonon branches are plotted. For the LO1 branch 
the maximum in γ as a function of wave vector (Fig. 2e) 
coincides with the maximal Nb displacement uNb. In the 
acoustic branch, the strong maximum in γ at h = 0.3 – 0.35 
(Fig. 2f) is accompanied by an increase of the corresponding 
uNb having, however, only a very broad peak (Fig. 2a). 
There is no clear correlation between the movements of the 
Se atoms (Fig. 2b,c) and γ values. This already indicates that 
the dominant part of γ is due to scattering by electronic 
states with Nb character, as will be shown below. The LO2 
branch does not show a relation between uNb and γ, although 
there is a maximum in the former close to the zone centre 
(Fig. 2a).  

Here, it is instructive to look into the contributions to the 
total γ due to different scattering processes at the Fermi 
surface. Our calculated Fermi surface is produced by 2 Nb 
4d – derived bands (which we call Nb1 and Nb2 for 
simplicity) and one band with Se 4p character in agreement 
with previous reports [23,24]. Apparently, electronic 

Figure 2:  
(a)-(c): q dependence of the calculated absolute atomic 
displacements for the acoustic (AC), lower optic (LO1) 
and highest optic branch (LO2). Three displacements 
are shown: (a) Nb || a, (b) Se || a, and (c) Se || c. Other 
components are zero.  
(d)-(f): Calculated electronic contribution to the phonon 
line width γ for the (d) highest optic (LO2), (e) the 
lower optic (LO1) and (f) and the acoustic (AC) 
branches. Each panel shows the total line width (solid 
line) and the dominant contributions related to specific 
electronic scattering processes. The inset in (e) shows 
the calculated q dependence of the electronic joint 
density-of-states (JDOS) for the scattering process Nb1 
– Nb2.  
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scattering paths between the two Nb 4d-derived bands are 
responsible for the strong maxima in the EPC of the LO1 
and acoustic modes (Fig. 2e,f). Further, we see that the same 
scattering path yields a weak maximum in γ for the LO2 
branch close to the zone centre (Fig. 2d), which coincides 
with the maximum in uNb for this branch (Fig. 2a). Hence, 
our analysis demonstrates that phonon displacements with 
strong Nb movements are necessary to produce a large and 
wave vector dependent EPC. The consecutive maxima of γ 
in the LO2, LO1 and acoustic branches going from close to 
the zone centre to the zone boundary, i.e. from h = 0 to 0.5, 
might indicate a certain transformation of Nb character from 
the LO2 to the LO1 and then to the acoustic branch along 
this direction. However, the wave vector dependence of the 
Nb displacements, in particular the one of the acoustic 
branch, argues against a decisive role of such an exchange 
with respect to the formation of CDW order. uNb increases 
by one third at h = 0.15 – 0.35 and then is reduced by 3% 
further towards the zone boundary (Fig. 2a). On the other 
hand, the corresponding γ related to scattering between the 
Nb 4d-derived bands jumps from zero at small wave vector 

to a clear maximum at h = 0.3 and then decreases again by 
50% (red dots in Fig. 2f). We conclude that DFPT does not 
predict an exchange of eigenvectors between the LO and LA 
branches of Σ1 symmetry in NbSe2.  

IV.2 Experimental results 

Experiments using inelastic neutron scattering to measure 
phonons in materials having a CDW with good wave vector 
and energy resolution were limited to a small number of 
compounds, where sufficiently large single crystals could be 
grown [25]. Similar measurements in NbSe2 [10,11] gave 
only limited insight into the dynamics in the pre-transitional 
temperature region just above TCDW. Apart from the small 
sample volume, previous measurements focused on the 
Brillouin zone adjacent to the reciprocal lattice vector τ = 
(3,0,0). In contrast, our calculations predicted a much larger 
structure factor for the soft phonon mode around τ = (3,0,1). 
Fig. 3 shows IXS raw data taken in the two different 
Brillouin zones at a reduced wave vector of q = (0.3,0,0), 
which demonstrate the accuracy of the calculated structure 
factors and, hence, the calculated phonon pattern. Indeed, 

Figure 3: Raw IXS data obtained at T = 50 K and Q = 
(2.7,0,1) (a) and (2.7,0,0) (b). Solid (red) lines are fits 
consisting of an elastic line, damped harmonic 
oscillators for the inelastic peaks and a linear 
background shown as dashed (blue) lines. Inset: 
Temperature dependent phonon energy of the second 
lowest longitudinal mode at q = (0.3, 0, 0) (see (a), (b)). 
The dashed line is a guide to the eye.  

