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We present detailed results from a recent microscopic theory of extremely correlated Fermi liquids,
applied to the t-J model in two dimensions, developed in recently by Shastry in Ref. (1) and Ref. (2).
The second order theory in the parameter λ, related to the density, is argued to be quantitatively
valid in the overdoped regime for 0 ≤ n<∼ 0.75, with n denoting the particle density. The calculation
involves the self consistent solution of equations for an auxiliary Fermi liquid Greens function, and
an adaptive spectral weight. We present numerical results at low as well as high T , at various low
to intermediate densities in the normal phase, using a minimal set of band parameters relevant to
the cuprate superconductors. We display the momentum space occupation function mk, energy
dispersion curves locating the peaks of spectral functions, the optical conductivity, relaxation rates
for quasiparticles, and the electronic spectral functions on an absolute scale. The line-shapes have
an asymmetric shape and a broad background that is also seen in experiments, and our calculations
validate approximate recent recent versions of the theory. The results also display the experimentally
noted high energy kink, and provide an in depth understanding of its origin and dependence on band
parameters.

I. INTRODUCTION

The t-J model describes the physics of very strongly
interacting electrons, made especially difficult by the
requirement of (at most) single occupancy of the lat-
tice sites. It is the subject of many recent works in
the context of the cuprate superconductors, and also
other correlated systems such as sodium cobaltates. This
problem is very hard since it is precludes the applica-
tion of standard perturbative methods. This conundrum
has motivated a new strong coupling approach, result-
ing in the theory of extremely correlated Fermi liquids
(ECFL)1,2. Previous applications of the methodology of
Ref. (1) to the cuprates has given encouraging results.
These include spectral functions that compare very well
with the experimental angle resolved photoemission spec-
troscopy (ARPES) data3–5, providing a natural explana-
tions of the “high energy kink”, and also the more subtle
“low energy kink” seen in experiments. The theory also
has led to interesting predictions for the asymmetry of
lineshapes5.

The formalism initiated in Ref. (1) charted out an ap-
proach to the problem of the t-J model using basic
insights from Schwinger’s powerful approach to field the-
ory, using source fields to write down exact functional
differential equations for the propagator. In the next cru-
cial step, it was recognized that complexity arising from
the non canonical nature of the (projected) electrons can
be circumvented by a product ansatz. This involves de-
composing the propagator as the space time convolution
of a canonical electron propagator, and an adaptive spec-
tral weight factor termed the caparison factor satisfying
coupled equations of motion. A recent work2 develops
this idea in a systematic fashion, emphasizing the role of
expanding in a parameter λ (0 ≤ λ ≤ 1), related to the
particle density, or more closely to λ ∼ (1− 4

n2 d), where

d is the double occupancy (0 ≤ d ≤ n2

4 ). It further
explores the implications of a novel set of identities for
the t-J model, termed the shift identities. These simple
but crucial identities provide an important constraint on
the λ expansion. A method for generating a systematic
set of equations for the propagator to any orders in λ is
given, along with explicit equations to second order in λ
that manifestly obey the shift identity constraints. We
will refer to this theory as (I) here and prefix equations
of that paper with (I). A detailed numerical solution of
this O(λ2) ECFL propagator is the main focus of this
work. We obtained and benchmark the results of these
equations against known results, and thereby provide a
solid platform for further developments of the method,
as well as a validation of the phenomenological versions
of ECFL. With the confidence gained by the benchmark-
ing, we further study and report the hopping parameter
sensitivity of the kink effect.

Broadly speaking, the O(λm) equations resemble the
fully self consistent mth order skeleton diagram expan-
sion of the standard Feynman diagram based theory, as
described in standard texts6–8, but generalize to the case
of extreme correlations. Summarizing the arguments in
Ref. (2) and Ref. (1), a low order theory in λ is already ex-
pected to capture features of extreme correlations. This,
perhaps initially surprising expectation, arises in view of
the non Dysonian representation of the Greens function,
in terms of two self energies Φ and Ψ, within the ECFL
formalism. The self energy Ψ resides in the numerator of
the Greens function, as in Eq. (1) and Eq. (2). It plays
the role of an adaptive spectral weight that balances the
somewhat opposing requirements of the “high energy”
weight 1− n

2 and the low energy Luttinger theorem. The
latter requires a greater magnitude of the numerator than
1− n

2 , to accommodate the particles into a Fermi surface
(FS) with the same volume as in the Fermi gas. A fur-
ther tactical advantage of this method is due to the finite
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range of variation of λ, namely 0 ≤ λ ≤ 1 that suffices to
interpolate between the Fermi gas and the extreme corre-
lation limit. This is in contrast to controlling the double
occupancy d using a repulsive energy U , with its range
of values 0 ≤ U ≤ ∞. Experience shows that U must be
tuned to a very large value U � |t| in order to achieve
the same end, thereby invalidating low order expansions
in U . In summary, within the present formalism, a low
order theory in λ seems well worth examining in detail,
this is our task here.

