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Within the imaginary-time theory for nonequilibrium in quantum dot systems the calculation of
dynamical quantities like Green’s functions is possible via a suitable quantum Monte-Carlo algo-
rithm. The challenging task is to analytically continue the imaginary-time data for both complex
voltage and complex frequency onto the real variables. To this end a function-theoretical descrip-
tion of dynamical observables is introduced and discussed within the framework of the mathematical
theory of several complex variables. We construct a feasible maximum-entropy algorithm for the
analytical continuation by imposing a continuity assumption on the analytic structure and provide
results for spectral functions in stationary non-equilibrium and current-voltage characteristics for
different values of the dot charging energy.

PACS numbers:

I. INTRODUCTION

Dynamic observables play a crucial role in
the Matsubara voltage approach introduced by
Han and Heary to address steady-state non-
equilibrium properties of models for quantum
dots.1 In a previous publication (hereafter re-
ferred to as I)2 we showed under what con-
ditions the real-time Keldysh and imaginary-
time Matsubara-voltage approaches are formally
equivalent, and how a proper analytical contin-
uation must be performed. In I, this scheme
was applied to static quantities obtained from
a continuous-time quantum Monte-Carlo (CT-
QMC) algorithm3,10 combined with a standard
maximum-entropy (MaxEnt) approach27 to ob-
tain results for steady-state expectation values of
quantum dot models at finite bias.

We consider a single-impurity Anderson model
for the quantum dot system2, with the Hamilto-
nian

Ĥ =
∑
αkσ

εαkσc
†
αkσcαkσ + εd

∑
σ

d†σdσ

−
∑
αkσ

tα√
Ω

(d†σcαkσ + h.c.) (1)

+U · (nd,↑ − 1/2)(nd,↓ − 1/2) .

This Hamiltonian describes a quantum dot device
which consists of the quantum dot orbital opera-
tor d†σ of spin σ and with source and drain leads,

represented by conduction electron operators c†αkσ
with the continuum index k, the spin index σ and
the reservoir index α = L,R for the source (left)
and drain (right), respectively. The model is char-
acterized by few parameters:4 The local energy or

gate voltage εd, which controls the number of elec-
trons on the dot; the charging energy U > 0 due
to the small capacitance; and finally the coupling
of the dot to the leads, which can in many cases
be collected in two quantities, ΓL and ΓR.

Although some thermodynamic observables can
be calculated directly without analytic continu-
ation of imaginary-frequency2, only a restricted
set of observables can be handled in this man-
ner. Unfortunately, the current operator 〈I〉 is
not suitable, and the rather important question
about the transport through a quantum dot, both
electrically and thermally driven, must be ad-
dressed in a different manner. For simple quan-
tum dot geometries one can employ the result by
Meir and Wingreen,8 who showed that for single
quantum dots and not too different properties in
the left and right leads, one can express the cur-
rent through the dot due to a finite external bias
eVB ≡ Φ via the density-of-states (DOS) Nσ(ε; Φ)
on the dot as

I(Φ) = I0
∑
σ

∫
dε [fL(ε)− fR(ε)] Nσ(ε; Φ) (2)

where fα(ε) denotes Fermi’s function for the left
respectively right lead. Note that the bias enters
in two distinct ways: First, in the Fermi func-
tions through the chemical potential of the leads
as34 µ±Φ/2, and second, through the DOS. Usu-
ally, for Φ→ 0, one ignores the latter dependency
and can thereby recover the results from linear-
response theory. Note that Meir-Wingreen for-
mula is only applicable in case the hybridization
to left and right leads are proportional to each
other, i.e. ΓL(ω) ∝ ΓR(ω).

Besides its relevance for calculating the current,
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the DOS is an interesting quantity in its own right,
and its dependency as function of frequency and
bias is still a matter of debate. In equilibrium, it
is well-known that the DOS develops a very sharp
resonance, the so-called Kondo resonance, pinned
at ε = 0, which in linear response leads to the
pinning of the conductance to the unitary limit.
The precise way that this resonance dies under the
influence of finite bias is actually unknown, and
different techniques provide different answers.

Within the Matsubara-voltage imaginary-time
approach by Han and Heary the nonequilibrium
steady state is mapped to an infinite set of effec-
tive equilibrium systems by introducing a bosonic
Matsubara voltage ϕm = 4πm/β.1,2,5,10 It has to
be analytically continued to a variable zϕ ∈ C in
order to compute the limit zϕ → Φ± iδ to obtain
the physical quantity at the chosen bias Φ.

Considering dynamic observables, the simulta-
neous presence of the fermionic Matsubara fre-
quency iωn, which must be analytically contin-
ued to zω ∈ C to eventually obtain the corre-
sponding real-frequency quantity, implies that a
double-complex-variable function G(z), with z :=
(zϕ, zω)T ∈ C2, must be studied. Without the
presence of iϕm, i.e. within conventional Matsub-
ara theory, Green’s functions are analytic on the
upper and lower half-planes, H and H∗. Due to
the rapid decay of G(zω) as zω →∞, a Lehmann
spectral representation with respect to the real
axis is used.9 Conversely, from a knowledge of all
Matsubara-frequency data one can in principle in-
fer the spectral function. Numerically, this is a
known to be an ill-conditioned problem. An ap-
proach, particularly suited for QMC data, is the
MaxEnt technique.27

From a mathematical point of view, the branch
cut on the real axis represents the only set of
points z0 ∈ C for which the Green’s function is
not holomorphic. The very location of the branch
cut gives rise to the spectral representation in
Matsubara theory, i.e. it yields, due the nonsin-
gular structure at ∞, a unique characterization
of the analytic structure. In order to perform an
analytic continuation for the two-variable func-
tion G(z) the natural question arises as to which
minimal set of quantities characterizes its analytic
structure in a unique fashion. Therefore the re-
ferral to mathematical results in the analysis of
several complex variables is necessary (see in par-
ticular the discussion following section III C 1).10

In the original implementation of Han and his
co-worker1,5, analytic continuation on (zϕ, zω)
produced rather smooth spectra in good agree-
ment with other numerical results5,23. However,
the employed methods were crude fit with ad-

hoc smoothening and annealing to the numerical
data without regards to statistical analysis. In
this work we provide mathematical foundation to
multi-variable analytic continuation and develop
systematic numerical implementation.

The paper is structured as follows. Since the
mathematical structure dealing with functions of
several complex variables is probably very alien
to the reader, we start with a presentation of the
central results for spectral functions and transport
properties of the single-impurity Anderson model
in steady-state non-equilibrium in section II. As
compared to an earlier publication10, we improve
our numerics by including several analytic wedges
of the Green’s function into the procedure. We
will refer to this as multi-wedge approach as op-
posed to the earlier single-wedge approach. The
underlying mathematical framework is developed
in the succeeding sections. Starting from conven-
tional one-dimensional complex analysis, section
III provides an introduction to the basic concepts
of theory of several complex variables. We then
use this theory to systematically analyze the ana-
lytical structure of the Matsubara-voltage Green’s
function and provide an axiomatic description of
it. In section IV, an asymptotically exact conti-
nuity assumption is employed to construct an in-
tegral representation for Matsubara Green’s func-
tion G(iϕm, iωn). It allows us to include more in-
formation within the Bayesian inference process of
the maximum entropy method (MaxEnt) as com-
pared to our previous approach in Ref. 10. The
resulting structure connects to the earlier sugges-
tions by Han and Heary.1,5 For future applica-
tions, an unbiased extension of the integral rep-
resentation beyond the continuity assumption is
proposed in section V.

Figure 1 provides an overview of the paper as
a flowchart. It may serve as a guide. Mathemat-
ically less inclined readers may skip the lightly
shaded section III and study the numerical re-
sults in section II, which are based on the con-
tinuity ansatz and MaxEnt procedure described
in section IV and corresponding appendices. In
the chart full arrows denote numerical steps in
the computation. Empty arrows denote formal
analytical steps required to derive the relations
involved into the MaxEnt procedure for analytic
continuation.

