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Weyl fermions are two-component chiral fermions in (3+1)-dimensions. When coupled to a gauge
field, the Weyl fermion is known to have an axial anomaly, which means the current conservation
of the left-handed and right-handed Weyl fermions cannot be preserved separately. Recently, Weyl
fermions have been proposed in condensed matter systems named as “Weyl semi-metals”. In this
paper we propose a Weyl semi-metal phase in magnetically doped topological insulators, and study
the axial anomaly in this system. We propose that the magnetic fluctuation in this system plays the
role of a “chiral gauge field” which minimally couples to the Weyl fermions with opposite charges for
two chiralities. We study the anomaly equation of this sytem and discuss its physical consequences,
including one-dimensional chiral modes in a ferromagnetic vortex line, and a novel plasmon-magnon
coupling.

PACS numbers: 71.90.+q, 73.43.-f, 03.65.Vf, 75.50.Pp

I. INTRODUCTION

In the quantum field theory, a (3+1)-dimensional
massless Dirac fermion is decomposed to two independent
two-component fermions known as the Weyl fermions.
Weyl fermion has a definite chirality, lefthanded or
righthanded, determined by the sign of its spin polar-
ization along the momentum direction.1 Classically, the
lefthanded and righthanded Weyl fermions are decoupled
and can be coupled independently to two gauge fields,
leading to a separate charge conservation. The gauge
field that couples differently to Weyl fermions with two
chiralities is called a chiral gauge field. For example the
SU(2) gauge field in the Standard Model is a chiral gauge
field. It is well-known that the chiral charge conserva-
tion is violated in a quantum theory of Weyl fermions
in a background gauge field, which is known as the axial
anomaly2–4.

Recently, Weyl fermions are also introduced into con-
densed matter physics. The Weyl fermions are shown to
be the topologically robust boundary states of (4 + 1)-d
time-reversal (TR) invariant topological insulators (TI)5,
and the axial anomaly corresponds to a topological re-
sponse of the (4 + 1)-d TI. This approach is related to
the domain wall fermion approach6 and Callan-Harvey
effect7 in high energy physics. By dimensional reduction,
the (4+1)-d topological insulator is reduced to the (3+1)-
d TI8–10 and the Weyl fermion is reduced to (2+1)-d sur-
face states of the TI. Weyl fermions also appear directly
in (3+1)-d gapless electron systems, which are named as
“Weyl semi-metals”4,11–21. Since a system with both TR
and parity (P) symmetries have all energy bands dou-
bly degenerate, the Weyl semi-metal state can only be
realized in a system breaking TR and/or P symmetry.

A natural question is whether the chiral gauge field
can be realized in the Weyl semi-metals, and if yes, what
is the physical consequence. In this paper, we address

these questions in TR breaking Weyl semi-metals. We
show that generically a ferromagnetic moment couples
to the Weyl fermions as a chiral gauge field. As an ex-
plicit example system, we study a model of magnetically
doped topological insulator, which can be driven into the
Weyl semi-metal phase with strong enough magnetic mo-
ments. The presence of the chiral gauge field leads to an
anomaly equation satisfied by the charge current, which
results in new topological phenomena such as chiral one-
dimensional states in a magnetic vortex, and a topologi-
cal coupling between spin fluctuation and plasmons.

II. CHIRAL GAUGE FIELD AND ANOMALY

EQUATION

We start with a general discussion of Weyl fermions in
condensed matter physics. In a weakly interacting crys-
talline material, Weyl fermion states generically appear

when two energy bands cross at a generic point ~K0 in

the Brillouin zone. The low energy physics around ~K0

is described by a two-component Hamiltonian h(k) =
~
∑

i,j=x,y,z vijkiσj , with ki the momentum away from

~K0, and σj the Pauli matrices. The matrix vij describes
the generic linear coupling between momentum and spin
degree of freedom described by σj . By rotating the basis
one can always diagonalize vij , and the three diagonal
components are anisotropic velocities. Without losing
generality, we restrict our discussion on isotropic Weyl

fermions with the simple Hamiltonian h(k) = ~vf~σ · ~k.
Our results on anomaly and chiral gauge field is insen-
sitive to the anisotropy in the velocity. The sign of
the Fermi velocity vf determines the chirality of Weyl
fermion.
According to the Nielsen-Ninomiya theorem22,23, in a

lattice model the number of Weyl fermions with oppo-
site chiralities must be equal. Consequently, the mini-
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mum number of Weyl fermions in a Brillioun zone is 2.
Moreover, because TR symmetry preserves the chirality
of Weyl fermion, in TR invariant system the minimum
number of Weyl fermions is 415. In the following, we fo-
cus on the “minimal Weyl semi-metal” which break TR
but preserves P, with two Weyl fermions of opposite chi-

ralities at wavevectors ~K0 and − ~K0, related to each other
by spatial inversion.

