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We consider the reduced density matrix (RDM) ρA(t) for a finite subsystem A after a global
quantum quench in the infinite transverse-field Ising chain. It has been recently shown that the
infinite time limit of ρA(t) is described by the RDM ρGGE,A of a generalized Gibbs ensemble. Here
we present some details on how to construct this ensemble in terms of local integrals of motion,
and show its equivalence to the expression in terms of mode occupation numbers widely used in the
literature. We then address the question, how ρA(t) approaches ρGGE,A as a function of time. To
that end we introduce a distance on the space of density matrices and show that it approaches zero
as a universal power-law t−3/2 in time. As the RDM completely determines all local observables
within A, this provides information on the relaxation of correlation functions of local operators. We
then address the issue, of how well a truncated generalized Gibbs ensemble with a finite number
of local higher conservation laws describes a given subsystem at late times. We find that taking
into account only local conservation laws with a range at most comparable to the subsystem size
provides a good description. However, excluding even a single one of the most local conservation
laws in general completely spoils this agreement.

I. INTRODUCTION

Recent advances in systems of optically trapped ultra-
cold atomic gases have made it possible to observe the
nonequilibrium time evolution of isolated many particle
systems over long time scales1–6. A key property of such
cold atomic clouds is their weak coupling to the environ-
ment and resulting smallness of external dissipative pro-
cesses. To a good approximation one is dealing with iso-
lated quantum mechanical many particle systems, which
are prepared in generally mixed states, and one is inter-
ested in the time dependence of observables, in particular
at late times. The experimental results have stimulated
theoretical efforts aimed at understanding the principles
underlying the nonequilibrium dynamics of isolated many
particle systems. Some of the most basic questions are
whether observables generally relax to time-independent
values, and if they do, whether their stationary values
are described by a statistical ensemble. Other prominent
issues concern the roles of dimensionality and conserva-
tions laws. Experiments on trapped 87Rb atoms2 estab-
lished that three-dimensional condensates rapidly relax
to a stationary state characterized by an effective temper-
ature, whereas constraining the motion of atoms to one
dimension leads to a much slower relaxation to a non-
thermal distribution. It was argued that this observed
difference has its origin in the presence of additional (ap-
proximate) conservation laws, related to quantum inte-
grability, in the one dimensional case. Theoretical efforts
aimed at understanding these and related questions7–45

indicate that in translationally invariant models there are
at least two basic types of behaviours at late times: sub-
systems either thermalize46, i.e. are characterized by a
Gibbs distribution with an effective temperature, or they
are described by a generalized Gibbs ensemble (GGE)8.
There is evidence that the latter applies to integrable
models, while the former constitutes the “generic” situ-
ation.
A popular protocol for analyzing nonequilibrium evo-

lution is a so-called quantum quench: here the system
is originally prepared in the ground state |Ψ0〉 of some
local, short ranged Hamiltonian H(h0), where h0 is a sys-
tem parameter such as a magnetic field or an interaction
strength. At time t = 0, h0 is then suddenly “quenched”
to h, and the subsequent time evolution under the new
Hamiltonian H(h) is studied. Under this protocol the
system remains in a pure state |Ψt〉 = exp(−iH(h)t)|Ψ0〉
at all times, and as a whole can clearly never be described
by a Gibbs or generalized Gibbs distribution. This can
be seen by considering the hermitian operators

O(n,m) = |n〉〈m|+ |m〉〈n|, (1.1)

where |n〉 and |m〉 are eigenstates of H(h) with energies
En and Em respectively. Then the expectation values

〈Ψt|O(n,m)|Ψt〉 = 〈Ψ0|n〉〈m|Ψ0〉ei(En−Em)t + h.c. (1.2)

are oscillating in time and never become stationary. A
useful and intuitive point of view is to focus on local prop-
erties of a given system in the thermodynamic limit, i.e.
ask questions only about observables contained in a finite
subsystem A13,31,32. Here the (infinitely large) comple-
ment Ā of A can act as an effective bath, and probability
may freely dissipate from A to Ā. As a result A may be
described by a mixed state. Arguably the most precise
and convenient description of this situation is in terms of
the reduced density matrix ρA(t) of subsystem A. The
latter is obtained from the density matrix ρ(t) = |Ψt〉〈Ψt|
of the entire system as

ρA(t) = TrĀ [ρ(t)] . (1.3)

A central question is then, whether for any finite subsys-
tem A

lim
t→∞

ρA(t) = ρstat,A, (1.4)

where ρstat,A is a time-independent reduced density ma-
trix obtained as

ρstat,A = TrĀ [ρstat] . (1.5)
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If (1.4) holds, then the system evolves towards a station-
ary state described by the distribution ρstat. In particu-
lar (1.4) implies that the expectation values of any local
operator OA acting only within subsystem A is given by

lim
t→∞

〈Ψt|OA|Ψt〉 = Tr [ρstat OA] . (1.6)

An efficient way of investigating whether a given RDM
approaches a known stationary distribution at late times
was introduced in Ref. [20] by considering the operator
norm ‖ ρA(t)−ρstat,A ‖op. If this approaches zero at late
times, then the system relaxes locally to the stationary
distribution ρstat. Ref. [20] was concerned with the case
where ρstat describes a thermal ensemble with a given
effective temperature, and considered very small subsys-
tems. Here we are interested in a quench to a quantum
integrable model. As we have alluded to before, the sta-
tionary state for such quenches is believed to be described
locally by a generalized Gibbs ensemble (for the model
we consider below this was established in Ref. [32]). More
precisely, the density matrix of the entire system is ex-
pected to be of the form

ρstat = ρGGE =
1

Z e
∑

n λnIn , (1.7)

where Z is a normalization1, and In are local conserved
quantities, i.e. local operators such that

[In, Im] = 0 = [Im, H(h)]. (1.8)

The Lagrange mutipliers λn are fixed by the requirements

〈Ψ0|In|Ψ0〉 = Tr [ρGGEIn] . (1.9)

We stress that the GGEs considered in the quench con-
text are fundamentally different from thermal ensembles,
because through the specific values of the Lagrange mul-
tipliers they retain an infinite amount of information
about the initial state. Above we have stipulated that
only local (in space) conservation laws In are to be in-
cluded in the definition of ρGGE, but it is in fact a mat-
ter on ongoing debate whether locality is a necessary or
even desirable requirement47. In this context a result
obtained in Ref. [31] is rather illuminating: there it was
demonstrated for a particular example, the transverse
field Ising chain, that different statistical ensembles can
have identical local properties. The two ensembles con-
sidered were a GGE of the form (1.7), and the so-called
“pair ensemble” obtained by time averaging the quench
density matrix ρ(t). Given that ρstat is generally not
unique, it is clearly desirable to identify the simplest de-
scription. To that end we introduce truncated generalized

Gibbs ensembles of the form

ρ
(n0)
tGGE =

1

Z e
∑

n<n0
λnIn , (1.10)

1 We have in mind regularizing the system by enclosing it in a very
large but finite volume.

and investigate how well such ensembles describe the sta-
tionary state for quenches to integrable models.
The outline of this paper is as follows. In section II

we review some relevant results for the transverse field
Ising chain. Local conservation laws are presented in
section III and used in sections IV, V, VI to define sev-
eral classes of generalized Gibbs ensembles. Properties
of corresponding reduced density matrices are discussed
in section VII. In section VIII we discuss general proper-
ties of distances on the space of reduced density matrices
and introduce the distance used in the remainder of the
paper. In sections IX, X, XI and XII we present results
for the distance between quench and generalized Gibbs
reduced density matrices. We summarize our results in
section XIII. Various technical issues are discussed in
four appendices.

II. SOME FACTS ABOUT THE
TRANSVERSE-FIELD ISING CHAIN (TFIC)

Here we briefly review some relevant results on the
TFIC. The latter is an important paradigm for quan-
tum phase transitions in equilibrium48 as well as non-
equilibrium dynamics14,24,29,31,32,36,49. In the latter con-
text experimental realizations range from cold atomic
gases50 to circuit QED51. The Hamiltonian of the model
on a ring is

H(h) = −J
L∑

j=1

[
σx
j σ

x
j+1 + hσz

k

]
, (2.1)

where σα
L+1 = σα

1 . The quantum spins can be mapped to
(real) Majorana fermions by means of the Jordan-Wigner
transformation

a2ℓ =




ℓ−1∏

j=1

σz
j


σy

ℓ , a2ℓ−1 =




ℓ−1∏

j=1

σz
j


σx

ℓ , (2.2)

where {ai, aj} = 2δij . In terms of the Majorana
fermions (2.2), the Hamiltonian takes a block-diagonal
form

H(h) =
1 + eiπN

2
HR +

1− eiπN

2
HNS ,

HNS/R = iJ

L−1∑

j=1

a2j [a2j+1 − ha2j−1]

−iJa2L [ha2L−1 ∓ a1] . (2.3)

Here N is the number operator

N =
L∑

j=1

σz
j − 1

2
=

L∑

j=1

ia2ja2j−1 − 1

2
, (2.4)

and by construction eiπN =
∏

j σ
z
j commutes with

HR,NS. The two blocks HR and HNS correspond to
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periodic and antiperiodic boundary conditions on the
fermions respectively. They can be diagonalized by Bo-
goliubov transformations

a2j−1 =
1√
L

∑

p

ei
θp
2 −ipj

[
αp + α†

−p

]
,

a2j = − i√
L

∑

p

e−i
θp

2 −ipj
[
αp − α†

−p

]
, (2.5)

where the Bogoliubov angle θp is given by

eiθp =
h− eip√

1 + h2 − 2h cosp
. (2.6)

The diagonal form of the Hamiltonian is

HNS(h) =
∑

p∈NS

εh(p)

(
α†
pαp −

1

2

)
, (2.7)

where the single-particle energy is given by

εh(k) = 2J
√
1 + h2 − 2h cosk. (2.8)

The ground states of HR,NS(h) are the fermionic vacua

αp|0;h〉R,NS = 0 . (2.9)

Here the momenta are p = πn
L , where n are even/odd

integers for R and NS fermions respectively.

A. Quantum Quenches

Our quench protocol is as follows: we prepare the sys-
tem in the ground state |Ψ0〉 for an initial value h0 of
the transverse magnetic field. At time t = 0 we instan-
taneously change the field from h0 to h. The state of
the system at times t > 0 is obtained by evolving with
respect to the new Hamiltonian H(h)

|Ψt〉 = eiH(h)t|Ψ0〉. (2.10)

An important quantity is the difference ∆k = θk − θ0k of
Bogolibov angles required to diagonalizeH(h) andH(h0)
respectively

cos∆k =
4J2(1 + hh0 − (h+ h0) cos k)

εh(k)εh0(k)
. (2.11)

As we are interested in obtaining results in the thermo-
dynamic limit we have to distinguish between two cases.

1. Quenches from the Paramagnetic Phase h0 > 1

Here the initial state in a large, finite volume is simply
the NS vacuum

|Ψ0〉 = |0;h0〉NS. (2.12)

The time evolved state can then be written in the form31

|Ψt〉 =
1

M exp
[
i
∑

0<p∈NS

tan
(∆p

2

)
e−2iεptα†

−pα
†
p

]
|0;h〉NS ,

(2.13)
where |0;h〉NS is the ground state of HNS(h) and M a
normalization factor.