All numerical results provided in the paper
rely on a highly precise continuous-time quantum
Monte-Carlo (QMC) implementation which was
introduced in Ref. 10. The data provided by QMC
simulations, see left box in figure 1, give rise to
a discrete grid of well-estimated imaginary-time
Green’s function values. Due to the structure of
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FIG. 1: Contents of the paper as a flowchart. Full arrows represent numerical procedures within
our approach. Empty arrows represent the formal steps necessary for a derivation of the MaxEnt
kernel used for numerical results. Shaded areas are discussed in the corresponding sections. The rather
unconventional two-dimensional function theory with respect to the simultaneously variables (zϕ, zω)
is explained by analogies (=̂) with the conventional theory in the light-shaded area. It may be skipped
at first reading. Concepts such as the biholomorphic maps are used to obtain explicit equations. Dash-
dotted lines denoting either Vladimirov’s formula or Cauchy’s integral equation put an emphasize on the
fact that the content of a domain (of holomorphy) is parametrized by its (Bergman-Shilov) boundary.
In the numerical implementation it is thus an inverse problem to reconstruct function values on the

(Bergman-Shilov) boundary which requires a MaxEnt approach.

the Matsubara-voltage formalism, however, these
data in general belong to different analytic sheets
of the two-variable Green’s function (Fig. 13b),
due to the presence of an infinite set of branch
cuts. The analytic sheets are defined on so-called
wedges in the complex variable space C2. Depend-
ing on the considered wedge, an analytic continu-
ation within the sheet to real frequencies and volt-
ages may not have a direct physical interpretation.
However, QMC data from these sheets should be
used to reconstruct the physical real-time limit.
For this sake, the mathematical structure of the
Green’s function’s sheets is systematically inves-
tigated in section III. Since it may require a lot of
effort to study the details of the latter, the reader
is recommended to first study the results section
and possibly skip section III at first reading.

The results section II discusses numerical re-
sults for the dot electron spectral function out of
equilibrium and consequent transport characteris-
tics. It relies on a MaxEnt procedure which infers
a probability distribution based on a linear rela-
tion (72) which is derived in section IV but has

to be inverted. Since as in the conventional Wick
rotation of imaginary-time data,27 the inversion
is an ill-posed problem, the MaxEnt provides a
most probable solution by means of Bayes’ the-
orem. Central to the function-theoretical deriva-
tion of the relation (72) is a continuity assumption
to the real-time structure of the theory, Eq. (65).
It gives rise to the kernel operator (73) which de-
fines the inverse problem (72). It is shown in sec-
tion IV that the continuity assumption improves
the MaxEnt algorithm for the determination of
spectral functions dramatically, as compared to
the earlier approach introduced in Ref. 10, such
that nontrivial nonequilibrium spectra could be
obtained.

Let us now briefly discuss the more mathemati-
cally involved section III by means of the flowchart
in figure 1. Since the analytical derivation makes
use of two-dimensional complex analysis, it shall
provide an introduction to that field, comparing
its fundamental notions to those of conventional
function theory. In particular, the theory of in-
tegral representations of functions on domains of
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holomorphy is discussed. Such functions may of-
ten be parametrized by their values on the so-
called Bergman-Shilov boundary. In an analogous
way, conventional complex analysis parametrizes
functions on domains by their boundary values
using, e.g., Cauchy’s integral equation. Also the
concept of the conformal map has the analogon
of a biholomorphic map which is widely used for
formal derivations in the present work. Section
III also systematically points out that wedges are
the domains of holomorphy for the two-variable
Green’s function and provides constraints to the
Green’s function which give rise to Vladimirov’s
integral representation (43) which is central to
the constructed MaxEnt algorithm. The repre-
sentation links function values on the real-time
boundary (the edge) of a considered wedge to data
within the wedge. The dash-dotted lines in figure
1 represent such linear relations which are practi-
cally used in the reverse direction and thus bring
along an inverse problem.

II. RESULTS FOR SPECTRAL
FUNCTIONS AND TRANSPORT

In the following, we present results obtained
from analyzing data using the CT-QMC algo-
rithm described in Ref. 10 based on the ”multi-
wedge” MaxEnt scheme we present in this paper.
Figure 2 provides an example for the raw sim-
ulation output. It has to be analytically con-
tinued with respect to both, Matsubara voltage
and frequency. This was accomplished us-
ing MaxEnt applied to the functional relation be-
tween Matsubara-domain data and spectral func-
tion developed in section IV. As already dis-
cussed in Ref. 10, the Green’s function is analyt-
ical in certain cones in the four-dimensional vari-
able space. Previously, we used only the cone clos-
est to iϕm = 0 for providing information to the
MaxEnt. This turned out to be not sufficient to
generate reliable and reproducable spectra. As
will be discussed in detail in section IV and ap-
pendix E, we here assume a certain property of the
Green’s function, namely that its real part at the
meeting point of the cones is independent of the
cone it was approached from. This allows to map
data in different cones by means of linear transfor-
mations into the actual data space and hence im-
prove the accuracy of the MaxEnt tremendously.
We introduced this earlier in the introduction as
multi-wedge approach.A comparison of the single-
wedge and multi-wedge approaches is provided
at the end of this section. We must emphasize
that the validity of this crucial property underly-
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FIG. 2: Effective-equilibrium data as obtained
from CT-QMC simulations10 for U = 8Γ, eΦ =
0.1Γ, β = 5Γ−1. The integer number m speci-
fies the respective index of the Matsubara voltage
ϕm = 4πm/β. The discontinuity at ωn = ϕm/2 is
the principal branch cut which will in particular

be discussed in section III D.

ing the multiwedge approach cannot proven rigor-
ously; however, the results obtained can be taken
as evidence that its violation does not influence
the physical structures too much. Furthermore,
in section V we provide a route to improve on
this approximation systematically, at the expense
of a more complex algorithm.

We concentrate on the evolution of the spec-
tral functions as function of Coulomb parameter
U and bias voltage Φ. Using the relation (2) we
also calculate I(V ) characteristics and compare
them to results obtained with other techniques.

A. Weak-Coupling Regime

The resulting nonequilibrium spectral function
for U = 2Γ, β = 5Γ−1, eΦ = Γ, obtained by
evaluating A(ω) = Ã(Φ, ω), where Ã is some
two-dimensional MaxEnt-inferred quantity, is dis-
played in figure 3. A good agreement with
the second-order perturbation theory provided by
Ref. 30 is observed.

However, the maximal value of the resonance
is slightly smaller than predicted by perturbative
theory. This could well be due the fact that Max-
Ent tends to infere a conservative estimate close
to the default model. The latter is also included
in figure 3 as dotted line, it is a Lorentzian whose
width is determined by the Bayesian procedure
outlined in appendix E. For the weak coupling
case, the width is essentially the one for the true
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FIG. 3: (color online) Spectral function of the dot
electrons as inferred for the nonequilibrium weak-
coupling case U = 2Γ, eΦ = Γ, β = 5Γ−1, com-

pared to second-order perturbation theory.

spectrum, as expected.

B. Intermediate-Coupling Regime

Figure 4 shows spectral functions computed at
U = 4Γ and inverse temperature β = 5Γ−1 for
different bias voltages Φ. An excellent agreement
with second-order perturbation theory is obtained
for the cases eΦ = 0.125Γ, and eΦ = Γ, and it is
reasonable for eΦ = 0.5Γ. Although one should
not expect it to be very different, the quasiparticle
resonance in the MaxEnt result for eΦ = 0.25Γ
is overshooting eΦ = 0.125Γ and disagrees with
the almost unchanged second-order perturbation
theory. This is presumably a systematic MaxEnt
artifact, possibly related to the default model.

The normalization of the MaxEnt spectra is
reasonably close to one. In particular at the small
voltages, and for larger frequencies some side-
bands form which tend to increase the total spec-
tral weight unphysically. However, the good de-
scription of the low-energy physics seems to be un-
affected by this type of artifact. Note that again
the optimal width of the default model is the same
as the one for the final spectrum.

Inferred spectral functions for an even stronger
interaction U = 6Γ are displayed in Fig. 5 for in-
termediate to large bias voltage. For the equilib-
rium situation we already are in a regime with a
distinct three-peak structure with an Abrikosov-
Suhl resonance (ASR) at ω = 0 characteristic for
the Kondo regime. An estimate for the equi-
librium Kondo scale gives TK ≈ 0.1Γ. Again,
the general low-energy behavior agrees reasonably

well with the results from perturbation theory –
which should still be valid for this value of U – and
the weight at eΦ = 0.25Γ is again overestimated.
At eΦ = 0.5Γ one now observes a distinctly larger
broadening of the ASR as compared to perturba-
tion theory, and at Φ = Γ a clear double-peak
structure is visible. This structure is compatible
with a Kondo peak splitting. However, due to the
approximations involved, we feel unable to decide
at present whether this feature is actually a pre-
diction of the Matsubara-voltage theory itself. It
is interesting to note that here the default model
is strongly renormalized for small bias, while at
large bias the default model, apart from the dou-
ble peak structure around ω = 0, again is already
a reasonable estimate for the full spectrum.