We note that apart from a few exact solutions in 1-
dimension, and some calculations for finite sized systems
(see below), we are aware of no systematic analytical cal-
culations in higher dimensions, for the dynamics of the
physically relevant spin 1

2 version of the t-J model,
working directly in the thermodynamic limit. An earlier
body of work in Ref. (9) shares some of the objectives
and features of our approach, but is technically very dif-
ferent. It relies on an expansion in the inverse number
of components 1

N and is thus somewhat removed from
the physical case of interest, where N = 2. Therefore
while the importance of the t-J model was understood
many years ago, there has been little detailed comparison
with the ARPES experiments until recently3. This gap
is one of the main motivations for this (and our related)
work. In this paper, we present a controlled calculation
for the spectral functions of the t-J model, by solving
the above O(λ2) equations. We evaluate thermodynam-
ical variables, the spectral functions, ARPES lineshapes
and optical conductivity of the t-J model. The ECFL
formalism and the λ expansion method provides an in-
built criterion to judge the validity of the expansion at
any order. Using this criterion we argue that our present
O(λ2) calculations are valid in the high hole doping limit,
known as the overdoped regime. Clearly this corresponds
to low and intermediate electron density since the hole
doping is related to the particle density as x = 1 − n.
Future work will be aimed at higher order calculations
in λ, in order to enable us to address densities closer
to optimal doping (n ∼ .85). The results are compared
with other approximations as well as a few experiments.
Needless to say, even in such an overdoped regime, exper-
imental evidence points to the important role of strong
correlations10,12.

While analytical methods beyond crude mean field
theories have been in short supply, there is a valuable
body of numerical results for the t-J model from exact
diagonalization14, high temperature series expansions15,
variational wave functions16–18, and finite temperature
Lanczos methods19–22. Noteworthy are the results of
Ref. (20) from Prelovsek and co workers, who handle
the series expansion in inverse temperature in a stochas-
tic fashion, thereby obtaining results down to fairly low
temperatures. Owing to finite size effects and the inher-
ent nature of the high T expansion, the results from this
theory, although broadly comparable to ours, seem more
grainy.

The Hubbard model for large on-site coupling U tends

to the t-J model (apart from O(t2/U) correction terms),
so the large U studies of this model are of interest. Quan-
tum Monte Carlo methods, despite the difficulties associ-
ated with the sign problem, yield some valuable insights
into the spectral features such as kinks23. We note that
the dynamical mean field theory (DMFT) for the Hub-
bard model24,25 gives a numerically exact solution in high
enough dimensions of the Hubbard model. Although the
strong coupling (i.e. U > W ) relevant to the t-J model
results is challenging, there is impressive progress over-
all. A recent DMFT study26 at strong coupling obtains
detailed spectral functions that are roughly comparable
to what we find here for the t-J model.

The ECFL formalism has several advantages, since it is
essentially an analytical method with a computational as-
pect that is lightweight, in comparison with other meth-
ods listed above. The only present limitation is the den-
sity attainable with the second order theory. When pos-
sible, we present absolutes scale results that are encour-
agingly close to experimental data with no other fitted
parameters.

We finally note that the present O(λ2) results for the
location of the energy peaks has been recently tested
in Ref. (27) , against an independent theory with over-
lapping validity. Ref. (27) studied the infinite coupling
Hubbard model in 2-dimensions, by using a highly effi-
cient computer program to generate a series expansion
in hopping of the exact Greens function and its various
moments to high order. The locations of the dispersion
peaks can be estimated from these. These dispersion
relations match quantitatively the ones found from the
present theory, with J → 0 for the densities quoted in
this paper. This suggests a high degree of reliability of
the spectral functions discussed herein.

The plan of the paper is as follows. In Section (II), we
present a summary of the equations solved here from (I).
In Section (III), we discuss the computational strategy
and explain the scheme, using the fast Fourier transform
method (FFT), so that the spectral functions can be com-
puted efficiently. Section (IV) presents the detailed re-
sults of the calculation. Section (V) contains a summary
and concluding comments. The supplementary material
in Ref. (28) details the results for thermodynamics and
the wave function renormalization Zk, and also gives fur-
ther details of the computational method employed.

II. SUMMARY OF THE O(λ2) THEORY

In the ECFL formalism developed in (I) the physi-
cal Greens function G can be factored in the momentum
space as

G(k) = g(k) µ(k), where (k) ≡ (~k, iωk). (1)

Here the caparison factor µ(k) plays the role of an adap-
tive spectral weight, while g(k) is the auxiliary canonical
Fermion propagator. These objects objects are expanded
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in powers of a parameter λ, relating to density, and fi-
nally we set λ → 1. As shown in equations (I-83, I-84,

I-85), the second order equations for the ECFL Greens
function are:

µ(k) = 1− λn
2

+ λ2 n2

4
+ λ2Ψ(k), (2)

Ψ(k) = −
∑
p,q

(εp + εk+q−p + εk + εq + Jk−p − u0) g(p) g(q) g(q + k − p) (3)

g−1(k) = iωn + µ′ − εk − λ2 Φ(k) (4)

εk =

(
1− λ n+ λ2 3n2

8

)
εk + λ

∑
q

1

2
Jk−q g(q) (5)

Φ(k) = −
∑
q,p

g(q) g(p) g(k + q − p)

× (εk + εp + εq + εk+q−p + Jk−p − u0 ) {εk + εp + εq + εk+q−p +
1

2
(Jk−p + Jp−q)− u0 }, (6)

where
∑
k ≡

1
βNs

∑
~k,ωn

with Ns being the number of lat-

tice sites and β is inverse temperature. These expressions
for the Greens function satisfy the “shift invariances” de-
scribed in Ref. (2), i.e. any uniform shift in εk or Jk can
be absorbed in µ′ and u0 such that the spectral function
is invariant. These second order equations are the low-
est order ones where non-trivial frequency dependence
arises, and will be the focus of this work. Below we dis-
cuss in detail the criterion for the quantitative validity of
the present second order expansion.