We consider an arbitrary perturbation to the system
of two Weyl fermions. As long as the perturba-
tion is so smooth that the momentum transfer is
much smaller than 2| ~K0|, the two Weyl fermions
remain decoupled. The perturbed Hamiltonian can
be generally written in the second quantized form as

HL =
∫

d3rψ†
L(r)[~vf~σ · (−i~∇)]ψL(r) + δHL, with the

two-component spinor field operator ψL(r) annihilat-
ing the lefthanded Weyl fermions. The perturbation
Hamiltonian δHL has a gradient expansion δHL =
∫

d3rψ†
L(r) [~vf~σ · ~aL(r) + a0L(r) +O(−i∇)]ψL(r),

where the higher order terms containing one or more
space-time derivatives has been omitted, which are
marginal or irrelevant in long wavelength limit and does
not affect our discussion below.

The field aµL = (a0L,~aL) behaves as a gauge field
with smooth spatial and temporal dependence. Similarly
one can define the gauge field aµR minimally coupled
to the righthanded Weyl fermions with the Hamiltonian

HR =
∫

d3rψ†
R(r)[−~vf (−i~∇+~aR(r)) ·~σ+a0R(r)]ψR(r).

(We would like to note that similar idea has been suc-
cessfully applied to graphene where strain field acts as
a gauge field24,25.)Writing the two Weyl fermions into a
4-component Dirac fermion, and including the minimal
coupling to electromagnetic field Aµ, we obtain

H =

∫

d3rψ†(r)
[

~vf

(

(−i~∇+ ~̃A(r)) · ~στz + ~a(r) · ~σ
)

+a0(r)τz + Ã0(r)
]

ψ(r) (1)

with ψ†(r) = (ψ†
L(r), ψ

†
R(r)), Ãµ = Aµ + (aµL + aµR)/2

and aµ = (aµL − aµR)/2. We see that aµL + aµR con-
tributes a correction to the electromagnetic field, while
aµL − aµR has different P and TR properties as Aµ, and
acts as a chiral gauge field. In the following, we will con-
sider the perturbation induced by a ferromagnetic mo-
ment fluctuation, which only contributes to ~a since it is
TR odd and P even. Therefore we will take Ãµ = Aµ in
the rest of the paper.

As is known from quantum field theory, a Weyl fermion
coupled to a gauge field has an axial anomaly, which
means the classical charge conservation symmetry is bro-
ken in the full quantum theory1,26,27. The anomaly
is described by the anomaly equation ∂µj

µL(R) =

(−) 1
32π2 ǫ

λρµνf
L(R)
λρ f

L(R)
µν where f

L(R)
µν = ∂µaνL(R) −

∂νaµL(R). Using the field strength Fµν = ∂µAν − ∂νAµ

and fµν = ∂µaν − ∂νaµ, and the charge current jµ =
jµL + jµR and the axial current jµ5 = jµL − jµR, the
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FIG. 1: The Landau level spectrum of a massless Dirac
fermion is plotted (a) for a uniform magnetic field ~B and (b)

for a uniform “chiral magentic field” ~b. (c) “Chiral magnetic
field” can be generated by the magnetic vortex configuration

in a topological insulator cylinder. Here the vector ~b indi-
cates the direction of the “chiral magentic field”. (d) Top
view of the magnetic vortex configuration with the magneti-
zation W (r) = W0 in the regime r < R1 and drop to zero
when r = R2.

anomaly equations can be written as

∂µj
µ5 = − 1

16π2
ǫλρµν (FαβFµν + fλρfµν), (2)

∂µj
µ =

1

8π2
ǫλρµνfλρFµν . (3)

While equation (2) is the axial current anomaly that has
been discussed in the literature4,21, equation (3) indi-
cates that the net charge current also has an anomaly
when both chiral gauge field and electromagnetic field
are nonzero, which is the main focus of this paper.
Different from the axial current jµ5, we know that mi-

croscopically the net charge current must be conserved
without anomaly. However, as we will explain in the fol-
lowing, the anomaly equation (3) is still physically mean-
ingful. As terms in the perturbative expansion of the
Hamiltonian, aµ are always single valued, so that the
right side of Eq. (3) can be written in a total derivative
1

8π2 ǫ
λρµνfλρFµν = −∂µjµH with jµH = − 1

2π2 ǫ
µνλρaν∂λAρ.

