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We apply quantum optimal control theory to establish a local voltage-control scheme that operates
in conjunction with the numerically exact solution of the time-dependent Schrödinger equation.
The scheme is demonstrated for high-fidelity coherent control of electronic charge in semiconductor
double quantum dots. We find tailored gate voltages in the viable gigahertz regime that drive
the system to a desired charge configuration with > 99% yield. The results could be immediately
verified in experiments and would play an important role in applications towards solid-state quantum
computing.
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During the past decade, advances in the fabrication
of custom-made nanostructures have allowed the obser-
vation and coherent control of single-electron dynamics
in low-dimensional semiconductor systems improving the
prospects and feasibility of quantum information process-
ing1,2. In this context, electron transport through dou-
ble quantum dots (DQDs) has been an active field of
research3 and opened access to controlling electron dy-
namics on the single particle level4 as demonstrated by
several groundbreaking experiments5–11. Fast and ac-
curate control of electronic states is a key requirement
for solid-state quantum information processing. Here we
apply local optimal control theory (OCT), a powerful
approach to find optimized gate voltages that induce co-
herent transitions between electronic states in solid-state
devices. The proposed schemes achieve (i) faster opera-
tion time and (ii) limits the frequencies used in the volt-
age profile to the experimentally accessible range, while
maximizing the fidelity of the process.

The behavior of electric charge in DQDs has recently
been the subject of several theoretical studies propos-
ing schemes to coherently control the dynamics of the
electrons12–17. Theoretical strategies based on global
gate voltages14,15 and optimized laser pulses16,17 have
shown that it is possible to control the electronic states
in DQD models. However, the fabrication of working
devices would be easier if coupling to terahertz optical
fields17 or the use of strong gate voltages modulated in
picosecond time-scales14,15 was avoided. In this commu-
nication, we demonstrate an optimized method to control
the single-electron dynamics in DQDs by applying local
gate voltages. We employ OCT18,19 to find optimized
and realistic gigahertz voltage profiles enabling coherent
single-electron transfer with extremely high fidelities. We
apply OCT towards the optimization of local potentials
to drive transitions from a delocalized to a localized elec-
tronic state. To the best of our knowledge, OCT has not
been applied to obtain local time-dependent potentials

FIG. 1: Schematic of the double quantum dot system. (a)
Two quantum dots are embedded in a semiconductor het-
erostructure. A back gate voltage Vg applied to the substrate
can tune the global potential in the system. A local gate, such
as the charged tip of a scanning probe microscope (SPM) ca-
pacitively coupled to the system, can change the potential
locally. When the SPM tip is located above one of the quan-
tum dots, applying a time-dependent voltage Vtip(t) induces
a local time-dependent potential U(x, t) affecting mainly one
of the dots. (b) Confinement potential Vc(x) for a one dimen-
sional double quantum dot system and the potential U(x, t)
induced by the local gate.

is solid-state devices before. We demonstrate the general
applicability of our approach in one- and two-dimensional
DQD systems.

As illustrated in Fig. 1(a), we consider a DQD system
consisting of two quantum wells separated by a tunnel
barrier with an additional time-dependent local poten-
tial U(x, t). The local time-varying potential could be
realized by using local gate voltages8 that affect only one
of the dots or the charged tip of a scanning probe micro-
scope (SPM) acting as a local gate22,23. A voltage differ-
ence Vtip between the tip and the system would induce a
charge q = CVtip in the dot located underneath the SPM,
where C is the capacitance between the tip and the dot.
For the systems studied here, we consider GaAs material
parameters within the effective-mass approximation, i.e.,
m∗ = 0.067me and ε = 12.4ε0.

The time-dependent Hamiltonian is given by H(x, t) =
p2/(2m∗) + Vc(x) + U(x, t), where Vc(x) is the DQD
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confinement potential (see below) and U(x, t) is de-
scribed above [see Fig. 1(b)]. For gates that do not
change position, the potential is separable and can be
expressed as the product of the spatial and temporal
parts, U(x, t) = g(x)f(t). We model the spatial part

as g(x) = (β/σ
√

2π) exp(−x2/2σ2) with β = 1.0 nm and
σ = 34.3 nm.