As written here, µ(k) and g(k) have acquired a vari-
ety of static terms as well as frequency dependent terms
called Ψ and Φ, respectively. This is written with slight
change of notation [Φ(k)]1 → Φ(k) from (I-85), and we
have introduced the effective band energy εk in Eq. (5)
that gets a static contribution from shrinking of the bare
energies εk, as well as from the exchange energy J . The
role of the parameter u0 as a second chemical potential
will be described below. All terms are understood to
be correct up to O(λ2), and hence possess corrections of
O(λ3) that are ignored here.

The number of the physical electrons is fixed by the
number sum rule,

n

2
=
∑
k

G(k) eiωn0+

. (7)

In order that G satisfy the Luttinger volume theorem,
the auxiliary Fermions described by g must be equal in
number, and therefore satisfy a second sum rule:

n

2
=
∑
k

g(k) eiωn0+

. (8)

In contrast to canonical theories, here we have two in-
dependent sum rule constraints requiring two Lagrange
multipliers. The first Lagrange multiplier µ′, is a stan-
dard chemical potential in that it sits next to the band
energies, εk, in the denominator of g. A second Lagrange

multiplier u0 arises naturally in the ECFL formalism,
thanks to the role of the shift identities, as shown in
(I). The u0 term has a role similar to that of the Hub-
bard U in the effective Hamiltonian in (I). It controls the
broadening of the spectral function through the magni-
tude of Φ and Ψ. Neither of these Lagrange multipliers
is the physical thermodynamic chemical potential of the
Grand Canonical Ensemble. The physical chemical po-
tential µphys, denoted by µ, can be obtained as a function
of µ′ and u0 as shown in Eq. (179) of (I):

µ = µ′ + u0
λn

2
(1− λn

4
)

−

(
J0
λn

4
(1− λn

2
) + 2λ(1− λn

8
)
∑
q

εqg(q)

)
+O(λ3).

(9)

We now discuss the criterion for validity of equations
to a second order in λ. As stated above, dropping terms
of O(λ3) in Eq. (2) - Eq. (6) limits the regime of va-
lidity of these calculation to densities not too close to
unity. To see this, note from Eq. (2) that this theory
would give a high frequency behavior of G ∼ c0

iω with

c0 = 1− n
2 + n2

4 , rather than the exact value c0 = 1− n
2 ,

and thus introducing an error. This slight error in the
high frequency physics is a result of keeping a few terms
in the expansion in λ. Note however that the low fre-
quency physics encoded by the Luttinger Ward sum rule
is untouched by this, and is exactly obeyed to each order

in λ. Thus at n ∼ .78 we have an error of n2

4−2n ∼ 25%
in the high frequency spectral weight in this theory, a
value somewhat beyond where we can push this approx-
imation. The O(λ3) terms are expected to extend the
range of this approximation to higher particle densities.
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III. COMPUTATION OF SPECTRAL
FUNCTIONS

A. Definitions

Computationally it is expedient to employ a spectral
function notation as described for example in Ref. (8).
The Matsubara frequency object G(k, iωn) is analytically
continued to the real axis and we define:

ρG(k, ω) = − 1

π
Im

[
G(k, iωn → ω + i0+)

]
. (10)

This object is the spectral function, denoted in most ex-
perimental literature by A(k, ω). The real part of the an-
alytically continued function can be obtained by a Hilbert
transform

Re G(k, ω) = P.V.

∫ ∞
−∞

ρG(k, ν)

ω − ν
dν. (11)

An analogous definition is given for spectral representa-
tion ρg(k, ν), ρΦ(k, ν), ρΨ(k, ν) used for g, Φ, Ψ, etc, and
hence, the full set of equations above can be rewritten in
terms of these spectral functions. Since G is a product as

in Eq. (1), we note that within the O(λ2) theory

ρG(k, ω) = ρg(k, ω)

(
1− n

2
+
n2

4
+ Re Ψ(k, ω)

)
+ρΨ(k, ω) Re g(k, ω), (12)

so the two sum rules Eq. (7) and Eq. (8) can be written
as

n

2
=
∑
k

∫
dωρg(k, ω)f(ω)

n2

4
(1− n

2
) = −

∑
k

∫
dωf(ω)

×
(
ρg(k, ω) Re Ψ(k, ω) + Re g(k, ω) ρΨ(k, ω)

)
(13)

where f(ω) = (1+exp(βω))−1 and f(ω) = 1−f(ω). The
auxiliary spectral function is in the usual Dysonian form

ρg(k, ω) =
ρΦ(k, ω){

ω + µ′ − εk − Re Φ(k, ω)
}2

+
(
πρΦ

)2 .
(14)

Using Eq. (1) to Eq. (6), we express the spectral func-
tions for Ψ and Φ as:

ρΦ(k, ω) =
1

N2
s

∑
pq

∫
dν1dν2 ρg(p, ν1)ρg(q, ν2)ρg(p+ q − k, ν1 + ν2 − ω)×{

f(ν1)f(ν2)f̄(ν1 + ν2 − ω) + f̄(ν1)f̄(ν2)f(ν1 + ν2 − ω)
}
×

(εp + εk+q−p + εk + εq + Jk−p − u0) {εk + εp + εq + εk+q−p +
1

2
(Jk−p + Jk−q)− u0 } (15)

ρΨ(k, ω) =
1

N2
s

∑
pq

∫
dν1dν2 ρg(p, ν1)ρg(q, ν2)ρg(p+ q − k, ν1 + ν2 − ω)×{

f(ν1)f(ν2)f̄(ν1 + ν2 − ω) + f̄(ν1)f̄(ν2)f(ν1 + ν2 − ω)
}
×

(εp + εk+q−p + εk + εq + Jk−p − u0) . (16)

These frequency integrals are solved by discretizing fre-
quency over a finite window that is wide enough to cap-
ture the finite support of the spectral functions. In
Ref. (28) we outline how this is accomplished efficiently
with Fast Fourier Transforms (FFTs) and implemented
in an iterative process.

IV. RESULTS

A. Physical Variables

The computational program has several parameters
that can be varied. These include the tight binding
bandstructure (through hopping parameters t, t’ etc.),
the spin coupling J, density, and temperature. For

the parameters of the model, we focus on a minimal
model with the nearest neighbor hopping t ∼ 3000K and
J ∼ 900K and all longer range hopping parameters are
zero. These values are chosen to match the bandwidth of
the Cuprates. However at the bare level, this produces
an electron like Fermi surface near half filling, remaining
closed around the Γ = (0, 0) point in the Brillouin zone
(BZ). This is in contrast to the ARPES reconstructed FS
of, say, BISSCO displaying a hole like surface. Nonethe-
less, this minimal parameter set exhibits a variety of fea-
tures in common with the cuprates, most notably a broad
incoherent spectrum at high negative frequency. Interest-
ingly, we find that the distribution of incoherent weight
at high frequencies is very sensitive to the bare hopping
parameters. For this reason, when we look the high en-
ergy features, we will explore their dependence in the
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second neighbor hopping parameter t’, also including a
fine tuned tight binding fit of BISSCO from Ref. (29).

B. Other parameters in the programs

The program can be implemented on lattices of var-
ious size and spatial dimension. For a given choice of
these parameters an appropriate choice must be made for
computational grid. This includes the lattice size as well
as the discretized frequency grid. We look at converged
spectral functions for a wide variety of these parameters.

The majority of the following results were performed
on a square lattice with dimension L×L with L=36, and
periodic boundary conditions are imposed. We there-
fore work in a momentum representation with an L× L
sized k-grid of points ki,j = π

aL (i, j) where 1 ≤ i, j ≤ L

and the lattice parameter is a = 3.82Å. The spectral
functions have compact support, extending to |ω|<∼ 8× t.
We choose a frequency range − 1

2ωc ≤ ω ≤ 1
2ωc, with

ωc = 30× t, a range that is sufficient to capture the full
range of the spectral functions. We discretize this fre-
quency range in Nω = 3000 bins each of width ∆ω =
ωc
Nω

= .01t = 30K. ∆ω is the lowest resolvable frequency
scale in the calculation so it is prudent to disallow any
spectral features from becoming any sharper than this
scale. Therefore, we introduce the convergence factor
ηmin = ∆ω. It serves as a lower limit on the width
of spectral features. Thus in the Dysonian form of ρg
Eq. (14) we set ρΦ → ρΦ + η

π .

C. Frequency independent Variables

We now proceed to study the FS in this theory, start-
ing with the momentum occupation function mk of the
Gutzwiller projected Fermions:

mk ≡ 〈Ĉ†kσĈkσ〉 =

∫ ∞
−∞

ρG(~k, ω)f(ω)dω. (17)

A sharp drop in this function helps to locate the FS at
low T . This can be compared with the Luttinger - Ward
surface defined by a sign change in Re G(k, 0), also given
in terms of the spectral function by

Re G(~k, 0) = P.V.

∫ ∞
−∞

ρG(~k, ω)dω

ω
(18)

At T = 0 the FS in ~k space is traced out by

Re G−1(~k, 0) = 0, as dictated by the Luttinger Ward
sum rule. The momentum distribution mk is plotted
in Fig. (1) at T = 130K and T = 605K for various
densities along three principle directions of the BZ. The

Luttinger Ward zero crossings Re G−1(~k, 0) = 0 are de-
picted by dashed vertical lines. There is a close corre-
spondence between these crossings and the point where
mk = .5, similarly to that noted previously by Stephan

and Horsch14 in an exact diagonalization study. Since
this correspondence is not on any rigorously firm basis,
it is difficult to do more than to list the conditions for
its approximate validity. Using high temperature expan-
sions for the t-J model Singh and Glenister15 found
the FS to be that of the Fermi gas by various criteria,
and noted that the condition mkF ∼ 0.5 is only satisfied
approximately at high T. At higher temperature where
the QP near the FS have been significantly broadened,
we find that the condition mkF ∼ 0.5 is still reliable in
agreement with Ref. (14). In Fig. (1), a point of consid-
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0.75

G

X

M

n=.35, .6, .75

Increasing Density

T=130 K

G M X G
0

0.25

0.5

0.75

G

X

M

n=.35, .6, .75

Increasing Density

T=605 K

FIG. 1. The momentum distribution function mk is plotted
along three principle lines of the BZ. The left and right fig-
ures are at 130K and 605K respectively. In each case the FS
is the same as in the non-interacting problem. The Luttinger