2. Quenches from the Ferromagnetic Phase h0 < 1

Here our initial state in a large, finite volume must re-
flect the spontaneous symmetry breaking of the Z2 spin-
flip symmetry σx,y → −σx,y in the thermodynamic limit.
The appropriate choice is31

|Ψ0〉 =
|0;h0〉R + |0;h0〉NS√

2
. (2.14)

III. LOCAL CONSERVATION LAWS IN THE
TFIC

We consider the one dimensional transverse field Ising
chain in the thermodynamic limit

H = −J
∞∑

n=−∞

σx
nσ

x
n+1 + hσz

n. (3.1)

Following Ref. [52] we can construct an infinite number
of local conservation laws I±n

[Iαn , I
β
m] = 0 , n = 0, 1, . . . , α, β = ±, (3.2)

where the Hamiltonian itself is H = I+0 . Let us define
operators

Un>0 =
1

2

∞∑

j=−∞

σx
j

(
n−1∏

l=1

σz
j+l

)
σx
j+n ,

U0 = −1

2

∞∑

j=−∞

σz
j ,

Un<0 =
1

2

∞∑

j=−∞

σy
j




|n|−1∏

l=1

σz
j+l


σy

j+|n|, (3.3)

and

Vn>0 =
1

2

∞∑

j=−∞

σx
j

(
n−1∏

l=1

σz
j+l

)
σy
j+n ,

Vn<0 = −1

2

∞∑

j=−∞

σy
j




|n|−1∏

l=1

σz
j+l


σx

j+|n|. (3.4)

In terms of these operators the local conservation laws
are

I+n = −J(Un+1 + U1−n) + hJ(Un + U−n) ,

I−n = J(Vn+1 + V−n−1) , n ≥ 0. (3.5)
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They are local in the sense that the density of Iαn involves
only spins on n+2 neighbouring sites. By virtue of their
locality, the conservation laws can all be expressed in
terms of Jordan-Wigner fermions (2.2)

I+n =
i

2

∞∑

j=−∞

Ja2j [a2j+2n+1 + a2j−2n+1],

−hJa2j [a2j+2n−1 + a2j−2n−1] ,

I−n−1 = − iJ
2

∞∑

j=−∞

a2ja2j+2n + a2j−1a2j+2n−1.(3.6)

We now realize that all conservation laws (3.6) are in
fact quadratic in Majorana fermions! It is then a simple
matter to diagonalize them simultaneously by means of
a Bogoliubov transformation (2.5), where on the infinite
chain the Bogoliubov fermion operators have anticommu-
tation relations

{αp, α
†
k} = 2πδ(p− k). (3.7)

The conservation laws take the simple form

I+n =

∫ π

−π

dp

2π
cos(nk)ε(k)α†

kαk ,

I−n = −
∫ π

−π

dp

2π
2J sin

(
(n+ 1)k

)
α†
kαk ,

(3.8)

which furthermore shows that they are even/odd under
spatial reflections. Interestingly the conservation laws I−n
do not depend on the transverse field h and are therefore
shared by the entire one-parameter family of Hamiltoni-
ans H(h). This seems to be a generic feature of models
with a free fermion spectrum like the TFIC, see App. C
and Ref. [58].

A. Local conservation laws for periodic boundary
conditions

Above we focussed on the bulk contribution to the lo-
cal conservation laws. For a finite system on a ring there
are boundary contributions, which can be determined as
follows. In terms of the Bogoliubov fermions, the conser-
vation laws for periodic boundary conditions are

I+n =
∑

k

cos(nk)ε(k)α†
kαk , (3.9)

I−n = −
∑

k

2J sin
(
(n+ 1)k

)
α†
kαk , (3.10)

where the momenta are taken to be either in the R or
NS sectors. By inverting the Bogoliubov transformation
and Fourier transforming back to position space, one ob-
tains a representation of the conservation laws in terms
of the Majorana fermions aj for periodic/antiperiodic
boundary conditions respectively. Finally, inverting the
Jordan-Wigner transformation gives the desired expres-
sion in terms of spins.

5 10 15 20 n

0.5

1.0

1.5

2.0

Λn
+

FIG. 1: Parameters λn for a quench within the ordered phase
from h0 = 0.1 to h = 0.7.

IV. GENERALIZED GIBBS ENSEMBLE

We now define the density matrix of a generalized
Gibbs ensemble formally by the expression

ρGGE =
1

Z exp

(
−

∞∑

n=0

∑

σ=±

[λσnI
σ
n ]

)
, (4.1)

where Z is a normalization that ensures TrρGGE = 1. In
practice we need to regularize (4.1) in an asymptotically
large, finite volume L.
The Lagrange multipliers λσn are fixed through the re-

quirements

lim
L→∞

1

L
Tr [ρGGEI

σ
n ] = lim

L→∞

〈Ψ0|Iσn |Ψ0〉
L

. (4.2)

Using translational invariance we can alternatively work
with the densities of the conservation laws

Iσn =
∞∑

j=−∞

(Iσn )j,...,j+n+1 , (4.3)

to rewrite (4.2) as

Tr [ρGGE(I
σ
n )j,...,j+n+1] = 〈Ψ0|(Iσn )j,...,j+n+1|Ψ0〉. (4.4)

The solution to this system of equations is

λ+l =
(
2− δl,0

)∫ π

−π

dk

π

cos(lk)

εh(k)
arctanh(cos∆k) ,

λ−l = 0 , (4.5)

where l ≥ 0 and cos∆k is defined in (2.11). In Fig. 1
we show λ+l for a quench from h0 = 0.1 to h = 0.7.
The large l behaviour of Eq. (4.5) is determined by the
regions k ∼ 0, π (where the integrand has a logarithmic
singularity) and one can show that

λ+l ∼ 2

l

(
± 1

εh(0)
+

(−1)l

εh(π)

)
, (4.6)
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where the sign is + for quenches within the same phase
and − otherwise. We see that the Lagrange multipliers
λ+n decay rather slowly as a function of n.

A. GGE in terms of mode occupation numbers

In the literature the generalized Gibbs ensemble is of-
ten constructed from mode occupation numbers nk =

α†
kαk, see e.g.8,12,18,53,54. The latter are non-local (in

space) as they involve a Fourier transform. We will
now establish the relation between this and our defini-
tion (4.1). It follows from (3.8) that the density matrix
can be rewritten in the form

ρGGE =
1

Z exp

(
−
∫ π

−π

dk

2π
γkα

†
kαk

)
, (4.7)

where

γk =
∞∑

n=0

λ+n εh(k) cos(kn)− 2Jλ−n sin
(
k(n+ 1)

)
. (4.8)

This establishes the fact that the GGE density matrix
can be constructed either from the local conservation
laws (3.6), or from the mode occupation numbers nk.
This relationship generalizes to interacting integrable
models, where the appropriate GGE can be formulated
either in terms of the local integrals of motion generated
from the transfer matrix, or from the mode occupation
numbers na(k) = Z†

a(k)Za(k), where Za(k) are Faddeev-
Zamolodchikov operators55,56.

V. TRUNCATED GENERALIZED GIBBS
ENSEMBLES

In order to assess the importance of the various con-
served quantities, it is useful to define ensembles that in-
terpolate between the Gibbs distribution and the GGE.
We define particular such truncated GGEs as follows.
Given that the densities of the conservation laws I±n in-
volve n+2 neighbouring sites, it is natural to retain only
the “most local” conservation laws, i.e.

ρ
(y)
tGGE =

1

Zy
exp
(y−1∑

n=0

∑

σ=±

[λσn,yI
σ
n ]
)
. (5.1)

Here y is an integer and y = 1 (y = ∞) corresponds
to the Gibbs ensemble (GGE). The Lagrange multipliers
λσn,y are obtained from the requirements

Tr
[
(Iσn )j,...,j+n+1 ρ

(y)
tGGE

]
= 〈Ψ0|(Iσn )j,...,j+n+1|Ψ0〉 ,

(5.2)
where 0 ≤ n < y. Eqns (5.2) are a consequence of
[Iσn , H ] = 0 and the assumption that the stationary state
after the quench is described by RDMs based on (5.1).
For transverse field quenches we have λ−n,y = 0, but the

other Lagrange multipliers are different from their re-
spective values in the full GGE, i.e.

λ+n,y 6= λ+n . (5.3)

We note that the correlation matrix of ρ(y) can be com-
puted efficiently using FFT algorithms. This is in con-
trast to the case of theories with non-trivial scattering
matrices, for which it is extremely difficult to reconstruct
the Lagrange multipliers from the conservation laws57.

VI. DEFECTIVE GENERALIZED GIBBS
ENSEMBLES

It is instructive to consider a second type of truncated
GGE, where we retain an infinite, but incomplete set of
integrals of motion. Such “defective” GGEs will allow us
to ascertain the role of a particular local conservation law.
We define the truncated defective GGE as the density
matrix (q < y)

ρ
(+q),y
tdGGE =

1

Z(+q),y
exp
( y∑

n=0
n 6=q

[λ+n,(+q),yI
+
n ]
)
, (6.1)

in which the Lagrange multipliers λ+n,(+q) are fixed by

the system (4.2) with n ≤ y, n 6= q, and we have used
that the Lagrange multipliers λ−n,(+q),y must vanish as

a consequence of reflection symmetry around the origin.
We then define the defective GGE as the limit y → ∞ of
truncated defective GGEs:

ρ
(+q)
dGGE = lim

y→∞
ρ
(+q),y
tdGGE . (6.2)

In order to solve the system of equations (4.2) for the
defective GGE it is useful to work in the mode occupation
number representation (4.7), which reads

ρ
(+q)
dGGE =

1

Z (+q)
exp

(
−
∫ π

−π

dk

2π
γ
(+q)
k α†

kαk

)
, (6.3)

where the Lagrange multipliers γ
(+q)
k are subject to the

set of equations

∫ π

−π

dk

2π

[
tanh

(γ(+q)
k

2

)
− cos∆k

]
ε(k) cos(nk) = 0 ,

∫ π

−π

dk

2π

[
tanh

(γ(+q)
k

2

)
− cos∆k

]
sin((n+ 1)k) = 0.(6.4)

Guided by the fact that cos(nk) and sin((n + 1)k) form
an orthonormal set of functions on [−π, π], we look for a
solution of the form

tanh
(γ(+q)

k

2

)
= cos∆k − κ+q

cos(qk)

ε(k)
, (6.5)

where κ+q is a yet to be determined constant. We note

that the value of κ+q affects the expectation values of local
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operators. For some cases κ+q can be easily determined
as follows. Given that | tanh(x)| ≤ 1, (6.5) implies that

∣∣∣cos∆k − κ+q
cos(qk)

ε(k)

∣∣∣ ≤ 1 ∀k . (6.6)

Setting k = 0, π then gives

|2J(h− 1)sgn(h0 − 1)− κ+q | ≤ 2J |h− 1|
|2J(h+ 1)− (−1)qκ+q | ≤ 2J(h+ 1) .

(6.7)

Eqs (6.7) allow us to identify cases, in which κ+q = 0:

1. odd q and quenches within the same phase;

2. even q and quenches across the critical point.

Importantly, κ+q = 0 implies that ρ
(+q)
dGGE ≡ ρGGE, i.e. the

defective GGE is identical to the full GGE. This “GGE
reconstruction” is a peculiarity of free-fermion models
and can be traced back to the existence of conserva-
tion laws independent of the quench parameter, see also
Ref. [58].
For general quenches and values of q, κ+q is determined

by Eq. (6.2). We find that it takes the value correspond-
ing to the maximal entanglement entropy (as shown in
Fig. 9), although the entanglement entropy may be non-
stationary under a variation of the excluded integral of
motion (see Appendix D for further details).

VII. REDUCED DENSITY MATRICES IN THE
TRANSVERSE FIELD ISING CHAIN

In this section we summarize some basic features of
RDMs in the TFIC. We note that most of the follow-
ing discussion generalizes straightforwardly to other spin
chains with free fermionic spectra such as the quantum
XY model. Our starting point is a density matrix ρ de-
scribing the entire system, which we take to be of size
L with periodic boundary conditions. We are interested
in the limit L → ∞, but it is convenient to start with a
large, finite chain. The RDM of a subsystem consisting
of ℓ spins 1/2 at sites xi, i = 1, . . . , ℓ can be expressed in
the form

ρ{x1,··· ,xℓ} =
1

2ℓ

∑

{α}ℓ

Tr
[
ρ σα1

x1
· · ·σαℓ

xℓ

]
σα1
x1

· · ·σαℓ
xℓ
, (7.1)

where αi = 0, x, y, z and σ0 ≡ I. The quantum
spins are mapped to (real) Majorana fermions by the
Jordan-Wigner transformation (2.2). The nonlocality of
the transformation (2.2) has important consequences for
RDMs. First and foremost, if the spins are not adjacent,
the map from spin to fermionic degrees of freedom does
not have a simple reduction to the subspace of the Hilbert
space formed by sites {x1, · · · , xℓ}, because of Jordan-
Wigner strings stretching between sites59,60. However,
the RDM of a block of adjacent spins can be mapped

one-to-one on a block of adjacent fermions61,62, provided
that the first site of the block coincides with site 1, i.e.
the origin of Jordan-Wigner strings. Then (7.1) can be
represented in the form

ρℓ =
1

2ℓ

∑

{µ}

Tr [ρ aµ1

1 · · · aµ2ℓ

2ℓ ] aµ2ℓ

2ℓ · · · aµ1

1 (7.2)

with µj = 0, 1. An important quantity in what follows is
the correlation matrix Γ

Γij = Tr [ρ ajai]− δij , 1 ≤ i, j ≤ 2ℓ. (7.3)

In the cases of interest to us, the correlation matrix is of
block-Toeplitz form

Γ =




Γ0 Γ−1 · · · Γ1−ℓ

Γ1 Γ0

...
...