As before, the spectral weight in the now de-
veloping Hubbard bands is strongly enhanced as
compared to perturbation theory, pointing to-
wards an overestimation of the integral weight by
MaxEnt. On the other hand, the position is in
good agreement with perturbation theory.

Figure 6 shows a similar set of curves for in-
teraction strength U = 8Γ. As compared to the
lower values of U , a similar behaviour of the al-
gorithm is observed. The perturbative predic-
tion for the ASR is again essentially reproduced
in case eΦ = 0.1Γ and eΦ = Γ. The ASR is
however again broadened as a function of the
bias voltage and appears to split eventually at
eΦ = Γ. Again, intermediate voltages have a
much stronger weight of the quasi-particle peak,
and the difference between eΦ = 0.1 and eΦ = 0.2
is even larger than for lower values of the inter-
action. If those artifacts are due to the MaxEnt,
they might be at least partially removed by using
more appropriate default models or an annealing
procedure, i.e. using spectra for smaller bias as de-
fault for larger. Such a procedure can be success-
fully applied when lowering temperatures (see the
next subsection). The increased interaction again
broadens the spectra as compared to smaller val-
ues of U . However, the MaxEnt procedure does
not clearly predict the correct Hubbard peak po-
sitions at ±U/2. A possible reason for this is the
partially rather slow decay behaviour of the ker-
nel function which was derived for the MaxEnt.
It may result in decreased resolution in the high-
frequency range, as compared to a conventional
MaxEnt procedure for the Wick rotation.

Spectra for interaction strength U = 10Γ are
displayed in figure 7. Again, the solution is very
similar to the perturbative prediction, and still
a splitting of the ASR at larger bias voltages is
observed. The MaxEnt resolution issue for the
Hubbard bands is again observed.
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FIG. 4: (color online) Nonequilibrium spectral functions for U = 4Γ and inverse temperature β = 5Γ−1

of the leads, as compared to second-order perturbation theory. Line legends are the same as in Fig. 3.

C. Approaching Lower Temperatures

For data at lower temperature, namely β =
10Γ−1, the behaviour of MaxEnt solutions is sim-
ilar to the one described above. Nevertheless,
sharper structures, such as the Kondo peak, which
emerge at lower temperatures, make the MaxEnt
procedure more challenging. A common way to
deal with this problem is the so-called “annealing
procedure”.28,29 Here, a fine temperature grid is
imposed in order to freeze out low-energy features
step by step. The procedure starts with a feature-
less default model at very high temperatures. At
lower temperature, the MaxEnt result of the next
higher temperature is used as default model, and
so forth, until the target temperature is reached.

We found earlier10 that it is of great use also
within the two-dimensional analytic continuation

problem. Also in the present extension of the ap-
proach in Ref. 10, the MaxEnt yields more well-
behaved solutions if a higher temperature is used
as default model. This was investigated by a sim-
ple single-step annealing procedure, using results
from a β = 5Γ−1 run. In fact, the occurance of
unphysical normalization-violating sidebands may
already be avoided in some cases for this rather
rough temperature grid. Figure 8 shows two ex-
amples in which the one-step annealing procedure
was able to improve the results significantly.

D. Transport Properties

Using the Meir-Wingreen equation (2), we are
able to compute transport properties based on
spectral functions resulting from the MaxEnt an-
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FIG. 5: (color online) Nonequilibrium spectral functions for U = 6Γ and inverse temperature β = 5Γ−1,
as compared to second-order perturbation theory. Line legends are the same as in Fig. 3.

alytic continuation procedure. Figure 9 compares
results obtained at Coulomb interaction strengths
U = 4Γ and U = 6Γ to real-time quantum Monte-
Carlo data from Ref. 26.

The low-temperature data were obtained with-
out the employment of an expensive annealing
procedure: the most distinct feature of the low-
temperature data is an increase in current at low-
voltages for β = 10Γ−1 and U = 6Γ. It is obtained
no matter whether the single-step annealing pro-
cedure described above is employed or not.

As compared to the real-time QMC calcula-
tions, we obtain a good agreement at interaction
strength U = 4Γ. The only significant deviation
is at eΦ = 0.25, the value at which we observed
the overshooting of the quasi-particle peak in the
spectral function earlier on. At higher interaction
U = 6Γ, the current predicted by our method

appears to be systematically higher at voltages
eΦ > 0.2Γ, for both temperatures. This is again
consistent with the observation, that with increas-
ing U , the Abrikosov-Suhl resonance is probably
overshooting its actual value for values within the
range 0.125Γ < eΦ ≤ 0.5Γ.

In the following, we will discuss the low-voltage
region of both cases, U = 4Γ and U = 6Γ. As
shown in the previous section, in the case βΓ = 5,
the quasi-particle weight is underestimated in the
voltage range eΦ ≤ 0.125Γ for the reason that
iϕm = 0 data cannot be taken into account for the
analytic continuation. This is compatible with the
fact that the current is underestimated as com-
pared to the βΓ = 10 data, as well as the real-time
QMC data.

Figure 10 shows current-voltage curves for dif-
ferent values of U at βΓ = 10. In any case,
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FIG. 6: (color online) Nonequilibrium spectral functions for U = 8Γ at inverse temperature β = 5Γ−1,
as compared to second-order perturbation theory. Line legends are the same as in Fig. 3.

an S-shaped current-voltage characteristics is ob-
tained, the first increase of which is due to the
ASR, and the second of which is due to the Hub-
bard bands. The reduced weight of the ASR at
increased interaction brings about an earlier de-
parture of the U = 8Γ curve as compared to the
curves at U = 4Γ and U = 6Γ. Same is true
for the U = 6Γ curve as compared to the case
U = 4Γ.

E. Comparison to the single-wedge approach
from a practical point of view

We will briefly illustrate the practical benefit
of using the present algorithm as compared to
the single-wedge approach proposed in our ear-
lier publication.10 A comparison of the two ana-

lytic continuation methods is shown in Fig. 11, for
β = 10.0Γ−1, U = 6Γ, and eΦ = 0.5Γ.

While it is straightforward to implement, the
previously proposed single-wedge method has a
grave disadvantage: due to the underlying geo-
metrical structure of the single wedge, one has
to provide a rather large number of Monte-Carlo
data, also from large Matsubara frequencies, to
the MaxEnt procedure to include nontrivial infor-
mation about spectral functions at nonzero bias
voltage. Unfortunately, doing this usually drives
the MaxEnt into a numerically unstable regime.
As a consequence, slightly different selections of
input data may yield very different spectral func-
tions which however can often be identified as un-
physical. Therefore, one has to introduce some ad
hoc criteria10 to filter such bogus spectral func-
tions. The same holds true for the selection of
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FIG. 7: (color online) Nonequilibrium spectral functions for U = 10Γ at inverse temperature β = 5Γ−1,
as compared to second-order perturbation theory. Line legends are the same as in Fig. 3.
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FIG. 8: (color online) Lower-temperature spectral functions as inferred for U = 4Γ, β = 10Γ−1 with or
without an annealing step. The default model for the single-step procedure is taken from temperature

β = 5Γ−1.

the opening angle of the single wedge – there is
no a priori way to select an appropriate wedge
opening angle for a given system. Consequently,
from one simulation one can obtain a collection
of different results from the single-wedge analytic
continuation method introduced in Ref. 10. The
left panel in Fig. 11 for example shows that by
slightly changing (”+1” data point or ”+6” data
points), the ”fine-tuned” selection from the same
QMC input data set, the final result is different
and often erroneous. Also note that for the fine-
tuned choice of the QMC input configuration to
the MaxEnt, a numerically equivalent covariance

measurement of the QMC data again yields an
unphysical spectrum.