Figure 4: (a) Raw data showing two optic phonon 
modes at Q = (2.2,0,0) at T = 33 K. The solid (red) line 
is a fit consisting of two damped harmonic oscillators 
for the inelastic peaks convoluted with the 
experimental resolution and a linear background 
shown as dashed (blue) lines. (b),(c) Measured phonon 
dispersion at T = 33 K and 250 K, respectively. Solid 
lines denote the dispersion associated with the soft 
phonon mode (see text) as published in Ref. 
[Weber11]). Dashed lines are the calculated energies 
of the LO1 and LO2 optic branches (see Fig. 1). 
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the soft mode pattern includes movements of Se along the c-
axis although the CDW ordering wave vector has a zero 
component along the (00l) direction [10,19]. Here, it is 
instructive to know that the eigenvector of the soft mode 
does not quantitatively reflect the structural distortion in the 
CDW ordered phase. For instance, it is important to consider 
the superposition of the soft mode in different but equivalent 
directions, such as the three equivalent (100) direction in the 
hexagonal lattice of 2H-NbSe2. Extracting the CDW 
distortion from DFPT is in principle possible but outside the 
scope of this paper.  

Energy scans of the optic phonon branches are shown in Fig. 
4 along with the observed dispersion along the 
crystallographic (100) direction at T = 33 K and 250 K. We 
measured the optic branches corresponding to the calculated 
ones starting at 27.13 meV (LO1) and 30.86 meV (LO2) at 
Q = (2+h,0,0). Scans in a different Brillouin zone showed 
phonon peaks at slightly higher and lower energies 
compared to the ones of LO1 and LO2 modes, respectively, 

in agreement with our structure factor calculations. Due to 
the limited amount of beam time, however, we could not 
determine all dispersions completely and focused on the 
branches detectable at Q = (2+h,0,0). In addition to the 
dispersion of the soft phonon reported earlier [13] we 
include also the phonon energies of the lowest LO branch 
with Σ1 symmetry. The intensity ratio of the soft mode and 
this second lowest energy branch is very different in the two 
Brillouin zones adjacent to τ = (3,0,0) and (3,0,1) (Fig. 3) in 
agreement with DFPT. Therefore, an unambiguous 
assignment of the phonon characters of the soft mode and 
the lowest LO branch was possible in a simultaneous 
evaluation of energy scans at the same q value in the two 
different Brillouin zones, i.e. adjacent to τ = (3,0,1) and 
(3,0,0). Apart from a small offset towards higher 
experimental energies, we see good agreement between the 
observed and calculated phonon energies for the LO1 and 
LO2 branches. In particular, the minimum in the dispersion 
of the LO1 mode is observed. As discussed in sect. IV.1 the 
concurrence of the dip in the dispersion of the LO1 branch 
and the maximum of the dispersion of the soft mode at h = 
0.2 r.l.u. – 0.25 r.l.u. might suggest an exchange of 
eigenvectors between the two modes at these wave vectors. 
However, the dispersion of the LO1 branch does not change 
between T = 33 K and 250 K. This is in contrast to the huge 
temperature effect in the acoustic mode and speaks against a 
sizeable interaction of the branches in agreement with our 
theoretical analysis of the line width contributions.  

To investigate a possible interaction of the optic and 
acoustic modes more closely, we measured the soft mode 
energies going radially away from qCDW in various 
directions in reciprocal space (Fig. 5a). We found that the 
dispersions can be well approximated by a straight line 
regardless whether we move away from qCDW within the 
basal plane or along the (001) direction. Results for the latter 
direction demonstrate that the softening occurs only in a 
small region of reciprocal space.  In our experimental setup, 
consecutive analysers of the HERIX spectrometer sampled 
different wave vectors, which were spaced along the (h, 0, l) 
line in reciprocal space. Hence, we are able to construct a 
2D dispersion surface of the LO1 branch in the (h, 0, l) 
plane. For simplicity, we show the results as line scans for 
different values of 0 ≤ l ≤ 0.27 (Fig. 5b). Apparently, the 
dispersion does not depend on l. The qualitative discrepancy 
between the l dependence of the soft mode and the LO1 
branch further indicates that an interaction between the two 
branches is small or absent altogether. We note that the 
above discussed observations are in excellent agreement 
with DFPT, which predicts a 4 meV higher energy of the 
soft mode at q = qCDW + (0, 0, 0.5) (corresponds to |q-qCDW| 
≈ 0.25 Å-1 in Fig. 5a). Furthermore, the LO1 branch shows 
also no l dependence in DFPT.       