. . .
...

Γℓ−1 · · · · · · Γ0



, (7.4)

where

Γl =

∫ π

−π

dk

2π
e−ilk

(
−f(k) g(k)
−g(−k) f(k)

)
. (7.5)

The TFIC Hamiltonian exhibits a Z2 symmetry

aj −→ −aj . (7.6)

If the density ρ is invariant under the transformation
(7.6) we have Tr [ρ aj] = 0, and as Wick’s theorem applies
to the Jordan-Wigner fermions we can express (7.2) as a
Gaussian62

ρℓ =
1

Z
e

1
4

∑
mn amWmnan , (7.7)

where Z ensures that Trρℓ = 1 and W is a skewsymmet-
ric, 2ℓ-by-2ℓ Hermitian matrix related to Γ by

tanh
W

2
= Γ . (7.8)

We now turn to the three particular cases of interest,
namely those where ρ in (7.1) is a thermal density ma-
trix, a GGE density matrix, or the density matrix after
a global quantum quench of the transverse field in the
TFIC.

A. Thermal Density Matrix

On a very large ring, the Hamiltonian has a block diag-
onal structure, see section II. The thermal density matrix
is a function of the Hamiltonian and therefore inherits the
same block structure

ρβ =
[1 + eiπN

2

e−βHR

ZR
+

1− eiπN

2

e−βHNS

ZNS

]
. (7.9)
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It follows from this that only even operators have non-
vanishing expectation values, i.e.

Tr (ρβO) 6= 0 → [eiπN ,O] = 0. (7.10)

In the thermodynamic limit the difference between ex-
pectation values of local operators with respect to the
R and NS sectors tends to zero, so that we may work
exclusively in e.g. the R sector. The resulting RDM of
a contiguous block of spins is then Gaussian (7.7), (7.8)
with

(Γβ)ij = Tr

[
e−βHR ajai

ZR

]
− δij . (7.11)

It can be written in the form (7.4) with

f(k) = 0 , g(k) = −ieiθk tanh
(βεh(k)

2

)
. (7.12)

B. GGE Density Matrix

It was shown in Ref. [32] (see also [24,31]) that the
RDM of the generalized Gibbs ensemble (4.1),(4.7) is
Gaussian and can be expressed in the form (7.7), (7.8).
The correlation matrix is given by

(ΓGGE)ij =
1

ZTr
[
e−

∑
i,σ λσ

j I
σ
j ajai

]
− δij . (7.13)

It can be written in the form (7.4) with

f(k) = 0 , g(k) = −ieiθk tanh
(γk
2

)
. (7.14)

Here the γk’s are related to the λσm’s by (4.8) and the
Bogoliubov angle θk is given in (2.6).

C. Truncated GGE Density Matrix

The correlation matrix of the truncated GGE defined
in Sec. V is given by

(
Γ
(y)
tGGE

)
ij
=

1

Zy
Tr

[
exp
(y−1∑

n=0

∑

σ=±

[λσn,yI
σ
n ]
)
ajai

]
− δij .

(7.15)
It can be written in the form (7.4) with

f(k) = 0 , g(k) = −ieiθktanh
(
Py−1(cos(y))ε(k)

)
.

(7.16)
Here Py−1(x) is a polynomial of order y − 1, which is
computed numerically.

D. Defective GGE Density Matrix

In Sec. VI we defined the defective GGE ρ
(q)
dGGE as

the ensemble that lacks in the conservation law I+q . Its

correlation matrix is given by

[
Γ̄
(+q)
dGGE

]
ij
=

1

Z(d)
q

Tr


exp

( ∞∑

n=0
n 6=q

λ+n,(+q)I
+
n

)
ajai


− δij .

(7.17)
It can be written in the form (7.4) with f(k) = 0 and (cf.
Eq. (7.14))

g(k) = −ieiθk
[
tanh

(γk
2

)
− κ+q

cos(qk)

ε(k)

]
, (7.18)

where κ+q is computed numerically maximizing the en-

tanglement entropy, which selects λ+q,(+q) = 0 whenever

it is allowed. We note that the Fourier transform of
Eq. (7.18), which is required to compute the correlation
matrix (7.5), can be easily expressed in terms of the GGE
correlators; for |ℓ| < q we have

∫ π

−π

dk

2π
e−iℓkg(k) =

∫ π

−π

dk

2π
e−iℓkgGGE(k)+

iκq
4J

sgn(log h)hℓ−1e−| log h|q . (7.19)

Since κ+q is a bounded function of q (cf. Eq. (6.7)), at
fixed ℓ the fermionic correlators approach the GGE ones
at least exponentially fast in q.

E. Quench Density Matrix

At zero temperature the ground state phase diagram
of the TFIC exhibits ferromagnetic (h < 1) and param-
agnetic (h > 1) phases, separated by a quantum critical
point. In the ferromagnetic phase the Z2 symmetry of
the Hamiltonian is broken spontaneously. As we will see,
this symmetry breaking has important effects on the time
evolution of the density matrix.

1. Quenches originating in the paramagnetic phase

Here at t > 0 the full quench density matrix is

ρ(t) = |Ψt〉 〈Ψt| , (7.20)

where the state |Ψt〉 is given in (2.13). As a result of
the squeezed-state form of |Ψt〉, Wick’s theorem applies
to averages calculated with respect to ρ(t), and RDMs
are Gaussians of the form (7.7), (7.8), with correlation
matrix

Γ(t) = NS 〈0|eiHNStajaie
−iHNSt|0〉NS − δij . (7.21)

This is of the form (7.4) with

g(k) = −ieiθk
[
cos∆k − i sin∆k cos(2εh(k)t)

]
,

f(k) = sin∆k sin(2εh(k)t), (7.22)

where eiθk is given by (2.6).
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2. Quenches originating in the ferromagnetic phase

Given the initial state (2.14), the post-quench density
matrix of the full system is

ρ(t) = |Ψt〉〈Ψt| ,

|Ψt〉 =
e−iHRt|0;h0〉R + e−iHNSt|0;h0〉NS√

2
. (7.23)

Importantly, RDMs are no longer Gaussian in this case.
We will discuss how to cope with this complication in
section XI. It is known32 that in the stationary state
RDMs are Gaussian with a correlation matrix equal to
the t→ ∞ limit of (7.21).

VIII. DISTANCES ON THE SPACE OF RDMS

In the following we focus on RDMs for finite subsys-
tems of lattice models with a finite dimensional Hilbert
space at each site. In this case the RDMs are finite di-
mensional matrices and a simple way to define a distance
between two density matrices is by means of a matrix
norm

da(ρ, ρ
′) =‖ ρ− ρ′ ‖a . (8.1)

Here the index a labels different matrix norms. As we
are dealing with finite matrices, all norms are equivalent
in the sense that

cab ‖ ρ ‖a≤‖ ρ ‖b≤ c−1
ba ‖ ρ ‖a , (8.2)

where cab and cba are positive numbers that depend on
the matrix dimension but are independent of ρ. One
consequence of (8.2) is that if the distance between two
matrices approaches zero when some external parameter
p is tuned to a value p̄, the dependence of the distance
on p− p̄ is almost independent of the norm. On the other
hand, the dependence on matrix dimension is in general
very different for different norms. This is important for
our purposes, because the matrix dimension is related
to the size of the subsystem under consideration, and it
is principally desirable to be able to compare distances
between different sizes.
From a technical point of view, the distance induced

by the Frobenius norm2

||A||F ≡
√
Tr [A†A] (8.3)

is generally the easiest to calculate. On the other hand, it
has the drawback that the physical interpretation of the
distance is less transparent than for some other norms.

2 It is also known as the “Hilbert-Schmidt norm”, but we prefer
to call it “Frobenius norm” to emphasize that we are considering
finite subsystems.

For instance, given two density matrices ρ and ρ′, a very
natural question is how different expectation values of lo-
cal observables are in the two ensembles. We now discuss
this question for the particular case of spin-1/2 quantum
spin chains. Here the most important local observables
are products of Pauli matrices. These are particular cases
of involutions Ô2 = I, for which the following inequality
holds

|Tr
[
(ρ− ρ′)Ô

]
| ≤‖ ρ− ρ′ ‖1 . (8.4)

Here

||A||1 ≡ Tr
[√
AA†

]
(8.5)

is the trace norm. From Eq. (8.4) it is evident that the
trace distance provides an upper bound for the difference
between the expectation values of observables in the two
states: if ‖ ρ − ρ′ ‖1< ǫ, then the expectation values
of all (local) observables will agree in the two ensembles
within accuracy ǫ. In terms of the Frobenius distance we
have instead (here we use that the local Hilbert space is
two-dimensional)

|Tr
[
(ρ− ρ′)Ô

]
| ≤‖ ρ− ρ′ ‖1≤ 2ℓ/2 ‖ ρ− ρ′ ‖F . (8.6)

On the other hand, we have

|Tr
[
(ρ− ρ′)Ô

]
| ≤ |Tr

[
ρÔ
]
|+ |Tr

[
ρ′Ô

]
| ≤ 2, (8.7)

where in the last step we have used that for involutions
Ô

|Tr
[
ρÔ
]
| ≤

∑

j

| (ρ)jj | = tr
√
ρ†ρ = 1. (8.8)

Combining (8.7) and (8.6) we see that as long as ‖ ρ −
ρ′ ‖F& 21−ℓ/2, the Frobenius distance does not provide
useful information about expectation values. It is shown
in Appendix A that for sufficiently large ℓ this is always
the case.
A second problem with using the Frobenius norm as a

distance is that the norms of RDMs at late times after
a quantum quench, as well as the norms of RDMs de-
scribing Gibbs or generalized Gibbs ensembles, generally
are exponentially small in the subsystem size. Given the
upper bound derived in Appendix A

‖ ρ− ρ′ ‖F≤
√
‖ ρ ‖2F + ‖ ρ′ ‖2F , (8.9)

this implies that in these cases of interest ‖ ρ− ρ′ ‖F is
exponentially small in subsystem size. This shows that
the Frobenius norm itself is not a convenient measure for
the distance between two density matrices. The same
problem occurs for the operator norm ||A||op =

√
λmax,

where λmax is the largest eigenvalue of A†A. This norm
was used for example in Ref.20 to analyze the relaxation
properties of small subsystems after a quench into a non-
integrable model. Indeed we have

‖ ρ− ρ′ ‖op≤‖ ρ ‖op + ‖ ρ′ ‖op , (8.10)

and the maximal eigenvalues of RDMs for large subsys-
tems are generally exponentially small in subsystem size.
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A. Definition of the Distance

In order to circumvent the problem described above,
we define our “distance”3 on the space of RDMs as

D(ρ, ρ′) ≡ ‖ ρ− ρ′ ‖F√
‖ ρ ‖2F + ‖ ρ′ ‖2F

. (8.11)

1. An upper bound: Using the upper bound derived in
(A1) we see that

D(ρ, ρ′) ≤ 1. (8.12)

2. A lower bound: A lower bound for D(ρ, ρ′) can be es-
tablished by means of the triangle inequality ||ρ−ρ′||F ≥
| ||ρ||F − ||ρ′||F |. Using that the Frobenius norm of a
RDM is related to the second Rényi entropy by

S2 ≡ − logTr
[
ρ2
]
= − log ||ρ||2F , (8.13)

we find that

||ρ− ρ′|| ≥
∣∣∣∣exp

(
−S2

2

)
− exp

(
−S

′
2

2

)∣∣∣∣ . (8.14)

This provides the desired lower bound

D(ρ, ρ′) ≥ |e−S2/2 − e−S′
2/2|√

e−S2 + e−S′
2

. (8.15)

We note that the bound (8.15) is independent of subsys-
tem size ℓ as long as the second Rényi entropies of the
two ensembles differ at least by a constant (when viewed
as functions of ℓ).

B. The Distance between two Thermal Ensembles

In order to establish a benchmark for (8.11), it is useful
to consider the distance between the RDMs of two ther-
mal ensembles at slightly different inverse temperatures
β and β′ (but the same Hamiltonian). Then

D(ρβ , ρβ′) ≈
||∂ρβ

∂β ||F
||ρβ ||F

1√
2
|β − β′|. (8.16)

For a sufficiently large subsystem (and a local Hamil-
tonian), the first factor on the right hand side can be
expressed as

||∂ρβ

∂β ||2F
||ρβ ||2F

=
||ρβ (〈H〉β −H) ||2F

||ρβ ||2F

=
Tr
[
ρ2β (〈H〉β −H)2

]

Trρ2β

=
〈
(〈H〉β −H)

2 〉
2β
, (8.17)

3 We have not proven that D(ρ, ρ′) obeys the triangle inequality
as this is not essential for our purposes.

where 〈O〉β = Tr
(
ρβO

)
. For a large subsystem, this is

proportional to the square of its size, and hence

||∂ρβ

∂β ||F
||ρβ ||F

∝ ℓ. (8.18)

We conclude that the distance between two thermal
RDMs on a subsystem of size ℓ, and β ≈ β′ is

D(ρβ , ρβ′) ∝ ℓ|β − β′|. (8.19)

As expected this is proportional to the difference in tem-
peratures, but there is also a factor of ℓ. The latter is
important if one is interested in comparing the distance
between two ensembles for different subsystem sizes.