Ward crossing Re G−1(~k, 0) = 0 is indicated for each density
by the vertical dashed lines. For each density and each tem-
perature the Luttinger Ward crossings correspond well with
the condition mk = 1

2
.

erable interest is the spillover of the occupation to the
regions in k space that are unoccupied in the Fermi gas-
as noted in various variational wave function studies of
the t-J model already16–18. From Eq. (17) we note
that the magnitude of mk for momenta k > kF , provides
an estimate of the spectral weight ρG(k, ω) at occupied
energies at low T . In early analyses of ARPES data,
the significance of this piece of information was not al-
ways realized, and often substantial spectral weight were
discarded as belonging to some unspecified background.
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Only recent studies such as Ref. (3) have taken note of
the significance of the background.

D. Various excitation energies

The spectra obtained here contain sharp peaks as well
as substantial incoherent background due to extreme cor-
relations. The QP weight Zk is discussed in the supple-
mental material Ref. (28). To understand the effect of
the many body renormalizations, it is fruitful to study
three dispersion relations defined in Ref. (4),

εk =

(
1− n+

3n2

8

)
εk +

1

2

∑
q

Jk−q mq,

Ek = εk − µ′ + Re Φ(k,Ek),

E∗k = max[ρG(k, ω) : ω]. (19)

Here εk defines the bare energy times its static renor-
malization, while Ek locates the vanishing point for the
real part of the auxiliary Greens function g, thereby
defining the Luttinger Ward surface through a change
of sign. E∗k locates the highest peak of the physical
Greens function G, and hence defines QP excitations pro-
vided they are sufficiently sharp. ARPES experiments
performed with constant k, termed the energy distribu-
tion curves (EDC)’s, locate E∗k as the peak locations;
thus EEDC(k) ↔ E∗k . On the other hand, the momen-
tum distribution curves (MDC’s) are obtained by fixing
ω, and by scanning k. The so obtained peak locations
yield the fourth dispersion spectrum EMDC . To obtain
EMDC in practice, one may invert the MDC peak loca-
tions through:

k∗(ω) = max[ρG(k, ω) : k], EMDC(k) = Inverse of k∗(E).
(20)

It is worth mentioning that the high energy kink (or the
waterfall) is experimentally defined as the the peeling off
of the EMDC(k) from the EEDC(k) = E∗k spectra30.

In Fig. (2) we illustrate the density dependence of the
three dispersions in Eq. (19). The inset shows the band-
widths, W(n), of the three dispersions as a function of
the density. Note that the bare bandwidth of εk is 2eV
for both cases. Near the FS we see that Ek ≈ E∗k but
they differ near the Γ-point where E∗k and EMDC are also
split off from each other, satisfying the above operational
definition of the high energy kink. We now discuss the
origin of these splittings.

Although Ek is not directly experimentally relevant, it
plays a significant role in the theory so we first comment
on the splitting between Ek and E∗k near the Γ point.
Since Ek is defined as the root of Re g−1(k,Ek) = 0, we
plot ω + µ′ − εk − Re Φ(k, ω) at various k as a function
of ω in the inset of Fig. (2). A strong ω dependence of
Re Φ(k, ω) causes a flattening of the curves near the zero
crossing between −0.6 and −.3 eV, and this causes the
Ek to fall rapidly with k in the main figure Fig. (2). Just
as Ek breaks away from E∗k , so also does EMDC , resulting
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0.8

G

X

M

n=.6, .7, .75
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T=130 K
0.6 0.65 0.7 0.75

0.5

0.8

1.1

n

W
HeV
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Ek

Ek
*

-0.6 -0.4 -0.2 0

-0.2

0

0.2

0.4

Ω

Ω-Ek+Μ-Re F Hk,ΩL
Increasing kx

FIG. 2. T = 130K. The three dispersions defined in Eq. (19)
are plotted along principle directions for three different densi-
ties. The upper insets show the bandwidth of the dispersions
as a function of the density. The bare bandwidth is 2eV
but each of these dispersions shrinks compared to that scale.
The bandwidth renormalization due to Re Φ in Eq. (19) is
k-dependent, and so Ek has a different shape than εk. Note
that Ek ∼ E∗k near the FS. However, E∗k differs from Ek near
the Γ-point for each of the densities. The lower inset shows
the evolution of real part of the denominator of g(k, ω) with
ω to illustrate the origin of the difference between Ek and E∗k .
In the inset Ek is determined by the zero crossings of the
curves. At low k notice that a relatively flat feature develops
with a shallow minimum near ω = −.3eV . The minimum
corresponds to the peak E∗k . For increasing k, the flat feature
quickly disappears and the zero crossing move quickly upward
in frequency producing the observed kink in Ek.

in the kink. This is shown most clearly in the left panel of
Fig. (3) where the spectral function is depicted as a color
density plot with the dispersions (Ek, E

∗
k , EMDC) over-

laid. Near the Γ-point where k = (0, 0) the QP becomes
incoherent and the bulk of its spectral weight is spread
out to high negative frequencies. In this region EMDC

differs considerably from E∗k , and recovers the scale of
the bare dispersion εk. The right panel of Fig. (3) shows
the spectral function as calculated using the tight bind-
ing parameters of BISSCO given in Ref. (29). These
parameters result in a hole like FS around the Γ point,
unlike the minimal model with an electron like FS. How-
ever, we observe in Fig. (3) that the high energy kink
occurs for both sets of parameters.