In Fig. 6a we plot the phonon line widths along the Γ – M 
direction of the optic phonons at T = 33 K and 250 K. We 
note that in phonon spectra taken at q = (h, 0, 0), h ≤ 0.1, the 
LO2 mode dominates, whereas for h > 0.1 the LO1 mode 
shows the larger spectral weight (e.g. see Fig. 4a for h = 
0.2). Though the determination of the phonon energies was 
almost always possible for both phonons, the line widths 

Figure 5: (a) Observed phonon energies at T = 33K 
along different high symmetry direction (different 
from [100]) starting from the CDW wave vector qCDW. 
Energies are shown as function of the distance from 
qCDW in absolute units. The solid line is a linear fit of 
the data. The dashed lines indicate the corresponding 
phonon energies along the (100) direction as published 
in [4] (two lines for q < qCDW and q > qCDW). (b) 
Dispersion of the LO1 branch at T = 33K for different 
values of l along the [001] direction. The line is a 
guide to the eye. 
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could only be measured accurately for the dominant peaks. 
Therefore, we show line widths in Fig. 6a for the LO2 
modes at h ≤ 0.1 and for the LO1 modes at h ≥ 0.15.  

We observe a nearly constant line width of about 1 meV at 
T = 250 K, which we assign to the general imperfections of 
the crystal and anharmonic effects. At low temperatures, 
however, the line widths at wave vectors with h ≤ 0.2 
increase significantly, whereas for h ≥ 0.25 we find the same 
values as for high temperatures. 

Here, we compare our results to calculations of the 
electronic contribution to the phonon line width 2γ in our 
DFPT calculation. Although DFPT is a zero temperature 
technique it was shown in several publications that the 
necessary numerical smearing of the electronic states σ acts 
like a thermal smearing in electronic momentum space and, 
hence, can be used to qualitatively simulate temperature 
effects [26]. Though	   temperatures	   equivalent	   to	  σ	   are	  
at	   least	   1	   order	   of	   magnitude	   too	   large, our previous 
investigation of the soft mode in 2H-NbSe2 indicated that 
values of 0.1 eV ≤ σ ≤ 1.0 eV produce results that are 
consistent with a temperature range of 30 K ≤ T ≤ 300 K 
[13].  

Fig. 6(b) shows the calculated values of 2γ (corresponding 
to the FWHM) for the LO1 and LO2 phonon modes at the 
wave vectors corresponding to Fig. 6(a). We see a good 
agreement regarding the wave vector dependence between 
the line widths at low temperature and 2γ calculated with σ 

= 0.1 eV although the decrease of 2γ is somewhat more 
gradual than in the observed line width. This wave vector 
dependence is much reduced at T = 250 K as well as in the 
calculations using σ = 1.0 eV. In particular, the calculations 
nicely reproduce the observed temperature effect at low 
values of h. Therefore, we assign this observation to the 
presence of EPC in these branches at h ≤ 0.2. 

In summary, the experimental results confirm the prediction 
of substantial EPC in optic phonon branches at small 
reduced wave vectors. The results of the phonon energies at 
different temperatures and away from the (1, 0, 0) high 
symmetry line do not indicate a strong interaction between 
the LO1 and LA branches in agreement with DFPT.   

V. Discussion 

In his seminal paper on the formation of a CDW in a one 
dimensional metal, Peierls pointed out that CDW order is 
only stabilized by a coupling of the electrons to the lattice, 
i.e. EPC. Hence, the investigation of the lattice degrees of 
freedom is a source of unique information in compounds 
undergoing a CDW phase transition. Theoretically, CDW 
materials were investigated intensively in the 1970s 
[7,27,28] and early 1980s [8] and, more recently, using 
modern ab-initio methods [22,29].  

One important piece of information is the bare phonon 
energy 𝜔!"#$(𝑞) in the absence of renormalization effects 
linked to the CDW phase transition. 𝜔!"#$(𝑞)  and the 
experimentally observable renormalized phonon frequency 
𝜔!(𝑞) are linked by [28] 

𝜔!! = 𝜔!"#$! − !!!ℊ!!!" !!
! !! !!!!!! !" !!