In contrast, our newly proposed multi-wedge
approach is numerically stable over a wide range
of input data selections. It also does not require
an a-posteriori tuning of some parameter like the
opening angle of a single wedge. As usual, only
the principal branch cuts of the Green’s function
must not be crossed by the selected data set. This
profound improvement in stability comes at the
price of a computationally much more involved
MaxEnt procedure. Furthermore, to understand
and be able to control how it works an explicit
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knowledge of function theory of several complex
variables is mandatory: the 2D spectral function
is very much interlinked with the global structure
of the Green’s function by partially encoding the
branch cut structure. As a consequence, the de-
fault model has to be constructed including this
prior knowledge and all functions occurring in the
MaxEnt procedure have to be handled properly
with respect to their function-theoretical mean-
ing. This especially means that the behavior at
infinity of the central object in the 2D continua-
tion, the 2D generalized spectral function Ã(ϕ, ω),
has to be modeled very carefully – a requirement
which is unimportant for a conventional 1D con-
tinuation, as well as the from the point of view
of the single-wedge continuation. The spectrum
shown in the right panel in Fig. 11 is the result
of this procedure. The previously mentioned se-
lection of the default model was accomplished by
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FIG. 11: (color online) Comparison of single-
wedge approach from Ref. 10 and the newly devel-
oped multi-wedge approach at U = 6Γ, βΓ = 10,

eΦ = 0.5Γ.

adjusting the default model parameters until the
posterior probability as determined by the Max-
Ent was maximal. Note that the numerical rep-
resentation of the kernel is not fully optimal yet;
but even at this stage, the result is much more
reliable than from the single-wedge method.

Let us add a final remark for practical pur-
poses based on the properties which were just
elaborated. When implementing our MaxEnt
approaches to the double analytic continuation
within the Matsubara-voltage formalism, it is best
to start with the single-wedge approach and val-
idate equilibrium spectral functions (Φ = 0) as
done in Ref. 10 in order to verify that QMC
statistics are incorporated properly. The step to
nonzero Φ, i.e. nonequilibrium, is then to im-
plement the multi-wedge kernel, which contains
single-wedge kernels as building blocks, and plug
it into the MaxEnt program. This second step
also requires a higher level of knowledge regarding
the function-theoretical structures involved. Also
note that the present algorithm leaves much room
for improvements, since there are many numerical
aspects which are still far from being optimal in
our implementation: previously mentioned was al-
ready the numerical representation of the kernel.
A second important problem is a careful annealing
procedure for successively lowering temperatures.
A third and major problem as one approaches the
Kondo limit is the further incorporation of correc-
tions to the multi-wedge approach, as elaborated
in section V.

In the next section of the paper, mathematically
involved details of the structure of the Green’s
function will be analyzed systematically. It comes
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along with an introduction of the relevant con-
cepts of the theory of several complex variables.
Those are in particular needed for the derivation
of the MaxEnt inverse problem, equation (72),
which leads to the results discussed in the present
section. The latter mathematical derivation is
provided in section IV. It may be convenient to
skip section III on first reading and directly go to
the MaxEnt derivations and discussions of section
IV.

III. SEVERAL COMPLEX VARIABLES
AND THE GREEN’S FUNCTION

We want to provide a detailed physicist’s intro-
duction to the basic mathematical structures of
functions with several complex variables, essential
for a full understanding of the Green’s function
within the Matsubara-voltage formalism. In par-
ticular, we will attempt to answer the question by
what means intuition from conventional function
theory is appropriate or misguiding in the context
of dynamic expectation values.

As next step we will describe the ana-
lytic structure of dynamic correlation functions
G(zϕ, zω) appearing as a fundamental object in
the Matsubara-voltage formalism (see I for de-
tails) by means of the function theory for multiple
complex variables. Uniqueness of the mathemat-
ical procedure involved in the analytical continu-
ations is proven and the connection to maximum
entropy approaches for the inference of spectral
functions is made.

A. Holomorphy of Functions of Several
Complex Variables

In order to discuss the notion of holomorphy
in the context of functions with several complex
variables we will partially follow the book by
Vladimirov.12

A function G of one complex variable is holo-
morphic at a point z0, if and only if the Cauchy-
Riemann differential equation

∂G

∂z̄ω

∣∣∣∣
z0

= 0 (3)

is satisfied. The notion for holomorphy of func-
tions of several complex variables is a natural ex-
tension of this definition: A function f(z), with
z ∈ Cd, is holomorphic with respect to z at the
point z(0) if and only if it is holomorphic with

respect to each individual variable,

∂f

∂z̄i

∣∣∣∣
z(0)

= 0, i = 1, . . . , d. (4)

Note that in the following, we will always denote
vectors in Cd(d > 1) by an underlined symbol
such as z. Hartogs’ fundamental theorem asserts
that definition (4) is also equivalent to the Weier-
straß definition of holomorphy for several vari-
ables. The latter calls a function holomorphic
at z0 if and only if there exists an open neigh-
bourhood M of z(0), such that for all z ∈ M the
function f may be written as an absolutely con-
vergent power series f(z) =

∑∞
|α|=0 aα(z− z(0))α.

α denotes the multi-index for the monomial zα :=∏d
n=0 z

αn
n , and |α| :=

∑d
n=0 αn. An analytic com-

plex function of several variables is holomorphic.
The notion of holomorphy implied by Eqs. (4)

is thus as natural and intuitive as in the one-
dimensional case.

B. Domains of Holomorphy and
Biholomorphic Transformations

The major qualitative difference between
single- and multi-variable complex analysis is con-
tained in the notion of a domain, and the geo-
metric equivalence among holomorphic functions
arising from classes of domains. This has far-
reaching consequences to the theory itself, such
as the construction of integral representations. In
the context of our formalism we aim at integral
representations. We will thus first comment on
the basic structures which integral representations
operate on. Furthermore, we will point out the
most prominent differences to conventional func-
tion theory. The notion of a domain in single-
variable complex analysis is replaced by the no-
tion of a domain of holomorphy in multi-variable
complex analysis – the notion of a conformal map
is replaced by the notion of a biholomorphic map.
We will address the most prominent differences by
first reminding the reader of basic structural prop-
erties of one-dimensional complex analysis and
then introducing the corresponding terminologies
of the more-dimensional theory.

1. One-dimensional function theory

In one-dimensional complex analysis, domains
are defined as open connected subsets of C. For
the time being, we will restrict the discussion to
simply connected open sets, i.e. open connected
sets with no holes.
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Conformal maps between domains U , V ,
namely functions

m : U → V, z 7→ m(z) (5)

which are holomorphic and invertible (one-to-
one), provide links between certain classes of do-
mains. The Riemann mapping theorem states
that conformal maps between any simply con-
nected U 6= C, ∅ and the unit disk exists. I.e. all
simply connected domains 6= C, ∅ are conformally
equivalent: their structures of holomorphic func-
tions map one-to-one to each other and are con-
formally diffeomorphic. Generalizing the concept
of holomorphy to Riemannian surfaces, conformal
maps exist only for surfaces of the same topologi-
cal genus. The uniformization theorem finds that
for simply connected Riemann surfaces (topolog-
ical genus 0) up to conformal equivalence three
classes exist:

• the unit disk D1 = {z ∈ C : |z| < 1},

• the complex plane C,

• the Riemann sphere C ∪ {∞}.

These three surfaces form the so-called moduli
space of genus 0, defined as the space of confor-
mally inequivalent Riemann surfaces of genus 0.

In general, the size of the moduli space of a
Riemann surface of genus g grows as a function of
g. Each modulus represents an equivalence class
of holomorphic functions.

Conformal equivalence plays an important role
in physical applications such as two-dimensional
potential flows around airfoils or conformal quan-
tum field theory.

One natural consequence of the conformal
equivalence of all non-empty simply connected do-
mains U ( C1 is that there always exists a func-
tion which is not analytically continuable beyond
the domain: the function

f0(z) =

∞∑
α=0

zα! (6)

is holomorphic on the unit disk but may not be
analytically continued to larger domains.12 Using
a conformal map m from the unit disk to U , which
exists due to the Riemann mapping theorem, one
finds the function f0 ◦m−1 which cannot be ana-
lytically continued beyond U . One also calls the
unit disk the domain of holomorphy of f0, i.e. the
largest domain for which f0 is holomorphic. U
is the domain of holomorphy of f0 ◦m−1. For a
given domain G, if there exists any function f for
which G is the largest possible domain in which f

is holomorphic, the domain is called a domain of
holomorphy.

In general, any domain is also a domain of holo-
morphy in conventional complex analysis. Due
to the simple structures arising from these far-
reaching equivalences, the conventional function
theory of one complex variable is widely consid-
ered to be a finalized field of mathematical re-
search.

2. Multi-dimensional function theory

The two final statements of the last section are
completely incorrect for several complex variables
Cd, d ≥ 2.

In several complex variables,

• a domain is not necessarily a domain of
holomorphy;

• domains of holomorphy are usually not bi-
holomorphically equivalent.