Our goal is to find the optimal time-dependent function
f(t) such that the electron wavefunction |Ψ(t)〉 is driven
from its initial state |Ψ(t = 0)〉 = |ΦI〉 into a predefined
target state |ΦF〉. The process concludes at a fixed target
time T , when the overlap |〈Ψ(T )|ΦF〉|2 is maximal. In
contrast to conventional applications of OCT, where the
controlling field is the dipole interaction resulting from
applying a laser field (cf. Ref. 21), we use a local potential
Hloc = U(x, t) as the control field. The control equations
now become

i∂tΨ(t) = H(t)Ψ(t), Ψ(0) = ΦI (1)

i∂tχ(t) = H(t)χ(t), χ(T ) = ΦF〈ΦF|Ψ(T )〉 (2)

f(t) = − 1

α
Im 〈χ(t)| g(x) |Ψ(t)〉 , (3)

Equation (1) represents the Schrödinger equation and the
initial conditions used while Eq. (2) is the time evolution
of the system while the overlap χ(T ) is maximized. We
set the fluence, a measure of the total irradiated energy
presented here in units of [voltage2× time], to a fixed

value
∫ T

0
dt f2(t) = F ∗. In Eq. (3) for the field, the

Lagrange multiplier α is calculated through the fixed flu-
ence F ∗ as explained in detail in Ref. 21. To solve the
control equations (1-3), we use the iterative method of
Werschnik and Gross24 and the split-operator method25

for the time propagation implemented in the octopus
code package26.

In principle, arbitrary charge states can be chosen for
the initial and final state21. In the scenarios tested here,
the chosen initial state is the ground state |ΦI〉 = |1〉
and the target state is a left localized electronic con-
figuration |ΦF〉 = |L〉. Each of those two states has a
measurable signature which can be experimentally dis-
tinguished using charge sensing techniques27. Moreover,
by setting f(t) = 0 at t = 0 and t = T , the local gate
voltage U(x, t) is zero at the initial and final times, and
the time evolution of the system after the control scheme
has been applied remains unaltered. We note, that in the
framework of QOCT it is also possible to require different
envelope constraints on the envelope of f(t)21.

The states localized in a quantum well can be expressed
as superpositions of the two lowest (symmetric and an-

tisymmetric) states |1〉 and |2〉 by |L〉 = 1/
√

2(|1〉 − |2〉)
and |R〉 = 1/

√
2(|1〉 + |2〉). At t = T , once the system

has reached either one of the superpositions, oscillations
of frequency ω12 = E2 −E1 are induced between the oc-
cupation probabilities of |L〉 and |R〉. Experimentally,

FIG. 2: Probability of the electron occupying the left or right
well as a function of time and frequency of the time-dependent
local gate voltage f(t) = A sin(ωt) acting only on the right
well. Dashed lines correspond to f(t) = 0. Interdot distance
is fixed at d = 58.7 nm in all three plots. The confinement
strength ω0, energy spacing ω12, and the field amplitude A
are as follows: (a) ω0 = 2π× 2.03 THz, ω12 = 2π× 10.0 GHz,
and A = 11.9 mV, (b) ω0 = 2π × 2.03 THz, ω12 = 2π × 10.0
GHz, and A = 5.9 mV, and (c) ω0 = 2π × 1.43 THz, ω12 =
2π × 38.7 GHz, and A = 5.9 mV. The insets highlight the
optimization regimes used when limiting the parameters to
(b) low frequencies (T = 222 ps and a filter frequency ωmax =
2π×2.87 GHz) and (c) shorter local gate voltage interactions
(T = 22.2 ps and a filter frequency ωmax = 2π × 71.7 GHz).

due to the presence of impurities, a local gate voltage
would have to be applied to one of the wells of the DQD
to render the left and right dots energetically degenerate.

We first consider a 1D system with confinement
V 1D
c (x) = ω2

0/2 min{(x−d/2)2, (x+d/2)2} [see Fig. 1(b)],
where d is the interdot distance and ω0 is the con-
finement strength. The general challenges in the con-
trol of such a harmonic system have been considered
in Ref. 12. We investigate the localization of the elec-
tron when a monochromatic time-dependent gate volt-
age f(t) = A sin(ωt) is applied to one of the wells. Fig. 2
presents the degree of localization of the electron in the
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FIG. 3: Low-frequency optimization of the delocalized elec-
tron state to a left-localized state transition. The target state
is reached while minimizing the frequencies of the local gate
voltage to the few GHz frequency regime. (a) Shape of the
optimal field obtained by applying OCT to the local gates
for a pulse limited by a filter frequency to ωmax = 2π × 2.87
GHz and of duration T = 222 ps. This pulse can be fit by
the sinusoidal function f(t) = 3.55 sin(2π×2.25GHz× t) mV.
(b) Overlap of the wavefunction during the time evolution
with the states |1〉 (red) and |2〉 (blue) as well as for the
left-localized superposition |L〉 (black). The target state is
reached with a yield of 99.5%.