C. The Distance between two GGEs

The above discussion carries over to the case of two
generailzed Gibbs ensembles (4.1), with slightly different
values of Lagrange multipliers λσm. The leading contri-
bution to the distance is given by

D(ρGGE, ρ
′
GGE) ≈

∑

m,σ

||∂ρGGE

∂λσ
m

||F
||ρGGE||F

1√
2
|λσm−λ′σm|. (8.20)

A calculation similar to the thermal case shows that for
large subsystem size

||∂ρGGE

∂λσ
m

||F
||ρGGE||F

∝ ℓ. (8.21)

D. Information on observables contained in the
distance

Let us consider the situation where the distance be-
tween two reduced density matrices ρ1 and ρ2 defined
on an interval of length ℓ becomes small, and denote the
corresponding averages of local operators on said interval
by

〈O〉a = Tr [ρaO] , a = 1, 2. (8.22)

By expanding the density matrices in a complete basis of
Hermitian involutions we can show that

D(ρ1, ρ2) =

√∑
O(〈O〉2 − 〈O〉1)2∑
O(〈O〉22 + 〈O〉21)

. (8.23)

Defining an average

f(O) ≡
∑

O

P (O)f(O) ,

P (O) =
〈O〉21 + 〈O〉22∑
Q 〈Q〉21 + 〈Q〉22

, (8.24)
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we can express the distance (8.11) as

D(ρ1, ρ2) =
(
(R(O))

2
)1/2

. (8.25)

Here

R(O) ≡ | 〈O〉1 − 〈O〉2 |√
〈O〉21 + 〈O〉22

. (8.26)

is the relative difference between the ensembles described
by ρ1 and ρ2, respectively. This implies that D(ρ1, ρ2)
measures the mean relative difference of the expectation
values of all local operators, averaged with respect to the
probability distribution (8.24).

E. The Distance between two Gaussian Density
Matrices

The distance (8.11) between two Gaussian RDMs ρ[Γ]
and ρ[Γ′] can be expressed in terms of their correlation
matrices following Ref. [59]. Given the definition of the
distance

D
(
ρ, ρ′

)
=

√
Tr
(
ρ2 + ρ′2 − 2ρρ′

)
√
Tr
(
ρ2
)
+Tr

(
ρ′2
) , (8.27)

we require tractable expressions for the quantities

Tr
(
ρ[Γ]ρ[Γ′]

)
. (8.28)

This is achieved in two steps. First, we note that the
product of two Gaussian RDMs (7.7) is itself Gaussian59

exp


1

4

∑

i,j

Wijaiaj


 exp


1

4

∑

i,j

W̃ijaiaj




= exp


1

4

∑

i,j

[log(eW eW̃ )]ijaiaj


 . (8.29)

This can be seen by expanding the left hand side of (8.29)
by means of the Baker-Campbell-Hausdorff formula in
terms of multiple commutators, and then observing that
the commutator of quadratic operators is quadratic and
gives rise to a commutator between the matrices W that
characterize the 2-forms

[
1

4

∑

i,j

Wijaiaj ,
1

4

∑

i,j

W̃ijaiaj ] =
1

4

∑

i,j

[
[W, W̃ ]

]
ij
aiaj .

(8.30)
Second, using results for the second Rényi entropy63, one
can relate the Frobenius norm of a Gaussian RDM to the
correlation matrix by

Tr
[
ρ[Γ]2

]
=
(
det
∣∣∣ I + Γ2

2

∣∣∣
) 1

2

. (8.31)

Combining (8.31) and (8.29) one can then show59 that

{Γ, Γ̃} ≡ Tr
[
ρ[Γ]ρ[Γ̃]

]
=
(
det
∣∣∣ I + ΓΓ̃

2

∣∣∣
) 1

2

. (8.32)

Here we have used that Tr [ρ1ρ2] ≥ 0, which is a con-
sequence of density matrices being positive semidefinite
operators. Finally, substituting (8.32) into (8.27), we
obtain the following result for the distance between two
Gaussian RDMs

D(ρ[Γ], ρ[Γ̃]) =

[
1− 2{Γ, Γ̃}

{Γ,Γ}+ {Γ̃, Γ̃}

] 1
2

. (8.33)

Given that the correlation matrices are only 2ℓ dimen-
sional (with ℓ the subsystem size), (8.33) provides a very
efficient way of computing distances for large subsystem
sizes.

IX. SINGLE-SITE SUBSYSTEM

It is instructive to consider the time evolution of the
RDM describing a single-site subsystem in some detail.
In this case the RDM of site 1 can be expressed in the
form

ρ1(t) =
I

2
+ ~m(t) · ~σ1 , (9.1)

where ~m(t) is the magnetization per site at time t after
the quench, i.e.

mα(t) =
1

2
〈Ψt|σα

1 |Ψt〉. (9.2)

The RDM of the generalized Gibbs ensemble describing
the stationary state is

ρGGE,1 =
I

2
+mz

statσ
z
1 . (9.3)

where

mz
stat =

∫ π

−π

dk

4π
eiθk cos∆k. (9.4)

Finally, the RDM of the thermal ensemble described by
ρβ, whose inverse temperature β is fixed by the require-
ment

lim
L→∞

1

L
〈Ψ0|H(h)|Ψ0〉 = lim

L→∞

1

L
Tr [ρβH(h)] , (9.5)

is given by

ρβ,1 =
I

2
+mz

βσ
z
1 . (9.6)

Here the transverse magnetization per site is

mz
β =

∫ π

−π

dk

4π
eiθk tanh

(βεk
2

)
. (9.7)
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A. Quenches originating in the paramagnetic phase

Here the Z2 symmetry enforces

mx(t) = my(t) = 0. (9.8)

The z-component of the magnetization per site is

mz(t) =

∫ π

−π

dk

4π
eiθk [cos∆k − i sin∆k cos(2εkt)] . (9.9)

For late times we may evaluate the integral by means of
a stationary phase approximation, which gives

mz(t) ≃ mz
stat +

c(t)

(Jt)3/2
, (9.10)

where

c(t) =
(h− h0) cos(4Jt|1− h| − π/4)

8|h0 − 1|
√
π|h− 1|

+
(h− h0) cos(4Jt|1 + h|+ π/4)

8|h0 + 1|
√
π|h+ 1|

. (9.11)

The distance between ρ1(t) and the generalized Gibbs
RDM at late times then decays to zero like a power-law
with exponent 3/2

D(ρ1(t), ρGGE,1) =

√
2|mz(t)−mz

stat|√
1 + 2(mz(t))2 + 2(mz

GGE)
2

∼
√

2c2(t)

1 + 4(mz
stat)

2
(Jt)−

3
2 . (9.12)

On the other hand, the distance between ρ1(t) and the
thermal RDM approaches a constant at late times

D(ρ1(t), ρβ,1) =

√
2|mz(t)−mz

β|√
1 + 2(mz(t))2 + 2(mz

β)
2

∼
√
2|mz

stat −mz
β |√

1 + 2(mz
stat)

2 + 2(mz
β)

2
+O

(
(Jt)−

3
2

)
. (9.13)

B. Quenches originating in the ferromagnetic phase

Here all three components of the magnetization per
site are non-zero. The component along the transverse
field direction is again given by (9.9), while the late-time
asymptotics of mx(t) has been calculated in31

mx(t) =
1

2

√
Cx
FF e

t
∫

π

0
dk
π

log cos∆kε
′
k . (9.14)

Here Cx
FF is a known amplitude and ε′k = dεh(k)

dk . Finally,
the Heisenberg equation of motion for σx

1 (t) relates the y
and x components

my(t) =
1

2Jh

dmx(t)

dt
. (9.15)

Importantly, mx,y(t) exhibit exponential decay in time.
In contrast, mz(t) again decays like a power law with
exponent 3/2 and therefore will dominate the late time
behaviour. Hence at sufficiently late times, the distances
of ρ1(t) to GGE and thermal RDMs are again given by
(9.13) and (9.12) respectively. So for a single site subsys-
tem the spontaneous symmetry breaking only modifies
the intermediate time behaviour of the distances. As we
will see, this holds true also for larger subsystems.

X. LARGER SUBSYSTEMS FOR QUENCHES
FROM THE PARAMAGNETIC PHASE

For quenches with h0 > 1 and in the thermodynamic
limit, we determine the distance between the quench
RDM and that of an appropriate thermal or generalized
Gibbs ensemble by means of relation (8.33). The correla-
tion matrices for all cases are of the form (7.4), (7.5) with
elements given in (7.12), (7.14) and (7.22) respectively.
For a subsystem of size ℓ this requires the calculation
of determinants of 2ℓ × 2ℓ matrices, which is done nu-
merically. Results for a quench from h0 = 1.2 to h = 3
and subsystem sizes ℓ = 10, 20, 30 . . . , 150 are shown in
Figs 2 and 3 We see that the distance between quench

1 10 100 1000

t

0.1

1

10

150

D

h
0
=1.2 h=3

(Gibbs)

FIG. 2: Normalized distance DGibbs = D(ρℓ(t), ρ
β
ℓ ) after a

quench within the paramagnetic phase for subsystem sizes ℓ =
10, 20, . . . , 150. As ℓ increases, the color fades from brown to
green, the symbols become smaller and the curves narrower.
At late times the distances tend to constants depending on
subsystem size.

and Gibbs RDMs tends to a ℓ-dependent constant at late
times. This establishes that subsystems do not thermal-
ize. On the other hand, as can be seen from Fig. 3,
at sufficiently late times the distance between ρℓ(t) and
ρGGE,ℓ decays to zero in a universal power-law fashion

D(ρℓ(t), ρGGE,ℓ)
Jt≫1−−−→ k(ℓ)(Jt)−3/2 + . . . . (10.1)

The quality of the fit (10.1) is shown in Fig. 4. The
large-ℓ asymptotics of the function k(ℓ) can be inferred
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10 100 1000

t

0.001

0.01

0.1

1

10

150

D

h
0
=1.2 h=3

(GGE)

FIG. 3: Normalized distance DGGE = D(ρℓ(t), ρ
GGE
ℓ ) after

a quench within the paramagnetic phase for subsystem sizes
ℓ = 10, 20, . . . , 150. As ℓ increases, the color fades from brown
to green, the symbols become smaller and the curves nar-
rower. At late times D(ρℓ(t), ρ

GGE
ℓ ) tends to zero in a uni-

versal power-law fashion ∝ (Jt)−3/2.