Therefore the charge conservation is restored if we view
jµH + jµ as the net charge current. Physically, jµ is the
current contributed by the low energy Weyl fermions,
while jµH is the “ground state current” carried by the
occupied states far away from the fermi surface. This
interpretation can be understood more intuitively by a
comparison with a 2D quantum Hall state, which has 1D
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FIG. 2: (a) The radial dependence of chiral vector potential
(blue line), and the chiral magnetic field bz (red line) for a
ferromagnetic vortex. (b) The energy dispersion as a function
of kz along a ferromagnetic vortex line with the total angular
momentum Jz = 1

2
. The red and black lines indicate the

dispersions of two zero modes. (c) The energy dispersion of
two zero modes for different Jz = n + 1

2
. The gap observed

for large Jz , due to the finite size effect, gives a cut-off of the
total number of chiral modes. The radial wave functions for
two chiral modes at kz = 0 with total angular momentum
(d) Jz = 1

2
and (e) Jz = 7

2
. Here the black line is for the

wave function of the inner chiral mode around r=0 and the
red line for the one at the outer boundary r ∼ R1,2. The
parameters of the four band model are taken to be M0 = 0,
M1 = 0.342eV ·Å2, M2 = 18.25eV ·Å2, B0 = 1.33eV ·Å, A0 =
2.82eV ·Å, U0 = 0.1eV and W0 = 0.06eV .

chiral edge states. The charge conservation of the edge
is broken when an electric field is applied along the edge.
From the edge point of view, this is interpreted as the
1D chiral anomaly. From the bulk point of view, this is
simply a consequence of the bulk Hall current in the di-
rection perpendicular to the edge. The bulk Hall current
is a ground state current, which is contributed by all oc-
cupied electrons and cannot be obtained from low energy
edge state excitations. The ground state current jµH in
our system is an analog of the Hall current in 2D. The
correct physical interpretation of the anomaly equation
(3) is that the ground state of the Weyl semimetal has
a topological response jµH to the external fields aµ, Aµ,
in addition to the current jµ contributed by low energy
excitations near the Weyl points. It should be clarified
that although jµ + jµH is conserved, it is generically non-
vanished, so that the anomaly equation describes a non-
trivial response of the system, as will be seen in the later
part of the paper.

III. MICROSCOPIC MODEL

To gain more concrete understanding to the anomaly
equations, especially to describe the behavior of the high
energy contribution to the current, we would like to go
beyond the low energy effective theory approach and con-
sider a microscopic model. In the following we study
a microscopic four-band model which describes Weyl
fermions and chiral gauge field in magnetically doped
topological insulators. By explicit numerical calculation
in a magnetic vortex configuration, we demonstrate that
the net current in the full microscopic model is consistent
with the prediction of anomaly equation.

It has been suggested that Weyl fermions can be re-
alized in pyrochlore iridates12, HgCr2Se4

13, and magnet-
ically doped topological insulators14,28. Pyrochlore iri-
dates and HgCr2Se4 have multiple Weyl fermions with
the number larger than 2. Minimal number of Weyl
fermions can be achieved in magnetically doped Bi2Se3
and TlBiSe2 family of materials, in which ferromagnetism
has also been realized29–31. Here we adopt the four band
model32,33 with general mass terms, to describe these
materials,

H = H0 +H1 (4)

H0 = ǫ(~k) +M(~k)Γ5 + L1kzΓ4 + L2(kyΓ1 − kxΓ2)

H1 =
∑

ij

mijΓij

where ǫk = C0 + C1k
2
z + C2k

2
‖, M(k) = M0 +M1k

2
z +

M2k
2
‖. The Γ matrices are defined as Γ1,2,3 = σx,y,zτx,

Γ4 = τy , Γ5 = τz , and Γab = [Γa,Γb]/2i (a, b = 1, . . . , 5).
Ferromagnetism breaks T but preserves P, therefore by
inspecting the symmetry property of Γ matrices (eg.
the table III in the reference33), we immediately find
only two sets of Γ matrices are allowed in H1: Γij =
εijkσk and Γi4 = σiτz (i, j, k = x, y, z). Generally Γ12

and Γ34 can be induced by z-direction magnetization,
while (Γ14,Γ24) and (Γ23,Γ31) originate from in-plane
magnetization. It is shown that Γ14, Γ24 and Γ12 in-
duce two Weyl fermions while Γ23, Γ31 and Γ34 yield
a nodal ring15. In order to consider the coupling be-
tween Weyl fermion and the ferromagnetic fluctuation,
we focus on the simple case with H1 = U0Γ12 with two
gap closing points when |U0| > |M0|, which can be de-
scribed byWeyl fermions. Then we project the perturbed
Hamiltonian H ′ = L1δkzτy + L2 (δkyσxτx − δkxσyτx) +
∑

i=x,y,z (µiσi + νiσiτz) into the subspace of two Weyl

fermions (gap closing points), where ~µ and ~ν denote the

magnetic fluctuation and δ~k is the momentum expanded
around gap closing points. Up to the first order for mo-
mentum and the second order for magnetic fluctuation,
we recover the effective Hamiltonian (1) for the Weyl
fermions coupled to a chiral gauge field. The details of
microscopic derivation is shown in the appendix.
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FIG. 3: (a) The Landau levels for the four band model (4)
in a uniform magnetic field. (b) The imaginary part of the
correlation function 〈az(q)az(−q)〉. Here we take ω0/ωp =
0.1, vs = 0.