An example of a domain which is no domain of
holomorphy is the hollow sphere (see paragraph b
below), because all analytic functions in the hol-
low sphere can be analytically continued to the
sphere. As compared to one-dimensional func-
tion theory, the emerging structures are thus very
rich. Depending on the domain geometry, very
different sheaves of holomorphic functions35 will
arise.

a. Biholomorphic maps. The tool of a bi-
holomorphic map, as mentioned in the second
point, is the generalization of a conformal map to
several complex variables. If a holomorphic map-
ping m : U → U ′, with U,U ′ ⊂ Cd is invertible, it
is called a biholomorphic map. Two domains U ,
U ′ are biholomorphically equivalent, if and only if
such a map exists. They will have an equivalent
sheaf of holomorphic functions. Biholomorphic
maps do not necessarily preserve angles. There-
fore, they are usually not conformal. Neverthe-
less, with respect to the holomorphic structure,
they are the natural generalization of conformal
maps on C, because they are complex diffeomor-
phisms: the inverse of a biholomorphic map is also
holomorphic.12

b. Domains of holomorphy and holomorphic
envelopes. A striking example of a domain ⊂ C2

which is not a domain of holomorphy is given by
the hollow sphere M := {z = (z1, z2)T ∈ C2 :
1
2 <

√
|z1|2 + |z2|2 < 1}. In sharp contrast to the

single-variable case, one can show that any holo-
morphic function f : M → C may be analytically
continued to the unit sphere. The unit sphere



13

is, in fact, a domain of holomorphy and is thus
named the holomorphic envelope of M .12 This ex-
tends to the famous result by Friedrich Hartogs
that isolated singularities are always removable
for analytic functions Cd → C, d ≥ 2 (Hartogs’
lemma). While isolated singularities play an es-
sential role in the residue calculus in the d = 1
case, the d ≥ 2 case is, due to Hartogs’ result, of
an entirely different nature. As we will see in sec-
tion III C the theory of integral representations of
complex functions for d ≥ 2 has consequently a
very different character as compared to the d = 1
case.

Since ordinary domains such as the hollow
sphere are rather friendly as far as analytic con-
tinuation is concerned, mathematicians restrict to
the systematic study of corresponding envelopes
of holomorphy, i.e. the domains of holomorphy.
One can show that a domain is a domain of holo-
morphy if and only if it is a so-called pseudocon-
vex domain. Pseudoconvexity is a certain gener-
alization of convexity from Rd to Cd.12 For this
reason, the fundamental domains of holomorphy
in our application, the wedges, are indeed convex
(cf. section III D).

c. Biholomorphic equivalence. In order to
provide a classification of domains of holomor-
phy in Cd, d ≥ 2, the fruitful strategy from
d = 1, namely using biholomorphic equivalences,
is adopted. Non-empty simply connected domains
of holomorphy ( Cd are usually not biholomor-
phically equivalent. There are many different
types of holomorphic structures, depending on the
domain geometry.

A prominent example of biholomorphically in-
equivalent domains of holomorphy is given by the
unit ball |z| < 1 and the bicylinder D1×D1 in C2.
The unit ball in higher dimensions is with regard
to the holomorphic structure in no way related to
the unit disks and carries in fact a rather singular
holomorphic structure.

C. Integral Representations

As one might have already guessed from Har-
togs’ lemma and the domain dependence of the
mathematical structures, finding an analogy to
Cauchy-like integral representations, yielding, for
example, the spectral representation of our two-
variable Green’s function, turned out to be a cum-
bersome task.

At present, one knows several, more or less
general, possibilities to construct such represen-
tations, even with different dimensions of the
integration manifolds. The Bochner-Martinelli

∂D

D

(a) Cauchy (d = 1)

S

D

(b) Bergman-Weil (d = 2)

FIG. 12: Comparison of Cauchy and Bergman-
Weil integral representation theories. Integrations
run over the (a) full topological boundary ∂D and
(b) the Bergman-Shilov boundary S ⊂ ∂D of an

analytic polyhedron, respectively.

representation12 is, for example, probably the
most general integral representation, but the in-
tegration manifold is 2d− 1 dimensional.

For our practical purposes, a minimal integra-
tion space dimension is, of course, most desir-
able to reduce the number of fitting variables
when reconstructing the function by a Maximum-
Entropy-like Bayesian inference technique.

1. The Shilov Boundary

In d = 1 complex analysis, Cauchy’s integral
representation reconstructs all values of a simply
connected open domain of finite radius using the
limit values on the topological boundary, as long
as the boundary values are continuous. I.e. the
structure on the topological boundary determines
the structure of the interior.

For d > 1, the topological boundary can in
this sense be reduced to an often much smaller
set, the so-called distinguished or Bergman-Shilov
boundary.16 In the 1930s, Stefan Bergman discov-
ered the distinguished boundary in the context of
C2 for bounded domains with piecewise smooth
boundaries. He found that under certain regular-
ity conditions, an integral representation with re-
spect to an only two-dimensional manifold S of all
intersections of the smooth boundaries was possi-
ble, using the so-called Bergman kernel function.
A precise geometric and analytic description of
these results is provided in great detail in chapter
XI of Ref. 14. A pictorial comparison of the result-
ing Bergman-Weil representation to the Cauchy
formula is provided in figure 12. These concepts
where independently discovered by Shilov in the
1940s in the rather different context of commuta-
tive Banach algebras.16
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a. Generalization. In the modern terminol-
ogy, the Shilov boundary, as a generalization of
the Bergman-Shilov boundary, may be defined
for any compact space with respect to an alge-
bra of continuous complex-valued functions on
the space.16 If we for example find physical con-
straints imposing certain conditions to the set of
holomorphic functions, the Shilov boundary with
respect to these functions may be reduced to a
smaller set. If a sufficiently elaborate kind of in-
tegral representation is used, this may enable us to
again reduce the number of linear fit parameters
significantly in the Bayesian inference problem.

b. Examples. For the domains with piece-
wise smooth boundaries which Bergman investi-
gated, S is given by the unification of all pos-
sible intersections between the smooth boundary
hypersurfaces, as long as certain regularity condi-
tions hold. We return to our two examples from
part III B 2 c, the bicylinder and the unit sphere
and comment on their Bergman-Shilov bound-
aries.

The bicylinder, D1×D1, is one of the most eas-
ily accessible domains of holomorphy, because it
simply factorizes into two D1-disks in C. A mini-
mal integral representation of a holomorphic func-
tion which is continuous on the closure D1 ×D1,
is simply given by the product of two conven-
tional Cauchy representations (see Theorem 2.2.1
in Ref. 21),

f(z) =
1

(2πi)2

∫∫
S1×S1

d2ζ
f(ζ)∏

k(zk − ζk)
. (7)

Therefore, the Bergman-Shilov boundary of D1×
D1 is given by the only two-dimensional toroidal
subset S1 × S1 = ∂D1 × ∂D1 of the three-
dimensional topological boundary ∂(D1 ×D1) =
∂D1 ×D1 ∪D1 × ∂D1. Similarly, integral repre-
sentations of domains which are direct products
of C1 domains can be constructed from the con-
ventional Cauchy integral formula.

It was already mentioned in part III B 2 c that
the unit sphere in C2 is not biholomorphically
equivalent to the bicylinder. In contrast to the
two connected smooth boundary hypersurfaces of
the bicylinder, the boundary hypersurface of the
unit sphere is not even a smooth hypersurface in
Bergman’s notion. One can show that here the
Bergman-Shilov boundary is, in fact, identical to
the topological boundary. Thus, any integral rep-
resentation for holomorphic functions in domains
such as the unit sphere must invoke at least three
real integrals. It is an example of the strong dis-
tinguishments which have to be made between

certain classes of domains of holomorphy.
D. Holomorphic Structure of the Green’s

Functions

As a next step, we will systematically analyze
the mathematical structure of the Green’s func-
tion arising in the Matsubara-voltage approach.
The bare Green’s function with respect to the two
variables iϕm, iωn reads1

G0(iϕm, iωn) = (8)∑
α=±1

Γα/Γ

iωn − α(iϕm − Φ)/2− εd + iΓsgnnm
.

Here, sgnnm := sgn(ωn − αϕm/2). Performing
the analytic continuations iωn → zω, iϕm → zϕ,
the sign function in the denominator results in an
ambiguity, as far as the definition of domains, for
which G0 is holomorphic, is concerned.