.        (2) 

where 𝑁,𝑀,𝑈! and 𝑉!are the Avogadro constant, ionic mass, 
average coulomb and exchange matrix elements, 
respectively. 𝜒! is the electronic response function and 𝑔! 
the EPC matrix element. Typically, the last term in equation 
(2) is small. In CDW compounds, it is expected that 𝜒! 
becomes large at qCDW causing the collapse of the phonon 
mode. However, in a recent publication [13] we have shown 
for the case of 2H-NbSe2 that also the wave vector 
dependence of the EPC matrix element 𝑔!  can lead to a 
CDW instability. 

For a better understanding it is instructive to explain in more 
detail what is the bare phonon energy 𝜔!"#$. The originally 
very high phonon energies of the lattice of ionic nuclei are 
reduced to the typical values in the meV range by the 
general screening of all electrons in a solid. Our interest lies 
in the additional screening due to the presence of the CDW 
phase transition. These processes involve primarily the 
bands forming the Fermi surface. Therefore, we consider in 
our analysis only the contributions of the three bands 
crossing EF to the electronic susceptibility 𝜒!,!", the real 
part of which was calculated, e.g., by Johannes et al. [24]. 
Accordingly, 𝜔!"#$ can be related to the observed energy 
𝜔! by equation (2) if we replace 𝑅𝑒𝜒! by 𝑅𝑒𝜒!,!". The q 
dependence of the difference between 𝜔!!  and 𝜔!"#$!  is 
governed by 𝑅𝑒𝜒!,!"  and/or 𝑔! , the EPC matrix element 

Figure 6: (a) Wave vector dependent line widths 
(FWHM) at T = 33 K (filled symbols) and 250 K 
(open symbols) of the LO1 and LO2 branches.(b) 
Calculated electronic contribution to the phonon line 
width 2γ for the LO1 and LO2 branches with two 
different numerical smearing parameters σ = 0.1 eV 
and 1.0 eV.  
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involving the respective phonons and electronic scattering 
processes. In a previous publication [13] we argued that, in 
the case of 2H-NbSe2, it is the latter, which determines the 
soft mode dispersion and defines the periodicity of the 
ordered phase, i.e. qCDW. This point of view is corroborated 
by the new results presented in this publication.  

In our results section we showed that an exchange of 
eigenvectors between LO and LA phonons with Σ1 
symmetry is very unlikely and, hence, an acoustic-like 
assumption for the bare phonon dispersion 𝜔!"#$(𝑞)  is 
justified for NbSe2.  

Before we can apply equation (2) in order to estimate 
𝜔!"#$(𝑞) we need to take into account the fact that the q 
dependence of γ is largely due to scattering between the two 
Nb bands at the Fermi surface and that the strong wave 
vector dependence of γ can originate in the corresponding 
EPC matrix element and/or electronic JDOS [30]. The latter 
varies only by ±15% along Γ – M (not shown). Thus, the 
matrix elements for the Nb1 – Nb2 inter-band scattering 
indeed exhibit the strong wave vector dependence. This is in 
good agreement with experiments using angle-resolved 
photoemission spectroscopy (ARPES), which reported the 
highest EPC strength on the double-walled Nb 4d-derived 
FS sheet [31]. 

Therefore, we can extract in a first approximation the wave 
vector dependence of the EPC matrix element from our 
measurements and apply this knowledge in equation (2). 
The approximation originates in the fact that γ is actually 
proportional to the square of the momentum averaged EPC 
matrix element 𝑔!

!
 [30], 

 𝛾! ∝ 𝑔!
!
×𝐽𝐷𝑂𝑆.                 (3) 

However, 𝑔! should in general have a weaker wave vector 
dependence than 𝑔!, i.e. we expect to underestimate the real 

wave vector dependence of  𝑔! if at all. Concerning our 
discussion of which electrons should be taken into account 
in order to analyse the renormalization at the CDW phase 
transition, we will use the wave vector dependence of 
𝑅𝑒𝜒!,!" as calculated by Johannes et al. [24], where only 
contributions from the three electronic bands crossing the 
Fermi energy were taken into account. It is also in good 
agreement with estimates based on ARPES experiments 
[32].  