IV. PHYSICAL CONSEQUENCES OF THE

ANOMALY EQUATION

Defining the “chiral magnetic field” ~b = ∇×~a and the
“chiral electric field” ~e = ∂~a

∂t , Eq. (3) can be rewritten as

∂ρ

∂t
+ ~∇ ·~j = 1

2π2

(

~b · ~E + ~e · ~B
)

, (5)

with ρ and ~j the charge density and current, respectively.
In the following we will study the physical consequences
of the two terms on the righthand side of this equation.

A. The effect of chiral magnetic field

The first term ~b · ~E describes the effect of a chiral mag-
netic field parallel to the electric field. To gain some
intuition we first consider the Weyl fermion Hamilto-

nian (1) in a uniform chiral magnetic field ~b = b0êz.
The energy spectrum of this system consists of Landau
levels E±,α(n) = ±~vf

√

k2z + 2b0n with n = 1, 2, . . .
and α = ± denoting two Dirac cones, similar to the
Landau levels by a magnetic field. In addition, there
are two zeroth Landau levels, both with the dispersion
Eα(0) = −~vfkz (α = ±), as shown in Fig.1 (b). It
should be noticed that the two zeroth Landau levels are
one-dimensional modes with the same velocity (Fig 1
(b)), in contrast to the opposite velocities for the case

of an ordinary magnetic field ~B = B0êz shown in Fig.
1 (a). There are two 1D chiral fermion modes per flux

quanta of ~b field. In this case, the anomaly equation (5)
reduces to the chiral anomaly of 1D chiral fermions34,35.
With the understanding to the consequence of a uni-

form chiral magnetic field, we now consider a more real-
istic finite size system described by the four band model
(4) with a magnetic vortex configuration shown in Fig.
1 (c). A key difference of the chiral gauge field from the

electromagnetic gauge field is that the gauge vector po-
tential ~a is physical and thus has to be single valued.

Therefore the net flux of ~b = ∇× ~a must vanish in a fi-
nite system (since ~a = 0 outside the system). To see the
consequence of this effect we consider the magnetic vor-
tex configuration m14 = −W (r) sin θ, m24 = W (r) cos θ,
with r the radial coordinate and θ the angular coordinate.
m12 = U0 and all the other mij = 0. The magnetization
amplitude W (r) is a constant W0 for r < R1 and drops
to zero for r > R2, as shown in Fig. 1 (d) and Fig. 2
(a). The corresponding “chiral” magnetic field strength
is shown by the red line in Fig. 2 (a), which is positive
for r < R1 and negative for R1 < r < R2. The total flux
is zero since there is no magnetization for r > R2. There-
fore, the number of chiral modes in region r < R1 is the
same as that of anti-chiral modes in region R1 < r < R2,
which is confirmed by our numerical calculation shown
in Fig. 2 (b)-(d). The detail of the numerical method is
given in the appendix. The energy spectrum can be ob-
tained as a function of the momentum kz and the angular
momentum Jz. The kz disperion for states with angular
momentum Jz = 1/2 is shown in Fig. 2 (b), which con-
tains chiral and anti-chiral modes with spatially localized
wave functions shown in Fig. 2 (d). Indeed we see that
the chiral and anti-chiral modes are spatially separated.
For higher angular momentum Jz, one pair of such chiral
and anti-chiral modes exist for each angular momentum
but the inner chiral mode moves outwards, as shown in
Fig. 2 (e). This is similar to the behavior of Landau
level orbits in a uniform magnetic field. For large enough
Jz the chiral modes start to overlap with the anti-chiral
mode at the boundary region R1 < r < R2, as shown in
Fig. 2 (c). As is expected, the number of chiral modes is
determined by the total flux of ~a in region r < R1.