Choosing a branch cut structure which corre-
sponds to the continuation

sgn(ωn ± ϕm/2)→ sgn(Im zω ± Im zϕ/2) (9)

appears to be most sensible from both, a mathe-
matic and a physical point of view:

From the former perspective, in contrast to
other choices the resulting domains are also do-
mains of holomorphy and are thus “maximal”
with respect to the holomorphic structure. The
four domains of holomorphy are given by C2 sep-
arated into wedges by the two branch-cut hyper-
planes Im zω ± Im zϕ/2 = 0 (see Fig. 13a). From
the latter, it is just the imaginary part of the
linear combinations of zω and zϕ, appearing in
the denominators of perturbative expressions in
U , which yields the crucial sign-switching delta
functions generating the non-analytic terms sep-
arating the domains for which G is holomorphic.
See, e.g., appendix B of paper I.

Consequently, for a finite interaction U 6= 0, the
appearance of a branch cut must be expected for
any new kind of linear combination of zω and zϕ
in the denominators of the integrands in the per-
turbation expansion. For example, second-order
perturbation theory from Ref. 1 indicated that
particle-hole bubbles create higher-order branch
cuts Im zω − γ

2 Im zϕ = 0, with γ ∈ Z odd, due to
the structure of convolutions which are involved.
In a later publication23 it was pointed out that
vertex corrections seem to introduce yet another
branch cut for Im zϕ = 0. The physical retarded
Green’s function is then given by
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FIG. 13: (color online) Branch cut structure of the Green’s function. The fully interacting structure
is obtained from the perturbative expansion in U/Γ.

Gret(ω) = lim
zω→ω+i0+

limδϕ→0+ + limδϕ→0−

2
G(Φ + iδϕ, zω), (10)

i.e. one has to average over the two possible limits
with respect to δϕ.

Note that the latter subtlety was not taken into
account in the direct continuation using the cone
Cε in Ref. 10, and also not in the initial approach
in Ref. 1.

1. Resulting Mathematical Assumptions

The following assumptions are being made for
the mathematical structure of the Green’s func-
tion:

1. By means of holomorphy, we obtain cone-
like constraints for the combinations of
imaginary parts, as depicted in Fig. 13b.
More precisely, we require G to be a solu-
tion of the Cauchy-Riemann equations (4)
for any z(0) except for those z(0) for which

Im z(0)
ω =

γ

2
Im z(0)

ϕ or

Im z(0)
ϕ = 0,

(11)

with some γ ∈ 2Z + 1. Those z(0) define
the branch cut hyperplanes and delimit the
wedges for which G is holomorphic.

2. We will require the interacting Green’s func-

tion G(z) to be bounded, i.e.

sup
z∈C2

|G(z)| <∞. (12)

3. We will assume that the Green’s function
G(z) is uniquely defined by the discrete
function values G(iϕm, iωn) which are ob-
tained from the effective-equilibrium com-
putations. I.e. we require that the continua-
tion to a multisheeted holomorphic function

G(iϕm, iωn)→ G(zϕ, zω) (13)

is unique.

The second assumption is justified by the struc-
ture of the convolution equations in perturbation
theory and the boundary conditions that terms
eiϕmβ/2 and eiωnβ , evaluate to 1 and -1 before the
analytic continuations are carried out.

A proof of the third statement, which is of
course crucial for the physical theory itself, will be
provided in appendix A. It is based on assump-
tion 1 and 2 and the assumption 3’ which sharpens
the requirements on the z →∞-asymptotics:

3’. Given arbitrary x(0) ∈ R2 \ {0} and ζ ∈ C,
we have

lim
ζ→∞

∣∣∣ζ ·G(ζx(0))
∣∣∣ <∞

⇔ x(0)
ω 6= ±x(0)

ϕ /2.
(14)
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In other words, G(z) is required to decay like
a usual Green’s function as a function of ζ,
where z = ζ ·x(0), if and only if x(0) satisfies

the regularity condition x
(0)
ω 6= ±x(0)

ϕ /2.

2. Justification of assumption 3’

The assumption 3’ may be justified as follows.

Consider the absolute value of the free Green’s
function (8),

|G0(zϕ, zω)| ≤
∑
α=±1

Γα
Γ

1

|(zω − α(zϕ − Φ)/2− εd + iΓsgnIm (zω − αzϕ/2)|

It is obvious that it decays ∝ 1
ζ when zϕ = ζ ·x(0)

ϕ

and zω = ζ ·x(0)
ω for the nonsingular combinations

of x
(0)
ϕ and x

(0)
ω . It does not decay at all in the

singular cases x
(0)
ω = ±x(0)

ϕ /2.

It is easy to check that interaction U > 0 does
not change this high-energy structure. Let us
examine the second-order self-energy expression
(Eq. (15) in Ref. 1):

Σ(2)(z) = U2
∑
αi

[
3∏
i=1

∫
dεi

Γαi
Γ

]
· fα1

(1− fα2
)fα3

+ (1− fα1
)fα2

(1− fα3
)

zω − (α1 − α2 + α3)
zϕ−Φ

2 − ε1 + ε2 − ε3
,

with fαi = f(εi − αiΦ/2).

Due to the structure of the denominator, we see
that on top of the singular directions of the bare

Green’s function, x
(0)
ω = ±x(0)

ϕ /2, we also have the

singular directions x
(0)
ω = ± 3

2x
(0)
ϕ .

Consequently, assumption 3’ is incorrect for the
second-order self-energy. Nevertheless, when in-
serted into Dyson’s equation,

G(2)(z) =
G0(z)

1−G0(z)Σ(2)(z)
, (15)

we see that for the directions x
(0)
ω = ± 3

2x
(0)
ϕ the

limiting behaviour of G0 is adopted, i.e. the be-
haviour (14).

Note that the uniqueness proof of the appendix
also holds when directly applied to the self-energy,
because the singular directions of the second-order

perturbation theory, x
(0)
ω = ± 3

2x
(0)
ϕ , are not re-

quired to be regular in the proof. This is because

the direction x
(0)
ω = ± 3

2x
(0)
ϕ also defines a branch

cut (assumption 1).

E. Tubular Cone Domains (“Wedges”)

As we have seen, the structure of G0 combined
with the structure of convolutions in the pertur-
bation theory with respect to U , indicates that
the numerous branch cut hyperplanes divide C2

into several, in fact infinitely many, wedges of the
form TC = R2 + iC. C is by definition a convex
cone with its vertex at zero. See also the picto-
rial discussion in Ref. 10. Due to the convexity
of C, TC is pseudoconvex and thus a domain of
holomorphy.12 In the mathematical classification
scheme, domains like these are called tubular cone
domains.

1. Geometry of the Cones

We briefly introduce certain notions of the de-
scription of the analytic geometry of cones in Rd.
This is necessary to thoroughly follow the math-
ematical formulae which are involved in the de-
scription of the analytic structure of TC . The
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cone C with vertex at zero is formally defined by
the scaling property x ∈ C ⇒ ∀λ > 0 : λx ∈ C.

Its dual cone C∗ is defined via the standard
scalar product

(ξ, x) :=

d∑
k=1

ξkxk; ξ, x ∈ Rd, (16)

by

C∗ := {ξ ∈ Rd | ∀x ∈ C : (ξ, x) ≥ 0}. (17)

C∗ represents the space of positive semi-definite
linear functionals on C when the functional form
(16) is considered. The dual cone is important,
because the construction of kernel functions often
involves Fourier transforms.

A convex cone is a cone for which the straight
line between any pair of points within the cone is
also contained by the cone. We will also use the
analytic continuation of the scalar product (16)
with respect to x. We continue x → z holomor-
phically in (16):

(ξ, z) :=

d∑
k=1

ξkzk; ξ ∈ Rd, z ∈ Cd. (18)

2. Analytic Structure and Biholomorphic
Equivalence Classes

Tubular cones and domains are well-known ob-
jects in the theory of several complex variables,
because they naturally arise in certain fields of
mathematics. As a consequence, many efforts
were put in for a detailed understanding of their
structure. In the prominent physical example,
axiomatic quantum field theory, the cones repre-
sent forward and backward light cones, in four-
dimensional spacetime, d = 4. A celebrated result
was Bogolyubov’s edge-of-the-wedge theorem.36

Mathematical examples include Fourier analysis,
functional analysis, the theory of hyperfunctions,
and the theory of partial differential equations.

A key component of the wedge is given by its
edge, namely the real subspace associated with
the vertex of the cone. Because in our case the
vertex is located at zero, the edge of the wedge
TC can be formally identified with an oriented
copy of the real subspace,

EdgeTC := Rd + i0C , (19)

where 0C is an infinitesimal vector within the cone
C. Although there exist, depending on the direc-
tion approaching the origin within C, several in-
finitesimals 0C , the Edge is well-defined through

(19), because all infinitesimals in C are obviously
equivalent with respect to holomorphic continua-
tion in TC . TC may be regarded as a generaliza-
tion of the upper half plane.