Fig. 7 displays our analysis of the renormalized and bare 
phonon dispersions based on equation (2) in comparison to 
the experimental energies at T = 33 K and 250 K. We use 
equation (2) in a parameterized form,  

𝜔!! = 𝜔!"#$! ℎ − !!×!!(!)
!

!"  !!,!"(!)
!!!

    (4) 

where 𝜔!"#$was approximated by a Brillouin function with 
two parameters1. 𝑓!(ℎ) and 𝑅𝑒  𝜒!,!"(ℎ) are the wave vector 
dependences of 𝑔!!and 𝑅𝑒  𝜒!, respectively. The latter was 
taken from Ref. [24] (Fig. 7). For 𝑓!(ℎ)  we used the 
functional form of the contribution to γ calculated for the 
acoustic mode, which is due to scattering between the two 
Nb 4d-derived bands at the Fermi surface (red dots in Fig. 
2f). The fit was constraint by 𝑐! = 2𝑈! − 𝑉!  having a 
positive value. It turned out to be a very small number the 
exact absolute value having negligible influence on the 
resulting bare dispersion in agreement with assumptions in 
Ref. [28]. The parameter c1 takes care of the prefactors 
given in equation (2) and the fact that the wave vector 
dependent function 𝑓!(ℎ) is only proportional to the EPC 
matrix element 𝑔!! (see above).  
Results of our analysis shown in Fig. 7 demonstrate that the 
renormalized phonon dispersion at T = TCDW can be well 
described based on an acoustic bare phonon dispersion with 
a zone boundary energy of 11.2 meV. The fitted bare 
dispersion is in reasonable agreement with phonon energies 
measured near room temperature although the dispersion at 
T = 250K is still renormalized, which is evident in the 
clearly observable dip around qCDW

 [13]. The fact that our 
analysis of the phonons in NbSe2 based on lattice dynamical 
calculations using DFPT yields a sensible bare phonon 
dispersion is further evidence for the accuracy of the model 
and the already in Ref. [13] proposed point of view that the 
wave vector dependence of the electron-phonon coupling 
drives the CDW transition in this compound. Very recently 
this was also corroborated by results from scanning 
tunneling microscopy (STM) [33]. Apart from the usually 
observed triple-q CDW wave vector qCDW = (0.329, 0, 0), 
STM revealed surface regions with a unidirectional CDW 
wave vector q1Q ≈ (2/7, 0, 0). We note that the minimum of 
the fitted soft mode dispersion at T = TCDW is close to the 
value of h = 2/7. However, we do not see a clear link 
between our results and the single-q CDW order observed 
by STM [33]. Experimentally, inelastic x-ray scattering is a 

                                                
1 It can be easily shown that a Brillouin function gives a 
better description of a typical acoustic dispersion than the 
simpler sine function. 

Figure 7: 
(a) Fit (solid line) of the observed square soft mode 
energies at T = TCDW (dots) using equation 3 and 
𝑅𝑒  𝜒!,!"(ℎ) and 𝑔!(ℎ) as extracted from DFPT. ωbare 
(dashed line) was approximated by a Brillouin 
function with two fit parameters.  



 8 

bulk probe and the DFPT calculations even overestimate the 
position of the CDW wave vector along the Γ – M direction 
with the dispersion minimum at q = (0.375, 0, 0) (Fig. 1a, 
see also Fig. 4 in Ref. [13] for more details).   
 

VI. Conclusion 

We have reported an inelastic x-ray scattering and ab-initio 
theoretical investigation of the lattice dynamics of NbSe2 
focusing on longitudinal phonon modes across the CDW 
ordering wave vector qCDW = (0.329,0,0), i.e. in the (100) 
direction. We derive an acoustic-like bare dispersion 
𝜔!"#$(𝑞) of the CDW soft phonon mode from the wave 
vector dependence of the EPC matrix element 𝑔! and the 
response of the electrons forming the Fermi surface. 
Although, our measurements provide evidence for EPC in 
optic branches as well, we demonstrate that there is no 
significant inter-mode hybridization. Further, our analysis 
shows that the observed wave vector dependent EPC 
originates from one particular electronic scattering process 
between two Nb – 4d derived bands at the Fermi surface. 
Together with a corresponding quasi-constant electronic 
JDOS for these scattering processes, this is evidence of the 
strong wave vector dependence of the EPC matrix elements.  
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