The occurrence of the high energy kink is understand-
able as a straightforward consequence of additional broad
peaks in the spectral function, separated from the quasi-
particle type peaks. In an energy range where they exist,
these are particularly effective in dominating EMDC and
less prominent in EEDC , therefore resulting in the sepa-
ration between these dispersions.

While the qualitative picture of the kinks is reason-
ably clear, it is not immediately clear what accounts for
the slightly different magnitude of the scale of the high
energy kink in Fig. (3). In Fig. (4) we show density
plots of the spectral function with t′/t = ±. 4. The
case t′ = .4 × t on left, has greater curvature at the
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FIG. 3. L = 60, (n, T ) = (.75, 300K). Density plot of A(k, ω)
of the minimal model (top) and the refined model Ref. (29)
(bottom). (Here and below we red denotes high intensity
and blue denotes low intensity). Ek, E∗k , and EMDC(k) spec-
tra are white, green and black, respectively. Near kF we see
that the three spectra coincide. In the region near k = (0, 0)
EMDC(k) is at a significantly higher energy scale than Ek or
E∗k , signifying the high energy kink (waterfall) effect. Also the
EDC peak loses weight in this regime. A new feature arises
at near k = (π, π) resembling an inverted waterfall.

band bottom, and is identified with the phenomenology
of the electron doped cuprates31 and23. The QP peaks
lose most of their weight, unlike in the minimal case. The
resulting scale of the drop in the waterfall is bigger than
in the minimal case, and correlates well with experimen-
tal observations in Ref. (32).

We note in Fig. (4) (right), that the case t′/t = −.4
has no measurable waterfall near the Γ-point. The
background at negative frequency is essentially feature-
less, and the QP peaks maintain their spectral weight.
However, at positive frequencies, an inverted waterfall
like feature develops near k = (π, π). This particular
parametrization is often invoked to rectify the electron
like curvature of the minimal model (t′ = 0), but ends
up giving a very flat band bottom at Γ. This is unlike the
more sophisticated band parameters in Ref. (29), where
the curvature is also hole like, and now the band regains
significant curvature at its bottom, resulting in the ob-
served kink.

E. Detailed Spectral Lineshapes (EDCs)

In this section, we present detailed line-shapes for the
spectral function. In an earlier work3, we have compared
the results of the simplified ECFL formalism. These
included some phenomenological inputs, with the ex-
perimental data at somewhat higher particle densities
n ∼ 0.85, and found remarkably good agreement with the
line-shapes. We are content in this work to present the
results at lower particle densities, but from a microscopic
calculation of ECFL. This is made possible by solving the
O(λ2) equations in Eq. (6) numerically. The line-shapes
obtained here have a similar general nature as the ones
in Ref. (3), giving support to that work. However, as
one expects from a lower density situation, we find some-
what less dynamical asymmetry about zero energy. More
detailed comparison with data near optimal doping with
the microscopic ECFL theory must await the solution of
the third or higher order equations where the criterion
for validity discussed above (see para following Eq. (8))
is satisfied more closely than here.

Let us first examine the local density of states (LDOS)
at n = 0.75 for both cases at low T in Fig. (5). A
prominent feature is that the main peak is much narrower
than in the bare LDOS. There is furthermore a long tail
extending to (negative) frequencies, much greater than
those seen in the bare LDOS. Finally we note that the
LDOS acquires a second peak at positive frequency. This
peak arises due to some k-dependent features in the self
energy (discussed below) resulting in sharper QP at pos-
itive frequency.

We next discuss Fig. (6) displaying the nodal spectral
function at three different temperatures. The lines are
quite sharp near kF but broaden out rapidly away from
kF . The insets give an idea of the change of spectral
density with temperature. Notably, there is a secondary
local maximum for k near the Γ-point near ω = −.4
eV. This second peak is responsible for the waterfall dis-
cussed above, and is also contained in the models used
in Ref. (4) and Ref. (3). As discussed above in connec-
tion with kinks, its microscopic origin is sensitive to tight
binding parameters. It is also noteworthy that lines with
k > kF , though broader than at kF , are sharper than
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FIG. 4. L = 60, (n, T ) = (.75, 300K). (Top) t′/t = .4 is
used to model electron doped High Tc superconductors. The
kink features is prominent here. (Bottom) uses t′/t = −.4, to
crudely model a hole like FS. In this case the kink near (0, 0)
is lost, unlike in Fig. (3), correlating with a flat (bare) band
dispersion.

those with k < kF .

Finally we note that while the self energy is strongly k-
dependent it is not anisotropic. Consequently, the EDC
lineshapes look similar at different parts of the FS, at
least to O(λ2). In the regime of validity of this theory,
namely the (hole) overdoped region, the Cuprates do not
display a strong anisotropy either.

-1.0 -0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

Ω HeVL
FIG. 5. n = .75. The LDOS of the physical G (auxiliary g) is
in black (dotted blue), the bare DOS is the dashed red curve.
The renormalized band displays narrowing, and a long tail at
ω < 0. The LDOS develops a second spectral peak for ω > 0
from a strongly k-dependent feature in the self energy.