0 400 800 1200 1600

t

0

0.1

0.2

70

150

D

h
0
=1.2 h=3

~t-3/2

(GGE)

FIG. 4: Distance DGGE = D(ρℓ(t), ρ
GGE
ℓ ) after a quench

within the paramagnetic phase for two representative values
ℓ = 70, 150. We used the same notations of Fig. 3. The black
dashed curves are best fits to the form D = at−3/2.

as follows. On surfaces with constant, small D the time
scales as t ∼ ℓ4/3 as is shown in Fig. 5. This in turn
implies that

k(ℓ) ∼ ℓ2 . (10.2)

A. Relaxation time

We may extract a relaxation time from the behaviour
of the distance, by using the connection to averaged dif-
ferences in the expectation values of local operators es-

0 100 200 300

0

2000

4000

6000

h
0
=1.2 h=3

t 

ℓ

D = 0.01
(GGE)

FIG. 5: Dependence of time on subsystem size at fixed dis-
tance D(ρℓ(t), ρ

GGE
ℓ ) = 0.01 for the same parameters as in

Fig. 3. The dashed curve is the best fit to the functional form
t = a+ bℓ4/3.

tablished in subsection VIIID. The distance can be writ-
ten as

D(ρGGE,ℓ, ρℓ(t)) =
(
[R(O)]

2
)1/2

, (10.3)

where

R(O) ≡ | 〈O〉t − 〈O〉GGE |√
〈O〉2t + 〈O〉2GGE

, (10.4)

and the bar denotes the average (8.24). Using that

R(O) ≤
√
[R(O)]

2
= D(ρGGE,ℓ, ρℓ(t)), (10.5)

and then substituting the asymptotic behaviour (10.1),
(10.2) into the right hand side, we obtain

R(O) . ℓ2t−3/2 . (10.6)

Bounding the right hand side by a (small) constant, we
obtain a time scale t∗rms associated with the relaxation of
the average relative error with respect to the distribution
(8.24)

t∗rms ∼ ℓ4/3 . (10.7)

It is not simple to identify the observables that give signif-
icant contribution to the average, since it depends both
on their “multiplicity” in the subsystem (produced by
translational invariance and other symmetries) and on
the expectation values. We note that the relaxation time
t∗rms is very different from the time scales identified in
Ref. [32] in the time evolution of the two point functions
of spin operators for quenches within the paramagnetic
phase.
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B. Distance from Truncated Generalized Gibbs
Ensembles

Having established that the distance between quench
and GGE reduced density matrices tends to zero as a
universal power law at late times, a natural question is,
how close the quench RDM is to the truncated GGEs
(5.1), which retain only finite numbers of conservation
laws. A representative example for a quench within the

1 10 100

0.001

0.01

0.1

1

GGE

16

8

4

2

1 (Gibbs)

h0=1.2 h=3ℓ=10 t

D
(y)

FIG. 6: Distance D(y) = D(ρℓ(t), ρ
(y)
tGGE,ℓ) at fixed length

ℓ = 10 between quench and truncated GGE reduced density
matrices for y = 1, 2, 4, 8, 16 and a quench within the param-
agnetic phase. Here y is the maximal range of the densities
of local conservation laws included in the definition of the
ensemble. As the number of conservation laws is increased,
the time window, in which the distance decays as t−3/2, in-
creases. At very late times all distances with finite y saturate
to nonzero values.

paramagnetic phase is shown in Fig. 6. We see that at
sufficiently late times, the distances converge to constant
values. However, increasing the range (and number) of
conservation laws, the values of these plateaux decrease,
signalling that retaining more conservation laws gives
better descriptions. In an intermediate time window, the
extent of which grows with y, the distance decays in a
universal t−3/2 power-law fashion. In Fig. 7 we consider
the distance

D(y)
∞ = lim

t→∞
D(ρℓ(t), ρ

(y)
tGGE,ℓ) = D(ρGGE,ℓ, ρ

(y)
tGGE,ℓ),

(10.8)
between the RDMs of the truncated and full generalized
Gibbs ensembles as a function of the parameter y. For a
given subsystem size ℓ, this corresponds to plotting the
values of the plateaux seen in Fig. 6 against the corre-
sponding values of y. The distance is seen to start de-
caying exponentially as a function of y as soon as y & ℓ.
There are two main conclusions of the above analysis:

1. Including more local conservation laws improves
the description of the stationary state.

2. The description of the stationary state improves

0 10 20 30 40 50

1x10
-7

0.001

5

50

h
0
=1.2 h=3y

D
(y)

FIG. 7: Distance D
(y)
∞ = D(ρGGE,ℓ, ρ

(y)
tGGE,ℓ) between the

GGE and the truncated GGEs obtained by imposing local
conservation laws with densities involving at most y + 1 con-
secutive sites. The quench is from h0 = 1.2 to h = 3 and
the subsystem size ranges from ℓ = 5 to ℓ = 50. Colors
and sizes change gradually as a function of the size ℓ. For
y > ℓ, the distance starts decaying exponentially in y, with
an ℓ-independent decay constant.

rapidly, once the range y + 1 of all conservation
laws not included in the truncated GGE exceeds
the subsystem size ℓ.

C. Distance from defective Generalized Gibbs
Ensembles

We now turn to the role played by particular local con-
servation laws. We find that the distance between quench
and defective GGE reduced density matrices for a given
quench and subsystem size tends to a constant at late
times, i.e.

lim
t→∞

D(ρℓ(t), ρ
(q)
dGGE,ℓ) ≡ Dd(+q)

∞ . (10.9)

The dependence of this asymptotic value on the subsys-
tem size ℓ and the integer q is shown in Fig. 8 for a quench

within the paramagnetic phase. We see that Dd(+q)
∞ ex-

hibits an exponential decay in q as soon as q & ℓ. This is
similar to the behaviour observed in the truncated GGE
case. The decay length can be calculated from the large-q
asymptotics of Eq. (7.19). By series expanding Eq. (8.33)

to second order in Γ
(+q)
dGGE − ΓGGE we obtain

Dd(+q)
∞

y≫ℓ∼ |κ+q |e−| log h|(q−ℓ) . (10.10)

Numerically we find that κ+q ∼ 1/q2.

1. “GGE Reconstruction”

In section VI we discussed the issue that, for certain
quenches and omitted conservation laws I+q , the corre-
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FIG. 8: Distance D
d(+q)
∞ = D(ρGGE,ℓ, ρ

(+q)
dGGE,ℓ) for a quench

within the paramagnetic phase, for subsystem lengths ℓ =
5, 10, . . . , 50. The excluded conservation law is I+q with even q.
Colors and sizes change gradually as a function of the length.
When y > ℓ, the distance starts decaying exponentially with
a decay length given by Eq. (10.10).

sponding defective GGE is identical to the full general-
ized Gibbs ensemble. We now return to this point. In
Fig. 9 we consider the truncated, defective GGE for a
quench across the critical point from h0 = 2 to h = 0.5
for a subsystem of length ℓ = 5. We plot the distance
between the reduced density matrices of the appropriate
GGE and the truncated, defective GGE with y integrals
of motion, where I+q (q < y) has been excluded, i.e.

Dd(+q),y
∞ = D(ρGGE,ℓ, ρ

(+q),y
tdGGE,ℓ). (10.11)

As discussed in section VI, for even q we expect this
distance to approach zero, when the number y of con-
servation laws goes to infinity. This behaviour is clearly
observed in Fig. 9. This implies that the corresponding
conservation laws do not affect averages of local opera-
tors. As discussed before, this is a particular feature of
free theories, where H(h0) and H(h) generically share
certain local conservation laws.

2. More local conservation laws are more important

On the other hand, for odd q we find that Dd(+q),y
∞

approaches constant values when y becomes large. This
value agrees with the distance between the GGE and the
defective GGE with maximal entanglement entropy (we
stress that for the considered quench the defective GGE
does not always correspond to a stationary point of the
entanglement entropy under a variation of the excluded
integral of motion, as shown in Fig. 20 of Appendix D).

The fact that Dd(+q),y
∞ tends to a constant at large y

shows that retaining an infinite number of local conser-
vation laws while excluding one of them is insufficient for
describing the stationary state. By comparing distances

1 10
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h
0
=2 h=1/2y

D
d(+q),y

ℓ= 5

FIG. 9: Distance D
d(+q),y
∞ = D(ρGGE,ℓ, ρ

(+q),y
dtGGE,ℓ) for a quench

across the critical point between the GGE and the defective
truncated GGE RDMs for a subsystem of 5 consecutive spins,
as a function of the number y of retained conservation laws.
Each symbol corresponds to a different excluded conservation
law I+q (the legend indicates the value of q). The distance
approaches zero for even q, whereas it remains finite for odd
q, in agreement with the discussion of section VI. The lines
are the distances from the corresponding defective generalized

Gibbs ensemble ρ
(+q)
dGGE with maximal entanglement entropy.

for different values of q we observe that for a given value

of y, Dd(+q),y
∞ decreases as a function of q. This implies

the more local the conservation law, the more important

it is for describing the stationary state.

XI. QUENCHES FROM THE
FERROMAGNETIC PHASE: EFFECTS OF
SPONTANEOUS SYMMETRY BREAKING.

We now turn to quenches originating in the ferromag-
netic phase, i.e. h0 < 1. In this case, the time evolved
initial state is given by

|Ψt〉 =
|ψt〉R + |ψt〉NS√

2
,

|ψt〉a = e−iHat |0;h0〉a a = R,NS , (11.1)

where |0;h0〉R/NS are the ground states of the Hamilto-

nian H(h0) with periodic/antiperiodic boundary condi-
tions. In order to analyze reduced density matrices after
a quantum quench from the ferromagnetic phase we will
make use of the following facts.

a) The fermion parity eiπN =
∏

j σ
z
j Eq. (2.4) is fully

factorized in space.

b) The states |ψt〉R and |ψt〉NS are eigenstates of eiπN

with eigenvalues 1 and −1 respectively.

c) The difference between the expectation values of local
operators in the states |ψt〉R and |ψt〉NS tends to zero
in the thermodynamic limit.
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d) The RDMs TrĀ [|ψt〉aa〈ψt|], a = R,NS, where A is a
single interval and Ā its complement, are Gaussian.

Property b) allows us to express the full density matrix
in the form (cf. Eq. (7.1))

ρ(t) =
1

Z

{∑

Oe

[
R〈ψt|Oe|ψt〉R + NS〈ψt|Oe|ψt〉NS

]
Oe

+
∑

Oo

2Re
[
NS〈ψt|Oo|ψt〉R

]
Oo

}
, (11.2)

where Z ensures that Tr[ρ(t)] = 1 and {Oe} ∪ {Oo} is a
complete set of Hermitian involutions with the property

[eiπN ,Oe] = 0, {eiπN ,Oo} = 0 . (11.3)

We will refer to Oe/o as even and odd operators respec-
tively. The main difference between even and odd opera-
tors, is that the latter are not local in terms of fermions:
a Jordan-Wigner string is attached to them. We are in-
terested in the RDM of a block A of ℓ contiguous spins,
which is obtained by tracing out the degrees of freedom
outside A

ρℓ = TrĀ
[
ρ
]
. (11.4)

A convenient representation for ρℓ is obtained by restrict-
ing the sums in Eq. (11.2) to involutions that act as the
identity operator outside the interval A, i.e.

O → O(A) ⊗ I(Ā) , (11.5)

where the superscript (A) indicates that the operators
act on the Hilbert space over all sites in A. As a result of
property a), fermion parity has a simple restriction onto
the interval A

eiπNA ≡
∏

l∈A

σz
l , (11.6)

and can be used to subdivide operators O(A) into even
and odd ones

[eiπNA ,O(A)
e ] = 0, {eiπNA ,O(A)

o } = 0 . (11.7)

This then implies that we can decompose the RDMs of
(11.2) into even and odd parts as well

ρℓ = ρℓ,e + ρℓ,o . (11.8)

In the thermodynamic limit we then may employ prop-
erty c) to obtain the following expressions

ρℓ,e(t) =
1

2ℓ

∑

Oe

R〈ψt|Oe|ψt〉ROe ,

ρℓ,o(t) =
1

2ℓ

∑

Oo

Re
[
NS〈ψt|Oo|ψt〉R

]
Oo . (11.9)

Importantly, the even part ρℓ,e(t) is Gaussian (7.7) by
virtue of property d), and has the same structure as

nB

l r

A

FIG. 10: Geometry of the composite system A ∪ n used in
calculating ‖ ρℓ,o ‖F , where ρℓ is the RDM of subsystem A.
The single site at position n is separated from A by a block
B of length r.

RDMs for quenches originating in the paramagnetic
phase. On the other hand, the odd part ρℓ,o has
its origin in the spontaneous breaking of the Z2 sym-
metry. The commutation relations (11.7) imply that
Tr
[
ρℓ,o(t)ρ

Ga
ℓ

]
= 0 for any Gaussian density matrix ρGa

ℓ ,
because the latter is by construction even. As a result
the odd part ρℓ,o of the RDM enters the distance from a
Gaussian state only through its norm

D(ρℓ(t), ρ
Ga
ℓ ) =

√
‖ ρℓ,e(t)− ρGa

ℓ ‖2F + ‖ ρℓ,o(t) ‖2F
‖ ρℓ,e ‖2F + ‖ ρℓ,o ‖2F + ‖ ρGa

ℓ ‖2F
.

(11.10)
We will be interested in the cases where ρGa

ℓ describe
Gibbs or (truncated) generalized Gibbs ensembles. The
Frobenius norms ||ρℓ,e(t) − ρGa

ℓ ||F , ||ρℓ,e||F and ||ρGa
ℓ ||F

can be efficiently evaluated by means of Eq. (8.33). What
remains in order to determine the distance (11.10) is a
method for calcuating the Frobenius norm ‖ ρℓ,o ‖F .
This is a somewhat involved technical problem, which
is addressed in Sec. XIA and Appendix B. The basic
idea is to utilize a cluster decomposition theorem at any
finite time after the quench, see also Ref. [36].