B. The effect of the chiral electric field

In an electric field ~E = Eẑ parallel to ~b, the 1D
anomaly of the chiral modes describes a charge genera-
tion around the center of the system, while the charge on
the boundary is annihilated. This is a consequence of the
ground state current ~jH flowing along the radial direction
towards the center, as shown in Fig 1 (d), which can be
measured in transport experiments. In other words, the
consequence of the anomaly equation (5) in this config-
uration is equivalent to a quantum Hall effect with Hall
current ~jH

20.
The second term on the right hand side of the anomaly

equation (5) describes the combination effect of a mag-
netic field and a “chiral” electric field. Let’s consider a
uniform magnetic field ~B = B0ẑ and a uniform vector
potential ~a = az(t)ẑ changing adiabatically in time. The
anomaly equation leads to δρ = G

2π δaz, with G = eB0

h
the Landau level degeneracy. Therefore the change of
az leads to a charge density modulation proportional to
it. The Landau level spectrum for the four band model
(4) in Fig 3 (a) possesses two zeroth Landau levels with
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the opposite velocities but the same spin polarization.
Consequently, the exchange coupling of ~a = az ẑ with the
zeroth Landau level states is equivalent to a scalar po-
tential, which shifts the chemical potential and leads to
the change of charge density.
Since this term couples charge density and magneti-

zation, it leads to an interesting physical consequence
of the hybridization between the plasmon and magnon
modes. Let’s consider the Fermi energy is at the two ze-
roth modes of the Landau levels. Correspondingly, the
effective action of this system is given by

S0 =

∫

d2q

(2π)2
[(A0(q) + az(q))ΠRPA(A0(−q) + az(−q))

+A0(q)G
−1
A A0(−q) + az(q)G

−1
a az(−q)

]

(6)

where q = (ω, k), ΠRPA is the RPA correction due
to electron-electron interaction and given by ΠRPA ∼
−ω2

p

ω2 k
2 in small k limit k ≪ ω, GA ∼ k−2 is the free

photon propagator, and Ga ∼ 1
q2−ω2

0

is the magnon with

the gap ω0. We can integrate out A0 field, leading to

Sa
eff =

∫

d2q

(2π)2
az(q)

(

G−1
a +

ΠRPAG
−1
A

ΠRPA +G−1
A

)

az(−q)(7)

Now the second term is given by − ω2
pk

2

ω2−ω2
p
, leading to

G−1
a +

ΠRPAG−1

A

ΠRPA+G−1

A

∼ ω2 − k2−ω2
0 −

ω2
pk

2

ω2−ω2
p
. We note that

when ω ∼ ωp, the coefficient before k2 term will diverge,
which indicates that a quasiparticle excitation appears at
the plasmon frequency for the spin correlation function.
In the above expression, we have neglected the velocities,
which should be different for light and for spin waves. Af-
ter recovering the correct velocities, we obtain the spin
correlation function given by 〈az(ω, k)az(−ω,−k)〉 ∼
(

ω2 − v2sk
2 − ω2

0 −
ω2

pv
2
ck

2

ω2−ω2
p+i0+ + i0+

)−1

, with magnon

velocity vs, Fermi velocity vc, plasmon frequency ωp and
magnon excitation gap ω0. As plotted in Fig 3 (c), the
correlation function has two poles, of which one corre-
sponds to the intrinsic magnon excitation with the fre-
quency around ω0, while the other only appears for finite
k with the intensity proportional to k2 and is induced
by the plasmons with frequency around ωp. The plas-
mon frequency can be estimated as ∼ 35meV for Weyl
fermions36 with dielectric constant ∼ 100, Fermi veloc-
ity ∼ 6.85× 105m/s, and electron density ∼ 1019 cm−3.
Such an additional mode in magnon spectrum can be ob-
served in neutron scattering experiments and compared
with the plasmon frequency ωp determined by reflection
spectroscopy or electron energy loss spectroscopy.

V. CONCLUSION AND DISCUSSIONS

In conclusion, in this paper we have proposed the re-
alization of chiral gauge field in Weyl semimetals, and

its physical consequences due to axial anomaly. We dis-
cussed the general anomaly equations induced by chiral
gauge field and electromagnetic gauge field. Based on
both low energy effective theory approach and numeri-
cal results in a microscopic model of doped topological
insulators, we propose two physical consequences of the
anomaly, the chiral modes in magnetic vortices, and the
magnon-plasmon coupling. An open question is whether
it is possible to write down a topological effective field
theory to characterize the transport properties of the
Weyl semimetals, as in the topological insulators5,16,37.
Since there are gapless fermions in Weyl semimetals, it
is not clear whether a local bosonic effective field theory
can be obtained.