left (right) well as functions of time t and field frequency
ω for three sets of amplitudes for the gate voltage A and
confinement strength of the wells ω0. Dashed lines indi-
cate when the gate voltage is zero f(t) = 0, corresponding
to ωt = nπ (n = 1, 2, ..). For clarity, only the lines for
n ≤ 5 are depicted. The complex behavior seen in Fig. 2,
especially at low frequencies, is a result of the combi-
nation of inherent system dynamics (oscillation of the
superposition) and the system-field interaction. Overall,
Fig. 2 demonstrates that electron localization is very sen-
sitive to the amplitude and frequency. High-fidelity con-
trol thus calls for optimized schemes applied as follows.
As will be shown, such a scheme does not necessarily lead
to a complicated control gate voltage. In contrast, con-
trol schemes applied to optical fields have led to rather
complicated pulses12,16,17.

For concreteness, we consider two optimized voltage
profiles for local gates acting on the right quantum well
that drive the system from the ground state to the left-
localized configuration achieving maximum fidelity. We
analyze the obtained fields by fitting them with a sum
f(t) =

∑
iAi sin(ωit+ ϕi) and show that in spite of this

simplification, the yield is not notably altered. This tech-
nique is both useful for experimental applicability and
interesting in terms of robustness of the optimized fields
calculated with QOCT28.

In Fig. 3 we present the optimization of a local gate
voltage where the involved frequencies are limited to the
low gigahertz regime. The parameters used for the op-
timization of the gate voltage of the 1D system with
d = 58.7 nm and ω0 = 2π × 2.03 GHz is limited to the
region highlighted in the inset of Fig. 2(b). The maxi-
mum allowed frequency is ωmax = 2π×2.87 GHz and the
field duration is T = 222 ps. The energy difference be-
tween the left- and right-localized state, determined by
the width of the tunneling barrier, is ω12 = 2π × 10.0

FIG. 4: Fast optimization of the delocalized electron state to
a left-localized state transition. The target state is reached
while minimizing the interaction time of the local gate voltage
to a few picoseconds. (a) Shape of the optimal field obtained
by applying OCT to the local gates for a pulse of duration
T = 22.2 ps and limited by a filter frequency to ωmax =
2π×71.7 GHz. This pulse can be fit by a sum of two sinusoidal
functions. (b) Overlap of the wavefunction during the time
evolution with the states |1〉 (red) and |2〉 (blue) as well as for
the left-localized superposition |L〉 (black). The target state
is reached with a yield of 99.9%.

GHz. By iterating the control equations, we find a field
that achieves an extremely high overlap of 99.5%. The
time dependence of the gate potential as well as the occu-
pations of the states |1〉, |2〉 and their superposition |L〉
are presented in Fig. 3. Due to the large energy differ-
ence between the second and third state (E3−E2 = 1.96
THz), the occupation of states n > 2 remains zero dur-
ing the process. Strikingly, the optimal field contains
only one frequency ω = 2π × 2.25 GHz. Thus, the opti-
mal field can be well represented by the simple expression
f(t) = A sin(ωt), with A = 3.55 mV. We point out, how-
ever, that due to the complexity of the low frequency
dynamics (see Fig. 2), it would be a cumbersome task to
determine the correct frequency and the amplitude with-
out optimization. Yet, OCT provides a simple and exper-
imentally feasible frequency/amplitude combination in a
single computation.

To establish a faster delocalized-localized transition
rate, we consider the parameter range in the inset of
Fig. 2(c) and set ω0 = 2π × 1.43 THz, ωmax = 2π × 71.7
GHz, and T = 22.2 ps. The energy difference between the
first two states is ω12 = 2π × 38.7 GHz. OCT produces
the field presented in Fig. 4(a) resulting in 99.9% overlap.
The optimal field can be reconstructed with two frequen-
cies f(t) = A1 sin(ω1t + ϕ1) + A2 sin(ω2t + ϕ2) where
ω1 = 2π × 22.5 GHz, ω2 = 2π × 67.7 GHz, A1 = 9.36
mV, A2 = 3.64 mV, ϕ1 = −0.0713, and ϕ2 = −3.32. As
before, the reconstructed field keeps the yield unaltered.