F. Optical conductivity

The optical conductivity, σ(Ω), is computed within the
lowest approximation of (I) here by discarding the vertex
corrections and working with the auxiliary g:

Reσ(Ω) =
1

Ω

∑
k

v2
k

∫
ρg(k, ω)ρg(k,Ω + ω) dω

×(f(ω)− f(Ω + ω)) (21)

The imaginary part of the conductivity can be obtained
by a Hilbert transform of the real part. In this purely
t−J calculation we must be careful how we interpret the
imaginary part of σ. A more realistic calculation should
include contributions from the upper Hubbard band and
from charge transfer processes that are significant at high
frequencies, these are discarded in the t-J model. For
our current purposes we will discuss two kinds of relax-
ation rates. First we compute a momentum averaged rate
1/τσ extracted from the low frequency behavior σ(ω) us-
ing:

1

τσ
=

4

π

∫ 1/τσ

0

Re σ(ω)/σ(0)dω, (22)

where the prefactor is chosen to yield the usual rate for
a Lorentzian shape. This convenient definition is de-
signed to be insensitive to the shape of σ(ω). Secondly we
look at the momentum resolved scattering lifetimes, de-
fined as the inverse width of the ARPES lineshape at the
Fermi momentum. These scattering rates are displayed
in Fig. (7). We find that the 1/τ curves from ARPES and
the conductivity have essentially the same temperature
dependence, apart from a factor of O(1). The 1/τ rises
quadratically at low temperature in accordance with the
standard FL picture, crossing over to a linear dependence
at a fairly low temperature scale.
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In Fig. (8), we display the computed optical conduc-
tivity Re σ(ω) at various T for n = 0.75, and also the

phase angle θ = Tan−1(σ
′′(ω)
σ′(ω) ) on an absolute scale. The

rapid fall of the optical conductivity at low T is rapidly
filled in at low ω, and the phase angle falls off with ω
at about 4000 cm−1. At optimum doping, the phase an-
gle is known experimentally to be flat in ω over a much
larger range11, and differs from the present calculation,
whose validity is confined to overdoping. Experimental
measurements in the overdoped case of the phase angle
would be useful in benchmarking theories in that regime-
such as the present one. For the real part, such a compar-
ison is possible. In Fig. (9) we display the Re σ(ω) curves
along with optical conductivity measurements published
by Puchkov et al12 for an overdoped Thallium compound.
We note that in the overdoped regime, the computed con-
ductivity matches quite well with experiments (to within
a factor 2 on the vertical scale).

A further interesting aspect of the resistivity obtained
from this ECFL formalism lies in the high temperature
limit. A lack of resistivity saturation has been observed
in numerical treatments of strongly coupled models, as
in a recent DMFT work26. These results are in qual-
itative agreement with resistivity measurements in the
cuprates and other strongly correlated compounds. The
ECFL theory leads to a similar result, and provides a
simple picture for its origin in terms of the second La-
grange multiplier u0. As discussed in the supplemental
material, both µ′ and u0 rise linearly with T at high tem-
perature. Due to the explicit appearance of u0 in the ex-
pressions for Φ and Ψ, the magnitude of the self energies
also grows continuously with temperature via u0, result-
ing in a monotonic broadening of the spectral function.
This broadening is insensitive to the Mott Ioffe Regel
(MIR) saturation expected in weakly correlated metals,
and leads to a non saturating resistivity at high T, as we
observe in the inset of Fig. (7).

G. Self energies

We now display the self energies that are involved in
calculating the spectral functions. In Fig. (10) we dis-
play ρΦ and ρΨ. Both functions exhibit the ω2 behavior
close to zero, as one finds for a weakly interacting FL self
energy. Unlike conventional FL’s, the magnitude of of
the quadratic term is strongly k-dependent. From these
functions and the associated real parts we can construct
a Dyson-Mori self energy defined through the equation

G =
aG

x− Σ
(23)

where aG is the total spectral weight of the physical G
and x = ω + µ′ − εk such that

Σ = x+
aG

aG + Ψ
(Φ− x).. (24)

In Fig. (11) we plot the computed imaginary part of the
D-M self energy, ρΣ. It exhibits a similar magnitude and

k-dependence at low frequency to that in ρΦ. However,
large asymmetries begin to appear at intermediate fre-
quencies. It is interesting that at positive frequency the
function is considerably smaller than at negative frequen-
cies, a feature that has already been noted for simplified
versions of the ECFL4,5 and also in a recent DMFT study
of the Hubbard model26. In this calculation however, we
see an interplay between the momentum and frequency
dependences. In particular we see that at positive fre-
quency 0 < ω<∼ 200 meV , ρΣ is strongly k-dependent,
so that particle-like excitations near k = (π, π) are long-
lived while those inside the FS suffer a large damping.
This is very different from weakly coupled or local the-
ories such as DMFT, where the scattering rate is deter-
mined by frequency alone. We note that this self energy
does not differentiate between nodal and antinodal direc-
tions, but rather, the k-dependence arises only through
ε~k, so that the scattering rate is constant along the FS.