In the end of this paper, we would like to discuss the
feasibility of experimental observation of the predicted
effects. The main condition for the realization of Weyl
semimetal phase is that the exchange coupling due to
magnetization is larger than the band gap in the param-
agnetic phase. By substituting the atoms, it is possible to
tune the band gap of topological insulators, and even in-
duce the phase transition between trivial and non-trivial
phases, which has been realized in TlBi(S1−δSeδ)2

38–40

and Cr doped Bi2Se3
41, recently. Near the transition

point, the bulk gap is minimized and can be easily over-
comed by the exchange coupling from magnetic doping.
The ferromagnetism in the Cr or Fe doped Bi2Te3 and
Sb2Te3 has been observed in experiment29–31,41–44, there-
fore the magnetically doped Bi2Se3 and TlBiSe2 family
of materials are the suitable platform for the realization
of minimal number of Weyl fermions. Different materials
are suitable for the two experimental proposals we made.
The Cr doped Bi2Te3 or Sb2Te3

30,42,43 exhibits ferro-
magnetism along z-direction, so the topological plasmon-
magnon coupling is expected in this system, which can
be confirmed by comparing the neutron scattering exper-
iment with reflection spectroscopy or electron energy loss
spectroscopy. In another material, Mn doped Bi2Se3

44, it
is shown that the magnetization mainly lies in the plane
of the film in the ferromagnetic phase. Since the under-
lying lattice has three-fold rotation symmetry, the fer-
romagnetic vortex configuration can be realized as the
intersection of three 120-degree magnetic domain walls.
In general, magnetic vortex configuration can be real-
ized as long as a discrete rotation symmetry C3, C4 or
C6 is spontaneously broken. In generic Weyl semimet-
als, the property of magnetic excitations depends on the
material details, such as magnetic structures, material
parameters, and it is an interesting direction to under-
stand the interplay between the chiral Weyl fermions and
different types of magnetic excitations in realstic mate-
rials. Here the disorder effect, such as the scattering
between two Weyl fermions, has not been considered.
Since Weyl fermion is always gapless, there are always
low energy fermionic excitations accompanying the topo-
logical contribution to the transport. The interplay be-
tween the topological and non-topological contributions
to the transport is an interesting question for the future
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Appendix A: Microscopic derivation of the effective

model for Weyl fermions

In this section of the appendix, we will give a micro-
scopic derivation of the effective model for the coupling
between Weyl fermions and magnetic fluctuations. Let’s
start from the four band Hamiltonian with general mass
terms (the equation (4) in the main text). For simplic-
ity, we only consider the case with m12 = U0 and other
mij = 0. The effective Hamiltonian for this case is given
by

H0 +H1 = M(~k)Γ5 + L1kzΓ4 + L2(kyΓ1 − kxΓ2)

+m12Γ12 (A1)

where M(k) = M0 +M1k
2
z +M2k

2
‖ and ǫk term is ne-

glected for simplicity. The energy dispersion of the above
Hamiltonian is given by

Est = s

√

L2
2(k

2
x + k2y) + (

√

M2 + L2
1k

2
z + t|U0|)2 (A2)

with s, t = ±. It is clear that for t = +, there is always
a gap between the branches |+,+〉 and |−,+〉. Here we
use |s, t〉 to denote the eigen state with the eigen energy
Est. However when t = −, the gap between |+,−〉 and
|−,−〉 can be closed when the conditionM2+B2

0k
2
z = U2

0

and kx = ky = 0 is satisfied. For simplicity, let’s neglect
the quadratic term in M first, then it is clear that when
|U0| > |M0|, the above condition is satisfied for some
momentum kz. Therefore, the bulk gap is closed when
|U0| > |M0| with two closing points given by kz = ±K0

and K0 = 1
L1

√

U2
0 −M2

0 . Next we need to solve the

eigen wave functions at two gap closing points. At ~k =
(0, 0,K0), the eigen equation is written as

(M0τ3 + L1K0τ2 + U0σ3)Φ = EΦ, (A3)

where the quadratic term is neglected. Let’s denote the
wave function ξ satisfy (M0

U0
τ3 + L1k0

U0
τ2)ξα = αξα, and

σ3χβ = βχβ , α, β = ±, then the corresponding eigen
states are given by

|+,+〉 = χ+ ⊗ ξ+, |+,−〉 = χ− ⊗ ξ+,

|−,+〉 = χ− ⊗ ξ−, |−,−〉 = χ+ ⊗ ξ− (A4)

with ξ and χ given by

ξ+ =
1

√

N+

(

iL1K0

M0 − U0

)

, ξ− =
1

√

N−

(

iL1K0

M0 + U0

)

,

χ+ =

(

1
0

)

, χ− =

(

0
1

)

(A5)

where N± are the normalization factors and we assume
U0 > 0 for simplicity. Now we consider the effective
Hamiltonian expanded around (0, 0,K0),

H ′ = L1δkzτy + L2 (δkyσxτx − δkxσyτx)

+
∑

i=x,y,z

(µiσi + νiσiτz) , (A6)

and project it into the subspace spanned by the basis
|−,−〉 and |+,−〉 with the second order perturbation