A. ‖ ρℓ,o ‖F from cluster decomposition

The main difficulty in calculating the Frobenius norm
of ρℓ,o is that the latter is not Gaussian. The idea is
therefore to obtain ρℓ,o as a reduction of a Gaussian op-
erator. To that end, we consider a composite system
C = A ∪ n consisting of our subsystem A and a single
site at position n, which is separated from A by a block
B of length r, see Fig. 10.

The even part of the RDM ρC(t) can be expanded in
a complete basis of Hermitian involutions Oe/o as

ρC,e(t) =
1

2ℓ+1

[∑

Oe

〈Oeσ
z
n〉Oeσ

z
n

+
∑

Oo

∑

α=x,y

〈Ooσ
α
n 〉Ooσ

α
n

]
, (11.11)

where 〈· · ·〉 = 〈Ψt| · · · |Ψt〉 ≈ R〈ψt| · · · |ψt〉R, since both
Oeσ

z
n and Ooσ

α
n in (11.11) are even operators with re-

spect to fermion parity. In the limit of large separation
r, we may use the cluster decomposition principle to sim-
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plify the expectation values

〈Oeσ
z
n〉

r→∞−−−→ 〈Oe〉 〈σz
n〉 ,

〈Ooσ
α
n 〉

r→∞−−−→ 〈Oo〉 〈σα
n 〉 . (11.12)

This then leads to the following relation between RDMs
in the limit or large separation

lim
r→∞

ρC,e(t) = ρℓ,e(t)⊗ρ1,e(t)+ρℓ,o(t)⊗ρ1,o(t), (11.13)

where ρ1 is the RDM of site n. The piece of interest to
us is

ρℓ,o ⊗ ρ1,o = lim
r→∞

1

2ℓ+1

∑

Oo

∑

α=x,y

〈Ooσ
α
n〉 Ooσ

α
n . (11.14)

In the next step we move from spins to Majorana
fermions by means of the Jordan-Wigner transformation
(2.2)

ρℓ,o ⊗ ρ1,o = lim
r→∞

1

2ℓ+1

∑

Ao
α=x,y

〈aαnA†
oe

iπNB 〉Aoe
iπNBaαn,

(11.15)
where Ao are odd products of Majorana fermions acting
on sites within A. Importantly, the fermionic expres-
sion (11.15) depends on the configuration of Majoranas
in subsystem B through the Jordan-Wigner string oper-
ator. The right hand side of (11.15) can be cast in the
form

ρℓ,o ⊗ ρ1,o = lim
r→∞

〈eiπNB 〉 eiπNB
p− σz

npσ
z
n

2
, (11.16)

where p is a normalized, Gaussian operator (7.7) acting
on the Hilbert space over sites A ∪ n

p ≡ TrA∪n

[
eiπNB |ψt〉RR〈ψt|

]

〈eiπNB 〉 . (11.17)

In writing (11.15) we are assuming 〈eiπNB 〉 6= 0. The fact
that p is Gaussian is a consequence of the particular form
of |ψt〉R (which is the analog of (2.13) in the R sector)
and NB being quadratic in fermions. The odd part of
the single-site RDM is of the form

ρ1,o(t) = mx(t)σx
n +my(t)σy

n , (11.18)

and hence

[ρ1,o(t)]
2 =

(
[mx(t)]2 + [my(t)]

2
)
I2 ≡ m2

⊥(t)I2. (11.19)

Here the late-time behaviour of mx,y(t) are given by
(9.14) and (9.15) respectively, and following Ref. [31] they
can be easily calculated numerically for all times. Com-
bining (11.19) and (11.16) we obtain

‖ ρℓ,o ‖F = lim
r→∞

| 〈eiπNB 〉 |√
2|m⊥(t)|

∣∣∣
∣∣∣ p− σz

npσ
z
n

2

∣∣∣
∣∣∣
F

= lim
r→∞

| 〈eiπNB 〉 |
2|m⊥(t)|

√
Tr
[
p2 − (σz

np)
2
]
.

(11.20)

Since both p and σz
npσ

z
n are Gaussian, their moments can

be written in terms of their respective correlation matri-
ces

Gij ≡ Tr [pajai]− δij ,

Ḡij ≡ Tr [σz
npσ

z
najai]− δij . (11.21)

We note that the correlation matrices are related by Ḡ =
PnGPn, with Pn the diagonal matrix that changes the
sign of the last 2-by-2 block (Id is the d× d identity)

Pn = I2ℓ ⊕ (−I2) . (11.22)

Using (8.32) we have

Tr
[
p
2
]
= {G,G} , Tr

[
(σz

np)
2
]
= {G, Ḡ} . (11.23)

A slight complication arises because p is not positive
semidefinite. To account for this we must use the more
general definition of {Γ,Γ′} as the product of the eigen-
values of (1+ΓΓ′)/2 with halved degeneracy59. We may
then recast (11.20) in the form

‖ ρℓ,o ‖F= lim
r→∞

| 〈eiπNB 〉 |
2|m⊥(t)|

√
{G,G} − {G, Ḡ} . (11.24)

While formally correct, (11.24) is not suitable for numer-
ical computations, because at large distances 〈eiπNB 〉 be-
comes very close to zero. A more convenient expression
derived in Appendix B is

‖ ρℓ,o ‖F= lim
r→∞

√
det
(
I2ℓ ⊕ 02r ⊕ I2 + iΓA∪B∪n

)

21+ℓ/2|m⊥(t)|
.

(11.25)
Here ΓA∪B∪n is the correlation matrix of the interval
A ∪ B ∪ n and is given by (7.4), (7.5), (7.22). In order
to utilize (11.25) we in principle have to consider infinite
separations r and hence infinitely large matrices.
Crucially, in practice a finite separation r > 2vmaxt,

where vmax = maxkǫh(k) is the maximal propagation ve-
locity, is sufficient to recover the r → ∞ limit up to cor-
rections that are exponentially small in r/ξ. Here ξ is the
correlation length in the initial state. A representative
example is shown in Fig. 11. In practice, using a finite
r > 2vmaxt + ξδ with δ ≈ 20 provides an efficient way
for calculating ||ρℓ,o(t)||F and then by means of (11.10)
distances D(ρℓ(t), ρ

Ga
ℓ ) for quenches originating in the

ferromagnetic phase.

B. Results for quenches from the ferromagnetic
phase

For quenches with h0 < 1 and in the thermodynamic
limit, we determine the distance between the quench
RDM and that of an appropriate thermal or general-
ized Gibbs ensemble by means of relations (11.10) and
(11.25). The correlation matrices for all cases are of the
form (7.4), (7.5) with elements given in (7.12), (7.14) and
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FIG. 11: Difference ‖ δρℓ,o ‖F=‖ ρℓ,o ‖F − lim
r→∞

‖ ρℓ,o ‖F as

a function of the separation r for a quench from h0 = 0.2 to
h = 0.8. We see that for r > 2vmaxt the difference becomes
exponentially small in r/ξ, where ξ is the correlation length
in the initial state.

(7.22) respectively. For a subsystem of size ℓ most terms
require the calculation of determinants of 2ℓ× 2ℓ matri-
ces, which is easily done numerically. The evaluation of
‖ ρℓ,0 ‖F is significantly more costly, and in practice in-
volves determinants of at most 2(ℓ+2vmaxt+ ξδ)× 2(ℓ+
2vmaxt+ ξδ) matrices, as discussed above.

Results for a quench from h0 = 1/3 to h = 2/3 and sub-
system sizes ℓ = 10, 20, 30 . . . , 150 are shown in Figs 12
and 13. We see that the distance between quench and
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D

h
0
=1/3 h=2/3

(Gibbs)

FIG. 12: Distance DGibbs = D(ρℓ(t), ρ
β
ℓ ) after a quench

within the ferromagnetic phase for subsystem sizes ℓ =
10, 20, . . . , 150. As ℓ increases, the color fades from brown to
green, the symbols become smaller and the curves narrower.
At late times the distances tend to constants depending on
subsystem size.

Gibbs RDMs tends to a ℓ-dependent constant at late
times. On the other hand, as shown in Fig. 13, at suffi-
ciently late times the distance between ρℓ(t) and ρGGE,ℓ

decays to zero in a universal power-law fashion

D(ρℓ(t), ρGGE,ℓ)
Jt≫1−−−→ k(ℓ)(Jt)−3/2 + . . . . (11.26)

The large-ℓ asymptotics of the function k(ℓ) can be in-
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FIG. 13: Distance DGGE = D(ρℓ(t), ρ
GGE
ℓ ), after a quench

within the ferromagnetic phase for the subsystem lengths ℓ =
10, 20, . . . , 150. We used the same notations of Fig. 3. The
behavior is almost the same as that shown in Figs 3 and 5,
but the effect of the spontaneous magnetization is visible at
intermediate times, when the distance decays exponentially
(inset).

ferred in the same way as for quenches within the param-
agnetic phase. On surfaces with constant, small D, time
scales as t ∼ ℓ4/3 as is shown in Fig. 14, which implies
that

k(ℓ) ∼ ℓ2 . (11.27)

We conclude that the late time behaviour of the dis-
tance between quench and generalized Gibbs RDMs is
the same as for quenches within the paramagnetic phase.
The mean relaxation time t∗rms is therefore again given
by (10.7). Interestingly this coincides with the result ob-
tained in Ref. [32] for the relaxation of the order param-
eter two-point function after quenches within the ferro-
magnetic phase. The effects of the spontaneous symme-
try breaking are important only at short and intermedi-
ate times. It is shown in the inset of Fig. 13 that there is
a time window, in which the odd part of the RDM gives
the dominant contribution to the distance, which decays
exponentially.

C. Magnitude of the contribution due to ρℓ,o

The effects of the spontaneously broken Z2 symmetry
in the initial state make themselves felt through the Z2-
odd part ρℓ,o of the density matrix. The relative impor-
tance of ρℓ,o for large ℓ can be estimated by considering
the von Neumann entropy of subsystem A

SvN[ρℓ] = Tr [ρℓ ln (ρℓ)] . (11.28)
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FIG. 14: The time vs. the subsystem length at fixed distance
D(ρℓ(t), ρ

GGE
ℓ ) = 0.01 (black solid line of the left plot). The

dashed curve is t = a+ bℓ4/3, with a and b obtained by fitting
the numerical data. The filled region shows the effect of the
spontaneous magnetization.

We recall that the von Neumann entropy after a global
quench grows linearly in time until the Fermi time tF =
ℓ/(2vmax), and then saturates to a value proportional to
the subsystem size ℓ64,65. Using the commutation rela-
tions (11.8) we see that the even part ρℓ,e can be ex-
pressed in terms of the full RDM ρℓ as follows

ρℓ,e =
ρℓ + eiπNAρℓe

iπNA

2
. (11.29)

Since for any set of density matrices ρi the von Neumann
entropy satisfies66 (λi > 0,

∑
i λi = 1)

∑

i

λi logλi ≤ SvN

[∑

i

λiρi
]
−
∑

i

λiSvN

[
ρi
]
≤ 0 ,

(11.30)
the following bounds on the von Neumann entropy of
subsystem A hold

SvN[ρℓ,e]− log 2 ≤ SvN[ρℓ] ≤ SvN[ρℓ,e]. (11.31)

This demonstrates that at any time after the quench the
symmetry breaking contribution to the von Neumann en-
tropy will be at most log 2. Given that for large subsys-
tems the von Neumann entropy at late times is propor-
tional to ℓ, we conclude that the relative contribution of
the odd part of the RDM will be important only for small
subsystem sizes.

1. A conjecture for ‖ ρℓ,o ‖F in the limit of large ℓ and Jt

We now consider the space-time scaling limit31

ℓ, Jt→ ∞ ,
ℓ

Jt
fixed. (11.32)

We observe that in this limit our numerical results for
quenches within the ferromagnetic phase are in excellent
agreement with the following relation

log ‖ ρℓ,o(t) ‖F≈ log ‖ ρℓ,e(t) ‖F +

∫ π

0

dk

2π
log
(
cos∆k

)
max

k

{
0, 2ε′kt− ℓ+O(ℓ0, t0)

}
. (11.33)

Here we have highlighted the asymptotic nature of the
relation and indicated by O(ℓ0, t0), where the most im-
portant corrections will arise. Since log ||ρℓ,e(t)||F is pro-
portional to the Rényi entropy S2 (cf. Eq. (8.13)), we
may use the known results64 on the asymptotics of the
latter

log ‖ ρℓ,e(t) ‖F= −S2/2 ≈
∫ π

0

dk

2π
log

1 + cos2 ∆k

2
min(2ε′kt, ℓ) +O(ℓ0, t0) .