The low frequency asymmetry is usefully described as
a FL like quadratic dependence modified by a cubic term.
The right panel of Fig. (11) shows low frequency (|ω| ≤ 75
meV) fit parameters of ρΣ as a function of k, exhibiting a
marked softening of the quadratic coefficient b. The final
effect on the relaxation rate Γ(k) = ρΣ(k,E∗k), displayed
in Fig. (12), is summarized by the expression

Γ(k) ∼ bf
(

1− |
b′f
bf
| (k − kF )

)
V 2
F (k − kF )2, (25)

where bf (b′f ) is the coefficient (derivative of the coef-

ficient) at the Fermi momentum, and VF is the Fermi
velocity. The cubic term in k − kF is a significant cor-
rection to the leading term from Fermi liquid theory, re-
sulting in longer lived quasiparticles outside the Fermi
surface, as compared to quasi-holes inside the Fermi sur-
face. Furthermore the T dependence of Γ is stronger at
k < kF . At the highest temperature shown, the longest
lived quasiparticles drift somewhat away from kF . In
Fig. (7), we also display the T dependence of the single
particle relaxation rate Γ(k). This rate shows a crossover
at a reduced scale to linear in T behavior, about ∼ 150
K, as compared to Tµ′ ∼ 400 K, detailed in the supple-
mental material Ref. (28).

V. CONCLUDING REMARKS

In summary we have presented the results of a sys-
tematic low density expansion for the t-J model, using
the recently developed formalism of extremely correlated
Fermi liquids, discussed in Ref. (1) and Ref. (2). This
calculation complements the phenomenological theory in
Ref. (3), where the lineshapes at optimal doping are suc-
cessfully modeled, using a very small number of param-
eters. Here we calculate from first principles, assuming
only the value of J and the hopping t, and where possible,
quote results on an absolute scale. The second order in λ
equations studied here, valid for n<∼ 0.75, are somewhat
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removed from the most interesting regime of optimal dop-
ing. Nevertheless the computed forms of the twin self
energies found here indeed have the character assumed
in the phenomenological ECFL studies, also the result-
ing spectral functions have lineshapes that are skewed
towards negative ω. This feature is ultimately a con-
sequence of Gutzwiller projection as argued in Ref. (1),
and captures a striking characteristic of the experimental
data.

The salient points from our study may be summarized
as follows:

• The momentum occupation function mk = 〈Ĉ†kĈk〉,
is calculated along the nodal direction at various T
and densities, where it indicates a large spillover for
k > kF . This spillover quantifies the smooth part
of spectral weight at ω < 0 for wavevectors k >
kF , and is of potential use in calibrating ARPES
studies.

• The spectral functions A(k, ω) at various k val-
ues and different temperatures displays a non
Lorentzian form, with a pronounced skew towards
occupied energies ω < 0. This results in spec-
tra resembling those seen in most experiments in
cuprates, and emerges as a natural consequence of
the Gutzwiller projection, i.e. very strong correla-
tions.

• The dispersion relations EMDC(k) and EEDC(k)
are deduced from the peaks of A(k, ω), and display
considerable band narrowing due to correlations.

They further split apart near ~k ∼ (0, 0) i.e. the Γ
point, resulting in a high energy kink, quite similar
to that seen in experiments. The splitting between
these peaks is due to a prominent broad second

maximum in the spectral function, away from the
quasiparticle peak. A high sensitivity of the high
energy kink to the bare band parameters is found,
with flat band dispersions eliminating the kinks.

• The ECFL results for the optical conductivity and
the phase angle are reported on an absolute scale,
and the real part is in quite reasonable proximity
of experimental data. Better agreement should be
possible with tuning the available band parameters,
although we have not explored this here.

• The resistivity is calculated as a function of T at
various densities and found to be non saturating
in its T dependence, analogous to the resistivity
seen in experiments. The absence of saturation is
easy to understand within the ECFL formalism, the
magnitude of the self energy grows indefinitely due
to its dependence on the second chemical potential
u0 and leads to a growing resistivity from the Kubo
formula.

• The single particle decay rate Γ(k, T ) is reported at
various k and T . It is smaller for k > kF than for
k < kF due to a strong correction to Fermi liquid
behavior, leading to spectral lines that are narrower
than for k < kF .
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FIG. 6. n = .75. The spectral function ρG (= A(k, ω)) at
several k points along < 11 > direction and T . We used
Lx = 36; the insets show all positive kx’s and the main figures
display a third of the allowed kx’s. The inset in each case
zooms out to reveal the heights. The linewidth near kF is
seen to be strongly effected by rising T, the incoherent parts
has very little T dependence. The tails exhibit a secondary
broad peak near ω = −.4eV , giving rise to the high energy
kink (waterfall).
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is visible at low temperature, crossing over at a modest tem-
perature (∼ 150K), partly due to the shrinking band width as
seen directly in Fig. (2). The inset shows the DC resistivity
obtained from the inverse of Eq. (21). It similarly displays a
T 2 behavior crossing over to a linear behavior, as well as a
lack of saturation that persisting to higher T than shown.
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ρΣ of the Dyson-Mori self energy Σ from Eq. (24), at several
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herited a strong k dependence. (Bottom) k dependence of the
fit parameters from ρΣ = a+ b ω2(1 + c ω) at low frequencies
|ω| ≤ 75 meV . Observe the softening of the quadratic coef-
ficient with increased k. The cubic term ρΣ ∝ ω3 produces
particle hole asymmetry as argued in Ref. (5), and grows in
magnitude with increasing k beyond kF .
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