Hmn = 〈m|H1|n〉+
∑

l 6=m,n

1

2
〈m|H1|l〉〈l|H1|n〉

[

1

Em − El
+

1

En − El

]

(A7)

which leads to the following Hamiltonian

H
(1)
eff = −M0

U0
vz − (

L2
1K0

U0
δkz − uz)σz +

(

−L2δkx +
L1K0

U0
vx

)

σx +

(

−L2δky +
L1K0

U0
vy

)

σy

(A8)

for the first order perturbation and

H
(2)
eff = −M0

U2
0

(uxvx + vyuy)−

1

2U0

(

v2z − u2x − u2y −
M2

0

U2
0

∑

i

v2i

)

σz

−L1K0

U2
0

vzuxσx − L1K0

U2
0

vzuyσy (A9)

for the second order perturbation. Here we only keep the
momentum term up to the first order and ~u, ~v terms up
to the second order. If we only look at the momentum
term, then clearly this just provides the Weyl fermion
in three dimensions. For the expansion near (0, 0,−K0)
point, we can perform similar calculation and obtain

H
(1)
eff = −M0

U0
vz − (−L

2
1K0

U0
δkz − uz)σz +

(

L2δkx +
L1K0

U0
vx

)

σx +

(

L2δky +
L1K0

U0
vy

)

σy

(A10)
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for the first order perturbation and

H
(2)
eff = −M0

U2
0

(uxvx + vyuy)

− 1

2U0

(

v2z − u2x − u2y −
M2

0

U2
0

∑

i

v2i

)

σz

−L1K0

U2
0

vzuxσx − L1K0

U2
0

vzuyσy (A11)

for the second order perturbation. Therefore eventually
our effective low energy Hamiltonian for the system takes
the form

Heff = ~vfz(δkzσzτz + azσz) +

~vf‖
∑

i=x,y

(δkiσiτz + aiσi) (A12)

where σ denotes spin, τ represents two Dirac cones at

(0, 0,±K0), the Fermi velocity ~vfz = −L2
1K0

U0
, ~vf‖ =

−L2 and the chiral gauge potential ~a is given by

~vfzaz = µz − 1
U0

(

ν2z − µ2
x − µ2

y −
M2

0

U2
0

∑

i ν
2
i

)

(A13)

~vf‖ax = L1K0

U0
νx − L1K0

U2
0

νzµx (A14)

~vf‖ay = L1K0

U0
νy − L1K0

U2
0

νzµy. (A15)

Therefore, the perturbation from ferromagnetic fluctu-
ation can only shift the position of the touching point of
a single Weyl fermion, behaving like a gauge field. Fur-
thermore, the ferromagnetic type of coupling breaks time
reversal but preserves parity, therefore it can not be con-
ventional gauge field like the electromagnetic field. So
finally the only choice is chiral gauge field.

Appendix B: Numerical method for the calculation

of the chiral mode in the ferromagnetic vortex core

In the section of the appendix, we describe our numer-
ical method for the calculation of energy dispersion and

eigen wavefunction for the ferromagnetic vortex config-
uration. We start from the four band model (4) in the
main text and in the cylinder coordinate (r, θ, z), the
Hamiltonian takes the form of

H = H0 +H1 (B1)

H0 = M(~k)τz + L1kzτy + L2(kyσxτx − kxσyτx)

=









M(~k) 0 −iL1kz iL2k−
0 M(~k) −iL2k+ −iL1kz

iL1kz iL2k− −M(~k) 0

−iL2k+ iL1kz 0 −M(~k)









H1 = −W0 sin θσxτz +W0 cos θσyτz + U0σz

=









U0 −iW0e
−iθ 0 0

iW0e
iθ −U0 0 0

0 0 U0 iW0e
−iθ

0 0 −iW0e
iθ −U0









where we have ∂x = cos θ∂r − sin θ
r ∂θ and ∂y = sin θ∂r +

cos θ
r ∂θ, therefore k− = kx − iky = −i∂x − ∂y =

−i
(

cos θ∂r − sin θ
r ∂θ

)

−
(

sin θ∂r +
cos θ
r ∂θ

)

= −ie−iθ∂r −
e−iθ

r ∂θ, k+ = −i∂x + ∂y = −i
(

cos θ∂r − sin θ
r ∂θ

)

+
(

sin θ∂r +
cos θ
r ∂θ

)

= −ieiθ∂r + eiθ

r ∂θ and k2x + k2y =

−
(

∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂

∂θ2

)

. The above Hamiltonian has

in-plane rotation symmetry along z axis and the cor-
responding total angular momentum can be defined as
Jz = Lz+