(11.34)

Combining (11.34) and (11.33) provides a conjecture for
the asymptotic behaviour of ‖ ρℓ,o ‖F . This conjecture is
compared to numerical results in Fig. 15. The agreement
is clearly quite good.

XII. QUENCHES ACROSS THE CRITICAL
POINT

We now turn to quenches across the critical point.
These are of particular interest14,31,42. In Fig. 16 we
plot the distance between quench and GGE reduced den-
sity matrices for a quench from the ferromagnetic phase
(h0 = 1/2) to the paramagnetic phase (h = 3/2). The
15 data sets displayed correspond to subsystem sizes be-
tween ℓ = 10 and ℓ = 150. We find that the distance
DGGE = D(ρℓ(t), ρ

GGE
ℓ ) again decays in a universal t−3/2

power law. In Fig. 16 we consider the same quench, but
focus on very small subsystem sizes ℓ = 1, 2, 3, 4. We ob-
serve that the distance displays an oscillatory behaviour
on top of a power-law decay in time. This is in agreement
with the analytic results discussed in section IXB for the
ℓ = 1 case. Increasing the subsystem size leads to a rapid
suppression of the amplitude of the oscillations.
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FIG. 16: Distance DGGE = D(ρℓ(t), ρ
GGE
ℓ ), after a quench

from ferromagnetic phase to the paramagnetic phase for the
subsystem lengths ℓ = 10, 20, . . . , 150. The conventions are
the same as in Fig. 3.

In Figs 18 and 19 we consider the reverse quenches,
i.e. starting at h0 = 3/2 in the paramagnetic phase, and
quenching to h = 1/2 in the ferromagnetic phase. The
behaviour of the distances is very similar to what we
found for the quench from h0 = 1/2 to h = 3/2: at late
times the distance decays as a t−3/2 power law, and for
small subsystem sizes we observe oscillatory behaviour
on top of this decay.

XIII. SUMMARY AND CONCLUSIONS

In this work we have considered the evolution of re-
duced density matrices after a quantum quench in the
transverse field Ising chain. The main result of our work
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FIG. 17: Distance DGGE = D(ρℓ(t), ρ
GGE
ℓ ), after a quench

from ferromagnetic phase to the paramagnetic phase for the
small subsystems ℓ = 1, 2, 3, 4.
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FIG. 18: Distance D(ρℓ(t), ρ
GGE
ℓ ), after a quench from para-

magnetic phase to the ferromagnetic phase for the subsystem
lengths ℓ = 10, 20, . . . , 150. The conventions are the same as
in Fig. 3.

is to demonstrate that

lim
t→∞

ρℓ(t) = ρGGE,ℓ, (13.1)

where ρℓ(t) is the reduced density matrix of a subsystem
consisting of ℓ adjacent spins after a quench of the trans-
verse field, and ρGGE,ℓ is the reduced density matrix of an
appropriately defined generalized Gibbs ensemble. The
derivation of (13.1) is based on defining an appropriate
distance D(ρ, ρ′) on the space of reduced density ma-
trices, and then establishing that the distance between
quench and GGE reduced density matrices approaches
zero at late times. For our particular choice of distance
we found that at late times this distance approaches zero
as a universal power law in time

D(ρℓ(t), ρGGE,ℓ) ∼ t−3/2 . (13.2)
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FIG. 19: Distance D(ρℓ(t), ρ
GGE
ℓ ), after a quench from para-

magnetic phase to the ferromagnetic phase for the small sub-
systems ℓ = 1, 2, 3, 4.

We have presented a detailed construction of ρGGE,ℓ

in terms of the local (in space) integrals of motion I±n of
the TFIC. The densities of these conservation laws in-
volve only spins on n + 2 consecutive sites. We proved
that these local conservation laws are related in a lin-

ear fashion to the occupation numbers of the Bogoliubov
fermions that diagonalize the Hamiltonian of the TFIC.
This linear relation establishes the equivalence of our con-
struction of the GGE to the one frequenctly used in the
literature, which is based on mode occupation numbers.

We then have addressed the question, which of the
conservation laws are most important for obtaining an
accurate description of the stationary limit limt→∞ ρℓ(t)
of the quench RDM. To that end we introduced (defec-
tive) truncated generalized Gibbs ensembes, which are
missing some of the local conservation laws. We found
that the more local the conservation laws (i.e. the fewer
consecutive spins their densities involve), the more im-
portant they are for describing the stationary state of
a given subsystem. Loosely speaking we observed that
in order to obtain a good description of the stationary
state RDM of a subsystem of size ℓ, we need to retain all
local conservation laws, whose densities involve at most
≈ ℓ + n0 neighbouring spins, where n0 is a constant de-
pending on h0 and h. Leaving out “highly local” conser-
vation laws generally provides a very poor description of
the stationary state. To the best of our knowledge this
is the first such demonstration of a connection between
locality of conservation laws and their importance in the
GGE context.

Our work raises a number of issues. First and foremost
is the dependence of the results obtained on the precise
definition of the distance on the space of reduced density
matrices. We have argued, that the “best” distance is
the one based on the trace norm, because it provides the
most direct and precise information on the time evolution
of local observables. Unfortunately this distance is much

harder to handle analytically. It would however be very
interesting to implement it in purely numerical studies
using iTEBD or related algorithms.
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Appendix A: Inequalities involving the Frobenius
norm of RDMs for spin-1/2 Quantum Spin Chains

In this appendix we provide lower and upper bounds
for the Frobenius norm of the difference of two reduced
density matrices ‖ ρ−ρ′ ‖F in a translationally invariant
system. An upper bound is obtained as follows

‖ ρ− ρ′ ‖2F = Tr
[
ρ2 + ρ′2 − 2ρρ′

]

= ‖ ρ ‖2F + ‖ ρ′ ‖2F −2Tr (ρρ′)

≤ ‖ ρ ‖2F + ‖ ρ′ ‖2F . (A1)

Here we have used that both ρ and ρ′ are positive
semidefinite and hence

Tr (ρρ′) =
∑

λjρ
′
jj ≥ λmin

∑

j

ρ′jj

= λminTrρ
′ = λmin ≥ 0, (A2)

where 0 ≤ λmin ≤ λj are the eigenvalues of ρ. To derive
a lower bound we start by expressing the RDM of a block
of ℓ spins in a spin- 12 chain in the form

ρℓ =
1

2ℓ

∑

{αj}

Tr [ρ σα1
1 · · ·σαℓ

ℓ ]σα1
1 · · ·σαℓ

ℓ , (A3)

where αi = 0, x, y, z with σ0 ≡ I, and ρ is the density
matrix of the full system; ρℓ is only function of the length
because of translational invariance. By singling out the
term with αℓ = 0, we can express this in the form

ρℓ =
ρℓ−1 ⊗ I

2
+

3∑

αℓ=1

δραℓ

ℓ−1σ
αℓ

ℓ , (A4)

where ρℓ−1 is the RDM of the block consisting of sites
1, . . . , ℓ− 1. We also write the RDM of the ℓth spin

ρ1 =
I

2
+

3∑

αℓ=1

Tr
[
δραℓ

ℓ−1

]
σαℓ

ℓ (A5)

and observe that

‖ ρ1 − ρ′1 ‖2F= 2

3∑

αℓ=1

(
Tr
[
Ωαℓ

ℓ−1

])2
. (A6)
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Here we have defined Ωαℓ

ℓ−1 = δραℓ

ℓ−1 − δρ′αℓ

ℓ−1. Using (A4)
we have

‖ ρℓ − ρ′ℓ ‖2F =
‖ ρℓ−1 − ρ′ℓ−1 ‖2F

2
+ 2

3∑

αℓ=1

‖ Ωαℓ

ℓ−1 ‖2F

≥ ‖ ρℓ−1 − ρ′ℓ−1 ‖2F
2

+

3∑

αℓ=1

(
Tr
[
Ωαℓ

ℓ−1

])2

2ℓ−2

=
‖ ρℓ−1 − ρ′ℓ−1 ‖2F

2
+

‖ ρ1 − ρ′1 ‖2F
2ℓ−1

, (A7)

where we have used that for N ×N matrices M we have
NTrM2 ≥ (TrM)2 in the second step, and (A6) in the
last. Iterating Eq. (A7) ℓ − 1 times we obtain

‖ ρℓ − ρ′ℓ ‖2F≥ 21−ℓℓ ‖ ρ1 − ρ′1 ‖2F . (A8)

This implies that for sufficiently large subsystem size ℓ,
the distance ‖ ρℓ − ρ′ℓ ‖F will generally be larger than

21−ℓ/2.

Appendix B: Derivation of Eq. (11.25)

Our starting point is Eq. (11.24), i.e.

‖ ρℓ,o ‖F= lim
r→∞

| 〈eiπNB 〉 |
2|m⊥(t)|

√
{G,G} − {G, Ḡ} . (B1)

Our task is to evaluate

〈eiπNB 〉2 {G,G} and 〈eiπNB 〉2 {G,G} , (B2)

where G = PnGPn and Pn is the diagonal involution
defined in (11.22). We recall that {Q,Q1} denotes the
product of the eigenvalues of (I + QQ1)/2 with halved
degeneracy (the eigenvalues of QQ1 are always double
degenerate67 for antisymmetric matrices Q and Q1). The
correlation matrix G defined in Eq. (11.21) turns out to
be59 the Schur complement of the block matrix ΓB of the
matrix ΓA∪B∪n, i.e.

G = ΓA∪n − ΓA∪n,B
1

ΓB
ΓB,A∪n . (B3)

Here ΓR1, R2 denotes the matrix, whose rows and columns
are associated with spatial regions R1 and R2 respec-
tively, e.g.

[ΓA∪n,B]ij =

{
Γi,j+2ℓ 0 ≤ i ≤ 2ℓ

Γi+2r,j+2ℓ i > 2ℓ .
(B4)

Here ℓ is the size of subsystem A, while r is the distance
between A and site n, see Fig. 10.
The first step is to find determinant representations for

{Q,Q} and {Q,PQP}, where P is a generic symmetric
involution (P 2 = I and P t = P ).
We first consider {Q,Q}. Since Q is antisymmetric, its

eigenvalues come in pairs ±q

0 = det |Q− qI| = det |Qt − qI| = det | −Q− qI| . (B5)

Both eigenvalues±q give rise to the same eigenvalue 1+q2

of I +Q2, and hence

{Q,Q} =
∏

q>0

1 + q2

2
. (B6)

Here the product is over all positive eigenvalues of Q.
Using that

det |I+ iQ| =
∏

q>0

(1+ iq)
∏

q>0

(1− iq) =
∏

q>0

(1+ q2) , (B7)

it follows that

{Q,Q} = det |(I + iQ)/
√
2| . (B8)

Next we consider {Q,PQP}. The matrix

P
1
2 ≡ eiπ/4I + e−iπ/4P√

2
(B9)

satisfies (P
1
2 )2 = P and (P

1
2 )t = P

1
2 . Since we have

I +QPQP = (P
1
2 )−1(I + (P

1
2QP

1
2 )2)P

1
2 , (B10)

the eigenvalues of I+QPQP and I+(P
1
2QP

1
2 )2 coincide.

Therefore

{Q,PQP} = {P 1
2QP

1
2 , P

1
2QP

1
2 } = det

∣∣∣ I + iP
1
2QP

1
2√

2

∣∣∣ ,
(B11)

where in the last step we used Eq. (B8). Since (P
1
2 )2 = P

and P 2 = I, (B11) can be rewritten in the form

{Q,PQP} = det |P | det |(P + iQ)/
√
2| . (B12)

Using (B8) and (B12), we can reexpress the quantities in
(B2) as follows:

〈eiπNB 〉2 {G,G} = det |iΓB| det |(I + iG)/
√
2|

〈eiπNB 〉2 {G,G} = det |iΓB| det |(Pn + iG)/
√
2| .