Finally, we demonstrate that OCT applies also to 2D
DQDs modeled here by a confining potential V 2D

c (x, y) =
max{G(x−dx)+G(x)+G(x+dx), G(y−dy)+G(y+dy)},
where G(x) = (a/c

√
2π) exp(−x2/2c2) are Gaussian-

shaped barriers that set the DQD size to 2dx = 68.5 nm
in the x-direction and 2dy = 34.3 nm in the y-direction.
The constants a and c control the height and width of
the barriers: the full width at half maximum of the bar-
rier is FWHM = 2

√
2 ln 2c = 4.90 nm and its maximal
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FIG. 5: Local gate OCT optimization of a two-dimensional
system. The transition from a delocalized electron state to
a left-localized state transition is achieved by minimizing the
interaction time. (a) Shape of the optimal field obtained by
applying OCT. The best fit for the pulse is given by f(t) =∑4

i=1Ai sin(ωit+ϕi) with the parameters ω1 = 2π×15.0 GHz,
ω2 = 2π×45.0 GHz, ω3 = 2π×75.1 GHz, ω4 = 2π×105 GHz,
A1 = 8.96 mV, A2 = 4.64 mV, A3 = 2.89 mV, A4 = 1.91
mV, ϕ1 = 0.234, ϕ2 = −2.71 , ϕ3 = −0.443, and ϕ4 = −3.77.
(b) Overlap of the wave function during the time evolution
with the states |1〉 (red) and |2〉 (blue) as well as for the
left-localized superposition |L〉 (black). (c) Snapshots of the
probability density of the electron for several times. Initially
the probability density is higher for the right dot while after 23
ps, it is more likely to find the electron on the left dot. Finally,
when the local gate interaction is complete at T = 34.9 ps,
the target state is reached with a yield of 99.6%.

height is hmax = a/c
√

2π = 178 mV. The energy differ-
ence between the symmetric and antisymmetric state is
E2−E1 = 2π×26.5 GHz. The use of OCT finds an opti-
mized local gate voltage that contains frequencies below
ωmax = 2π × 115 GHz, as presented in Fig. 5(a). The
local gate acts in the 2D DQDs system for T = 34.9 ps
and drives the system into the left-localized state with a
probability of 99.6% (Fig. 5(b)). Again, the pulse can be
analyzed and successfully reconstructed without reducing
the yield. The probability amplitude of the electron wave
function is illustrated for several time steps in Fig. 5(c)29.
Comparing our results to an approach, where the gate
voltage is simply tuned up in an unoptimized way to an
amplitude A (see Fig. 2), shows that the yields obtained
with our method are at least 10 percentage points higher
for the given target times.

This work shows that OCT can be used to pursue the
goals of accelerating the target time T and/or minimiz-
ing the applied frequency range without compromising
the fidelity of the process. To establish the practicality

of the experimental realization of the proposed control
scheme, we discuss the robustness of our result in the
presence of disorder and sensitivity to dephasing. First,
the actual potential (including the contribution from im-
purities) of a particular quantum well can be obtained
by inverting the Schrödinger equation for the measured
single-electron spectrum30. Optimizing with the actual
potential could then be done with OCT. The robustness
of the control strategy should be assessed in the con-
text of the Hamiltonian identification proposed above,
where the accurate identification of the disorder potential
is of great significance. We point out that the gigahertz
regime is experimentally accessible and thus the obtained
fields [see Figs. 3(a), 4(a), 5(a)] are realizable, in contrast
to an instantaneous switching of the electric field15. The
pulse sequence necessary for the control schemes are ac-
complished in a time scale that ranges from 22 ps to 222
ps. These times are below the inhomogeneous dephasing
time of 250 ps measured by different techniques in GaAs
DQDs at temperatures ∼ 90 mK11,31,32. Therefore, we
believe that the time scales presented here are reachable.

In conclusion, we have shown through numerically ex-
act calculations that electron localization in a single-
electron semiconductor DQD system can be coherently
controlled with simple but optimized local gate voltages
up to extremely high fidelities. To this end, we have ex-
tended the application of quantum optimal control the-
ory to the domain of local potentials. Our analysis has
shown that the optimized local fields can be easily recon-
structed in the gigahertz regime. The general applicabil-
ity of our approach has been demonstrated by considering
both one- and two-dimensional systems and different con-
fining potentials. The demonstrated optimizations are
obtained using physical constraints that are within reach
of present experimental setups, resulting in an opportu-
nity for a clean test of OCT. The coherent high-fidelity
control of electronic charge via surface or back gates, or
via the tip of a scanning probe microscope, represents a
clear advancement in solid-state quantum information.
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