1
2σz where Lz = −i ∂

∂θ and the Pauli matrix σz
denotes the spin part. With the in-plane rotation sym-
metry, the wavefunction ansatz can be taken as ψ̃(r, θ) =
[

einθf1(r), e
i(n+1)θf2(r), e

inθf3(r), e
i(n+1)θf4(r)

]T
where

the total angular momentum Jz = n + 1
2 . The Hamilto-

nian is changed to

H̃ =









M̃(n) + U0 −iW0 −iL1kz L2

(

∂r +
n+1
r

)

iW0 M̃(n+ 1)− U0 L2

(

−∂r + n
r

)

−iL1kz
iL1kz L2

(

∂r +
n+1
r

)

−M̃(n) + U0 iW0

L2(−∂r + n
r ) iL1kz −iW0 −M̃(n+ 1)− U0









(B2)

where M̃(n) = M0 + M1k2z − M2

(

∂2

∂r2 + 1
r

∂
∂r − n2

r2

)

and the wave function is now given by ψ̃ =

[f1(r), f2(r), f3(r), f4(r)]
T . Let’s introduce the new wave

function ψ as ψ̃ = 1√
r
ψ, then the normalization relation

∫

rdrdθ|ψ̃|2 = 1 is changed to
∫

drdθ|ψ|2 = 1, and the
effective Hamiltonian is rewritten as
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H =















M(n) + U0 −iW0 −iL1kz L2

(

∂r +
n+1/2

r

)

iW0 M(n+ 1)− U0 L2

(

−∂r + n+1/2
r

)

−iL1kz

iL1kz L2

(

∂r +
n+1/2

r

)

−M(n) + U0 iW0

L2(−∂r + n+1/2
r ) iL1kz −iW0 −M(n+ 1)− U0















(B3)

where M(n) = M0 +M1k
2
z −M2

(

∂2

∂r2 − n2−1/4
r2

)

. This

Hamiltonian can be written in a compact form

H =

[

M0 +M1k
2
z −M2

(

∂2

∂r2
− (n+ 1/2)2

r2

)]

τz −M2
n+ 1/2

r2
σzτz

+L1kzτy + iL2
∂

∂r
σyτx + L2

n+ 1/2

r
σxτx +W0σyτz + U0σz . (B4)

We can discretize the Hamiltonian (B3) and solve the
eigenstate problem for the radial equation numerically.
The corresponding result is shown in Fig 2 of the main
text. For n = 0, we indeed find two gapless modes
with the opposite velocities along z direction, and these
two gapless modes are spatially separated with one wave
function mainly staying at r = 0 and the other one at
r = R, as shown by the red and black lines in Fig 2
(b) and (d) of the main text. However with increas-
ing n, a gap is opened between the two low energy
modes, as shown in Fig 2 (c) in the main text. To
get more analytical understanding of the radial equa-
tion, we consider the r → ∞ limit with U0 = 0,
kz = 0, where the radial Hamiltonian is simplified as

H =
(

M0 −M2
∂2

∂r2

)

τz + W0σyτz + iL2σyτx
∂
∂r . With

the wave function ansatz ψ ∼ eλrφ, we obtain the equa-
tion L2λφ =

[(

M0 −M2λ
2
)

σyτy +W0τy
]

φ for the zero
modes. Since [σyτy, τy] = 0, we can take the com-
mon eigen-states of σyτy and τy for φ, σyτyφts = tφts
and τyφts = sφts, then the wave function can be ex-

pressed as ψ =
∑

α,t,s cα,tse
λα(t,s)rφt,s, with λ given

by λα(t, s) =
−tL2+α

√
L2

2
+4M2(tsW0+M0)

2M2
. The existence

of the edge mode requires λ+(+,+)λ−(+,+) > 0 or
λ+(+,−)λ−(−,−) > 0, leading to the following different
regimes: in the normal regimeM0M2 > 0, the system has
no zero mode when |W0| < |M0| and one zero mode when
|W0| > |M0|, while in the inverted regimeM0M2 < 0, the
system has one zero mode when |W0| > |M0| and two
zero modes when |W0| < |M0|. Taking into account the
kz dependent term, it turns out that one zero mode case
corresponds to the 1D chiral state and two zero modes
case is the 1D helical state. However since time reversal
is broken in the present system, the helical state is not

protected and can be gapped. Therefore the only robust
state is the chiral state when |W0| > |M0|. We emphasize
that the transition at |W0| = |M0| exactly corresponds
to the condition for the appearance of the gapless Weyl
fermions for the uniform magnetization. For the finite
r, the terms proportional to 1

r and 1
r2 will push the chi-

ral mode around r=0 outwards, thus with increasing the
angular momentum number n, the wave function of the
chiral mode near r = 0 extends to the large r region and
mixes with the chiral mode at r = R, opening a gap.
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