(B13)

Here we have use that the expectation value of the string
operator in region B is related to the correlation ma-

trix ΓB by 〈eiπNB 〉2 = det |iΓB|. A remaining problem
is that limr→∞ det |iΓB| = 0, which precludes a numeri-
cal evaluation of (B1) on the basis of expressions (B13).
This complication is overcome as follows. We recall the
expression of the determinant of a block matrix

det
∣∣∣
(
M11 M12

M21 M22

)∣∣∣ = det |M22| det
∣∣∣M11 −M12M

−1
22 M21

∣∣∣ .
(B14)

We then substitute (B3) into (B13), and identify

2ℓ+1 〈eiπNB 〉2 {G,G} and 2ℓ+1 〈eiπNB 〉2 {G,G} as the de-
terminants of the matrices
(
I + iΓA∪n iΓA∪n,B

iΓB,A∪n iΓB

)
and

(
Pn + iΓA∪n iΓA∪n,B

iΓB,A∪n iΓB

)

(B15)
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respectively. Rearranging some of the rows and columns
we obtain

〈eiπNB 〉2 {G,G} =
det
∣∣I2ℓ ⊕ 02r ⊕ I2 + iΓA∪B∪n

∣∣
2ℓ+1

〈eiπNB 〉2 {G,G} =
det
∣∣I2ℓ ⊕ 02r ⊕ (−I2) + iΓA∪B∪n

∣∣
2ℓ+1

.

(B16)
The representations (B16) are suitable for numerical cal-
culations even in the limit of large r. There is one further
simplification: in the limit r → ∞ we have

lim
r→∞

〈eiπNB 〉2 {G,G} = − lim
r→∞

〈eiπNB 〉2 {G,G}. (B17)

To see this, we expand the determinants in (B16) with
respect to the last 2-by-2 block (from here on we omit
the subscript in ΓA∪B∪n, i.e. Γ ≡ ΓA∪B∪n)

det |I2ℓ ⊕ 02r ⊕ I2 + iΓ|+det |I2ℓ ⊕ 02r ⊕ (−I2) + iΓ| =
2det

∣∣Γ + iI2ℓ ⊕ 02r+2

∣∣− 2 det
∣∣ΓA∪B + iI2ℓ ⊕ 02r

∣∣ .
(B18)

Using properties of the correlation matrix one could show
that the determinants on the second line approach zero
in the limit of large distance. For the sake of simplic-
ity we propose a different proof, which is based on the
assumption that the limit

lim
r→∞

det
∣∣ΓA∪B + iI2ℓ ⊕ 02r

∣∣ (B19)

exists: we demonstrate that the limit cannot be infi-
nite, so the expression in Eq. (B18) does tend to zero as
r → ∞. To this end we consider the (2ℓ+2r)× (2ℓ+2r)
correlation matrix G of a generic Gaussian density ma-
trix, and show that the determinant det |G + iI2ℓ ⊗ 02r|
has an upper bound independent of r. Hence it cannot
diverge in the limit r → ∞. Our proof is based on the
following facts:

(a.) ‖ G ‖op≤ 1, and hence ‖ G2 ‖op≤ 1 and ‖ G+ iI2ℓ ⊗
02r ‖op≤‖ G ‖op +1 ≤ 2;

(b.) G+ iI2ℓ ⊗ 02r cannot have more than 2ℓ eigenvalues
with absolute values exceeding 1.

Property (a.) is a consequence of G being the correlation
matrix of a positive semidefinite Gaussian. Property (b.)
can be proved as follows: Let ~w a normalized vector with
wi = 0 for any i ≤ 2ℓ. Then

~w†(G+ iI2ℓ ⊗ 02r)
†(G+ iI2ℓ ⊗ 02r)~w = ~w†G2 ~w ≤ 1 ,

(B20)
where the inequality follows from property (a.). If there
were more than 2ℓ eigenvalues λ of G + iI2ℓ ⊗ 02r with
modulus larger than 1, we could find a linear combination
~W =

∑
i ci~vi of the corresponding normalized eigenvec-

tors ~vi with the property Wi = 0 for any i ≤ 2ℓ; this

leads to a contradiction with (B20) since

∑

i

c∗i~v
†
i (G+ iI2ℓ ⊗ 02r)

†(G+ iI2ℓ ⊗ 02r)
∑

j

cj~vj

=
∑

i

|c2i |λ2i >
∑

i

|c2i | = 1 . (B21)

This completes the proof of property (b.).
Properties (a.) and (b.) imply that

| det |G+ iI2ℓ ⊗ 02r|| ≤ 22ℓ , (B22)

which establishes that the determinants in (B18) remain
finite in the limit r → ∞. Concomitantly the expression
in Eq. (B18) approaches zero as r → ∞. This establishes
(B17). Putting everything together we see that (B16)
can be written as

‖ ρℓ,o ‖F= lim
r→∞

√
det
∣∣I2ℓ ⊕ 02r ⊕ I2 + iΓA∪B∪n

∣∣

2
ℓ
2+1|m⊥(t)|

,

(B23)
which is Eq. (11.25).
We stress that our assumption reagrding the

limit (B19) is equivalent to the existence of the limit
in (B23). From a numerical point of view, this can be
inferred from the scaling analysis of

√
det
∣∣I2ℓ ⊕ 02r ⊕ I2 + iΓA∪B∪n

∣∣

2
ℓ
2+1|m⊥(t)|

, (B24)

which is still required to check the cluster decomposition
hypothesis (see Fig. 11).
The magnetization |m⊥(t)| can be computed writing a

self-consistent equation for Eq. (B23) in the case ℓ = 1:
From Eq. (11.19) we have

‖ ρ1,o ‖F=
√
2|m⊥(t)| , (B25)

which together with Eq. (B23) gives

4m2
⊥(t) = lim

r→∞

√
det
(
I2 ⊕ 02r ⊕ I2 + iΓ1∪B∪n

)
. (B26)

Appendix C: Conservation laws in spin models with
free fermion spectra

In this appendix we present a simple construction of
the bulk contribution to local conservation laws of the
TFIC on the infinite line. Our method readily general-
izes to other models with free fermionic spectrum such as
the XY chain. Ignoring boundary conditions, we can use
the Jordan-Wigner transformation to express the Hamil-
tonian as a quadratic form in Majorana fermions

H =
1

2

∑

l,n

alHlnan . (C1)
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Here H is a skewsymmetric block-circulant matrix

H =




Y0 Y1 · · · YL−1

YL−1 Y0

...
...

. . .
...

Y1 · · · · · · Y0



, (C2)

where Yn = −YT
L−n are 2-by-2 matrices. In Fourier space

we have

(Yn)jj′ =
1

L

L∑

k=1

e
2πik
L

n(Yk)jj′ , (C3)

where (Yk)jn = −(Y−k)nj . One can show that a complete
set of local conservation laws is obtained by taking

Ir =
1

2

∑

l,n

alIr;lnan . (C4)

From Eq. (8.30) we see that [H, Ir] = 0 if and only if
[H, Ir] = 0. Similarly one has [Ir , Ir′ ] = 0 if and only if
[Ir, Ir′ ] = 0. Hence the problem of constructing conser-
vation laws is equivalent to determining an appropriate
set of mutually commuting matrices that commute with
H. Because the projectors on the eigenvectors of blocks
circulant matrices are block circulant matrices, we seek
Ir in block-circulant form

Ir =




Ȳ(r)
0 Ȳ(r)

1 · · · Ȳ(r)
L−1

Ȳ(r)
L−1 Ȳ(r)

0

...
...

. . .
...

Ȳ(r)
1 · · · · · · Ȳ(r)

0



. (C5)

Imposing [H, Ir] = 0 and [Ir, Ir′ ] = 0 we obtain the
conditions

[Yk, Ȳ
(r)
k ] = 0 , [Ȳ

(r)
k , Ȳ

(r′)
k ] = 0 ∀k , (C6)

where Ȳ
(r)
k is the Fourier transform (C3) of Ȳ(r). In the

quantum Ising model Yk are 2-by-2 traceless matrices, so
Eq. (C6) has the simple solution

Ȳ
(r)
k = ω

(r)
k I + q

(r)
k Yk , (C7)

where ω
(r)
k = −ω(r)

−k and q
(r)
k = q

(r)
−k. Fourier transforming

back to position space we have

Ȳ(r)
n =

1

L

L∑

k=1

e
2πik
L

nω
(r)
k I +

1

L

L∑

k=1

e
2πik
L

nq
(r)
k Yk . (C8)

We define the ‘range’ of a local conservation as the maxi-
mal number of neighbouring spins involved in its density
minus one. By construction, the range is equal to the

maximal |n| such that Ȳ(r)
n is nonzero (cf. Eqs (C1),

(C2)). For the TFIC one finds that Yn = 0 for |n| > 1,

and concomitantly the range of the Hamiltonian is rH =
1. It is straightforward to identify the conservation laws
with ranges ≤ r + 1: from Eq. (C8) they are such that

ωk =

r+1∑

n=1

c−n sin(nk) , qk =

r+1−rH∑

n=0

c+n cos(nk) .

(C9)
They can be divided in two classes: one with qk = 0,
which we denote by I−, and one with ωk = 0, which we
denote by I+. Finally, a complete set of conservation
laws is given by

I+r : Ȳ+,(r)
n =

1

L

L∑

k=1

e
2πik
L

n cos(rk)Yk

I−r : Ȳ−,(r)
n = −2J

L

L∑

k=1

e
2πik
L

n sin((r + 1)k)I .

(C10)

These are exactly the conservation laws reported in
Eq. (2.13).
We note that the conservation laws I−r are independent

of the system details, and can be found in any noninter-
acting model with a block circulant structure (see also
Ref. [58]). Indeed they are originated from the trivial
solution of Eq. (C6), namely the identity.

Appendix D: Peculiar aspects of defective GGEs

In this appendix we discuss some properties of the de-
fective generalized Gibbs ensembles defined in Section VI.
We start by recalling the standard variational approach
for deriving statistical ensembles in quantum mechanics.
One generally seeks the density matrix that maximizes
the entropy under a given set of constraints on indepen-
dent, additive conservation laws Ij

δTr
[
−ρ log ρ− λρ−

∑

j

λjIjρ
]
= 0 . (D1)

The solution of (D1) is of the form ρ ∝ exp
(∑

j λjIj
)
,

which shows that the ensemble is a function only of the
conservation laws appearing in Eq. (D1).
We now consider the density matrix after a quench.

All the ensembles defined in the main text are compati-
ble with the principle of maximal entanglement entropy,
and the GGE, the truncated GGE, and the truncated
defective GGE can be obtained (a posteriori) by means
of the variational approach (D1).
Some complications arise when we consider defective

GGEs, in which we exclude a single integral of motion.
From Eq. (6.5) we find that the entanglement entropy

density σ
dGGE(+q)
vN of the defective GGE ρ

(+q)
dGGE

4 is given

4 This is defined as the limit L → ∞ of the finite volume entropy

density σ
dGGE(+q)
vN = lim

L→∞

1
L
S
dGGE(+q)
vN .
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by

σ
dGGE(+q)
vN =

∫ π

0

dk

π
H
(
cos∆k − κ+q

cos(qk)

ε(k)

)
, (D2)

where H(x) = − 1+x
2 log 1+x

2 − 1−x
2 log 1−x

2 . By writing
the defective GGE as in Eq. (4.2), one can easily show

that
∂σ

dGGE(+q)
vN

∂k+
q

is the Lagrange multiplier associated to

the conservation law I+q (cf. Eq. (4.5)): if the maximum
of the entanglement entropy is not at the boundaries of

the domain of k+q , then the equation
∂σ

dGGE(+q)
vN

∂k+
q

= 0 has

a solution, and ρ
(+q)
dGGE can be obtained from Eq. (D1).

In the absence of peculiar constraints, one would expect
the maximum to be generally a stationary point of the
entanglement entropy. However, quenches in translation-

-0.8 -0.6 -0.4 -0.2 0
0

0.05

0.1
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q²#
q

+

q²ΔσvN

h0=2 h=1/2

FIG. 20: The difference of entanglement entropy densities

∆σvN = σ
dGGE(+q)
vN − σGGE

vN as a function of the parameter
κ+
q for the same quench shown in Fig. 9 (the legend indicates

the value of q). The points have the maximal entropy and
correspond to the lines plotted in Fig. 9. Only for q = 1 the
entanglement entropy is maximal at a stationary point.

ally invariant noninteracting models are very special since
the initial state is a simultaneous eigenstate of an infinite
number of local conservation laws. This substantially re-
duces the degrees of freedom, and can result in an ex-
ceptionally small domain for k+q (which may not include
a stationary point). In Fig. 20 we show this paradoxical
behaviour for the same set of parameters used in Fig. 9.
Besides the pathological cases of even q, in which the
curves collapse to the point κ+q = 0, the effect of the
reduction of degrees of freedom is reflected in the “trun-
cated” shape of the curves for q 6= 1, which turn out to
be strictly decreasing functions of κ+q . The limiting pro-

cedure (6.2) selects the value of κ+q corresponding to the
maximal entanglement entropy (the circles in Fig. 20).
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