Let C,C ′ be arbitrary convex cones in Rd,
C 6= C ′. TC and TC

′
are in general not biholo-

morphically equivalent. This means that the sets
of holomorphic functions living on them are struc-
tured differently. Wedges within the space C2 are
fortunately an exception to this rule: TC and TC

′

are biholomorphically equivalent for any combina-
tion C,C ′. See also the introductory notes in the
corresponding part of the second volume of ref-
erence 13. In C2, biholomorphisms between TC

and TC
′

may be constructed easily using com-
plexified rotations and dilations of R2: Consider
that the real (non-singular) matrix M : R2 →

R2, x 7→
(
a b
c d

)
x maps C to C ′, i.e. C ′ = MC.

The corresponding biholomorphism between TC

and TC
′

is obtained from the complexified map

M̃ : C2 → C2, z 7→
(
a b
c d

)
z. It is easy to see

that TC
′

= MTC , that M is holomorphic, and
invertible.

If the complexified linear map is a rotation, we
will also call it a biholomorphic rotation when we
want to emphasize the biholomorphic character of
the mapping.

Note that the helpful notion of the Bergman-
Shilov boundary is not directly applicable to TC ,
because TC is unbounded. However, as will be dis-
cussed next, sequences of bounded domains ap-
proaching TC from its interior may be used to
understand the holomorphic structure on TC .

3. Bergman-Weil Representations

A sequence of bounded domains Dn ⊂ TC ,
limn→∞Dn = TC , with piecewise smooth bound-
aries like in Fig. 12b may be easily constructed,
such that the edge of the wedge contains a part
of the Bergman-Shilov boundary Sn of Dn and
such that the other subsets of Sn disappear to
∞ as n → ∞. In our case, d = 2, an ex-
plicit construction of such a sequence may be ob-
tained by intersecting TC with a growing bicylin-
der Bn := Rn · (D1 × D1), Dn := Bn ∩ TC , with
radius Rn ∝ n. The procedure is sketched in
Fig. 14. One finds that the sequence of Bergman-
Shilov boundaries improperly converges to

S∞ := EdgeTC ∪ {∞}, (20)

where “∞” shall informally denote the point or
merely a list of points which emerge when TC
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Bn

TC

Sn

Dn

Edge∩Sn
Bn−1

FIG. 14: (color online) An artist’s impression of
asymptotically filling the wedge TC with the se-
quence Dn. Dn is a domain with piecewise smooth
boundaries created by intersecting with a grow-
ing bicylinder Bn, creating the analytic polyhe-
dra Dn. The corresponding sequence of Bergman-
Shilov boundaries improperly converges to the set
Edge∪ {∞}. Therefore, the sheaf of holomorphic
functions on TC is solely characterized by its edge

values and its asymptotic behaviour z →∞.

is, depending on the holomorphic structure, com-
pactified suitably. At first glance, each direction
for approaching ∞ might yield a different point
in {∞}. The points “∞” carry the additional in-
formation which is necessary to turn the structure
on EdgeTC into a unique description of the holo-

morphic structure on TC .
The Bergman representation for an analytic

polyhedron in C2 may be obtained by the follow-
ing, rather technical, procedure, whose details are
not particularly relevant but enable us to investi-
gate rather explicitly the structure of a suitably
large class of holomorphic functions on a wedge.
An excellent pedestrian’s introduction to it is pro-
vided by Bergman’s original monograph, Ref. 14.
The book also provides a comprehensive introduc-
tion to the Bergman-Shilov boundary and biholo-
morphic maps, using the example of analytic poly-
hedra. Equations of the form

ζ(k) = f(k)(z, λk); (21)

with λk ∈ Λk ⊂ R, k = 1, . . . ,K, where f(k)(z, λk)
are λ-parametrized families of analytic functions
of z, shall define the analytic polyhedron. Each
equation yields a surface in z-space for a given
λ and a hypersurface hk in z-space as λ is var-
ied continuously. The mutual intersections Skl =
hk∩hl yield the Bergman-Shilov boundary surface
S =

⋃
k,l Skl. Skl is then parametrized by a func-

tion z = g(kl)(λk, λl). A holomorphic function f

on the analytic polyhedron may then be written
with respect to the Bergman-Shilov boundary of
the latter using the Bergman kernel function

Bkl =

∣∣∣∣∣∂(g
(kl)
1 , g

(kl)
2 )

∂(λk, λl)

∣∣∣∣∣ ·
·

(
fl(z1, z2, λl)fk(z1, g

(kl)
2 , λk)

(g
(kl)
1 − z1)(g

(kl)
2 − z2)

−

fk(z1, z2, λk)fl(z1, g
(kl)
2 , λl)

(g
(kl)
1 − z1)(g

(kl)
2 − z2)

)
.

(22)

The integral representation with respect to f |S
then reads

f(z) = − 1

8π2

∑
k 6=l

∫
λk,λl

f(g
(kl)
1 , g

(kl)
2 )Bkl

f(k)(z, λk)f(l)(z, λl)
(23)

and can be applied directly to our Dn domains.
An explicit test on whether a Bergman inte-

gral representation for G0 on the Dn = Bn ∩ TC
domains is feasible yields that the subsets of Sn
which go to ∞ may not be neglected for G(z)
functions. This is because G0(z) has a nonzero
limit as z →∞ if one goes along the cross-shaped
submanifold Re zω = ±Re zϕ/2 and keeps Im z
constant. Due to the independence of Im z this
problem occurs for each of the wedges. Hence,
the Bergman kernel function (22) is only of lim-
ited use for us. We will thus not go into further
details of this rather clumsy computation here.

The formal use of the sequence Dn enables
us to see very explicitly that the Edge of TC is
with respect to the representation (22) the only
carrier of structural information which involves
finite values of z. The rest of the information,
then uniquely defining the holomorphic structure
on TC , is encoded in the several possible classes
of limiting behaviour as z approaches infinity.

4. Cauchy-Bochner Integral Representation

As a straightforward consequence of this, as-
suming a certain limiting behaviour of the con-
sidered set of functions on TC , integral represen-
tations with respect to the Edge Rd + i0C may
be derived. Even more generally, a constraint on
the function class which also limits the Edge be-
haviour, can be imposed in such a way that the
Edge function yields a unique description. The
several possible z → ∞ behaviours are then, us-
ing the information from the constraint, encoded
in the Edge. This appears to be linked deeply to
the extension of the notion of the Bergman-Shilov
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boundary to the notion of the Shilov boundary
mentioned in the course of section III C 1: Con-
sidering a subset of the sheaf of holomorphic func-
tions on a certain (compactified) domain may
cause the Shilov boundary to “shrink”.

We are now going to discuss one of the ear-
liest developments going beyond simply restrict-
ing the considered function set such that a näıve
extrapolation of Bergman representations, like in
Fig. 14, holds. It was another extension of the
Cauchy integral formula with respect to tubular
cones by Salomon Bochner. He considers a func-
tion f which is holomorphic on TC and satisfies
the constraint

‖f(x+ iy)‖ ≤Mε,f (C ′)eε|y| (24)

which has to hold for any compact cone C ′ ⊂ C
and for any ε > 0, where Mε,f (C ′) is a suit-
ably chosen real number. ‖ · ‖ is a norm which
integrates out the x variable, ‖f(x + iy)‖2 :=∫

ddx |f(x+ iy)|2.12

Inequality (24) constrains the limiting be-
haviour z → ∞ in a sufficiently strong way such
that an integral representation with respect to the
Edge may be constructed.

Namely, the Cauchy-Bochner representation
then allows a function f satisfying (24) to be writ-
ten as

f(z) =
1

(2π)d

∫
ddx′KC(z−x′)f(x′+i0C); (25)

with the Edge values f(x′ + i0C). Here, the so-
called Cauchy kernel12 of the cone C, defined as

KC(z) :=

∫
C∗

ddξ ei(ξ,z), (26)

was introduced. It is straightforward to compute
the Cauchy kernel for our wedges with this for-
mula: see the Appendix of Ref. 10. For our pur-
poses, we will provide a general but easily applica-
ble expression for further numerical and analytical
computations in section III G.

Unfortunately, as in the Bergman approach, a
numerical test of Eq. (25) for f = G0 using an ar-
bitrary wedge for which G0 is holomorphic shows
that the Cauchy-Bochner representation (25) is
also incorrect for G0. As a consequence, we find
that the Green’s functions does not satisfy (24).
This is compatible with the fact that the left hand
side of (24) diverges in the case f = G0, no matter
which C ′ is considered.

Nevertheless, as we will see, the Cauchy-
Bochner kernel (26) will serve as a building
block for the construction of an exact integral
representation for a different class of holomorphic

functions which in fact contains the holomorphic
branches of our Green’s function G(z) on the re-
spective wedges. As such it is essential as a con-
nection of real-time and imaginary-time structure
of the Green’s function.

5. The tubular octant H×H and
Biholomorphic Equivalence to the Bicylinder

Due to the biholomorphic equivalence of all TC

in C2 any of our wedges which arise for the Green’s
function may be mapped biholomorphically to the
tubular octant H×H = R2 + i (R+ ×R+), where
H is the upper half plane of C. This domain may
itself be mapped biholomorphically to the bicylin-
der D1 ×D1 via a piecewise Möbius transforma-
tion of the coordinates. Hence, all wedges of the
Green’s function are biholomorphically equivalent
to the bicylinder. Let us denote a corresponding
biholomorphism by mC : TC → D1 × D1. We
would like to comment on this due to the striking
simplicity of the bicylinder and of domains which
are direct products of C1 domains with respect to
the construction of integral representations.

From the point of view of this construction,
the tubular octant may be regarded as the sim-
plest representant of the biholomorphic equiva-
lence class of all wedges in C2.

Due to the premises of the Cauchy integral for-
mula, a usage of the representation (7) for the
biholomorphically transformed sheaf of holomor-
phic functions is feasible in case the transformed
Green’s function G|TC ◦m

−1
C is continuous on its

topological boundary ∂(D1 ×D1). Note that un-
der the biholomorphic transformations, S1×S1 is
mapped to the edges of the TC wedges. The “∞”
in TC maps to “∞” in H×H under biholomorphic
transformation, and that again maps biholomor-
phically, using the component-wise Möbius trans-
formation zk−i

zk+i to the points p∞ := {1} × S1 ∪
S1 × {1}. Note that the points p∞ ⊂ ∂(D1 ×D1)
are also part of the distinguished boundary torus
S1 × S1.

The boundary behaviour of the transformed
Green’s function G|TC ◦m

−1
C is not continuous at

the intersection point (1, 1) of the two circles p∞,
due to the properties of G0|TC at ∞ leading to
singular directions, as summarized in assumption
3’ of section III D.

An illustration may be found in Fig. 15.
Therefore, using the biholomorphic equivalence

to the bicylinder is not immediately helpful for the
construction of an integral representation of the
Green’s function G. Nevertheless, it is essential
in the application of Vladimirov’s approach which
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(1, 1)

mC(Edge)

S1 × 1

S1 × S1

p∞
1× S1

FIG. 15: On the distinguished boundary surface
of the bicylinder, the picture of EdgeTC under
the component-wise Möbius transformation mC
is delimited by the dash-dotted lines p∞. A dis-
continuity of G|TC ◦ m

−1
C occurs at the intersec-

tion point (1, 1) of the two circles and prevents
a Cauchy representation from being applicable.
The violation of the Cauchy-Bochner condition
(24) appears to be related to the occurance of the

discontinuity.

will be subject of the next section.

F. Vladimirov’s Integral Formula

Vladimirov provided a generalization of the so-
called Herglotz-Nevanlinna representation for the
upper half plane to tubular cone domains. His
investigations were motivated by applications in
the field of linear passive systems in mathemati-
cal physics10,13,20. Due to its generality, the ap-
proach is applicable to the analytic wedges of the
interacting Green’s function G.

1. Herglotz-Nevanlinna Representation (d = 1)

We will discuss the conventional Herglotz for-
mulae. Herglotz’ representation theorem consid-
ers holomorphic functions in the open unit disk
D1 which have a positive real part, the so-called
Carathéodory functions17–19. By separating a
phase factor out of the function one can also con-
sider functions with positive or negative imagi-
nary part, and so on. Since the open unit disk can
be conformally mapped to the upper half plane
H, using the Möbius transformation z−i

z+i , as men-
tioned above, the representation can under certain
circumstances be also used for H.

By considering Carathéodory functions, Her-
glotz’ theorem only imposes assumptions on the
positivity of the real (imaginary) part of the
function. In contrast to Cauchy’s integral for-
mula, no assumptions about the behaviour of the
Carathéodory functions on the boundary of the
disk are made, such as the continuity.

The theorem states that every Carathéodory
function f can be represented by

f(z) = i · Im f(0) +

∫ 2π

0

eit + z

eit − z
dσ(t) , (27)

where dσ is a nonnegative finite measure.17

Regarding a different set of functions, a for-
mally very similar representation is the so-called
Poisson formula, which is the analog of the
Cauchy formula to the real analysis of harmonic
functions (solutions of Laplace’s equation), and
can in fact be derived from it. It provides an inte-
gral kernel for the solution to the Dirichlet prob-
lem for the Laplace equation on the unit disk in
R2. For a continuous function f : ∂D1 → R it al-
lows to construct a harmonic function u : D1 → R
as follows (see pp. 169ff. in Ref. 15):

u(z) =
1

2π
Re

∫ 2π

0

eit + z

eit − z
f(eit) dt (28)

A comparison of Eqs. (27) and (28) shows that
the measure dσ of the Herglotz formula is in fact
defined by the (possibly singular) boundary limit
of the holomorphic function.

As a natural extension of the Poisson formula,
the Schwarz integral formula reconstructs a holo-
morphic function f on the closed unit disk from
the real part of its boundary values, up to a con-
stant imaginary offset. It reads (p. 171 in Ref. 15)

f(z) = i ·Im f(0)+
1

2π

∫ 2π

0

eit + z

eit − z
f(eit) dt . (29)

Apparently, the only formal difference between
(28) and (29) is the different measure.

Due to the conformal equivalence, for a holo-
morphic function f on the closed upper half plane
Im z ≥ 0, under the assumption that there is an
α > 0 for which |zαf(z)| is bounded, one has the
Schwarz representation in the following form:

f(z) =
1

πi

∫ ∞
−∞

Re f(x+ i0+)

x− z
dx . (30)

Note the formal equivalence to the spectral rep-
resentation of a conventional Matsubara Green’s
function, G(z) =

∫
dx 1
−π

ImG(x+i0+)
z−x .

Similarly, the Poisson kernel for the closed up-
per half plane is

Py(x) =
y

x2 + y2
, (31)

yielding the representation

u(x+ iy) =
1

π

∫ ∞
−∞

Py(x− t)f(t) dt , (32)
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with f ∈ Lp(R).
The full Herglotz-Nevanlinna representation of

arbitrary analytic functions with positive real part
for the open upper half-plane reads20

f(z) =
z + i

πi

∫
dµ (x′)

(x′ − i)(x′ − z)

− 1

π

∫
dµ (x′)

1 + x′2
− iaz + b.

(33)

Here, µ is given by the boundary-value distribu-
tion of Re f :

µ = Re bv f, (34)

i.e. µ(x) “=” Re f(x+ i0+). The linear coefficient

a = Re f(i)− 1

π

∫
dµ (x′)

1 + x′2
, (35)

and the constant term b = Im f(i).
For example, in the case of the function f(z) =

i/πz, µ is the Dirac measure µ(x) = Re bvf =
δ(x) and the coefficients a = b = 0. The case
µ(x) = −a ·δ(x) is not permitted by construction.

At first glance, Eqs. (30) and (32) and the con-
nection to the Herglotz-Nevanlinna representation
(33) seem to be rather straightforward applica-
tions of the Cauchy integral formula. However,
attempting the multidimensional generalization,
we found that in our case, d > 1, the Cauchy-
Bochner way of invoking KC for a representation,
equation (26), is not valid for the noninteracting
Green’s function G0|TC : see Section III E 4. Re-
markably, as found in section III E 5, taking as-
sumption 2 from section III D in to account, we
find that when transformed to the bicylinder, the
Green’s function G|TC ◦m

−1
C is closely related to a

Carathéodory function, but the Cauchy-Bochner
representation is invalid.

These subtleties are apparently reflected by the
central assumption (24) of Cauchy-Bochner rep-
resentations.

2. Functions with positive real or
imaginary part in TC

Note that the representation (33) can be also
used for bounded functions on the upper half
plane. This can be seen by formally introduc-
ing a shift in f which makes the real part of the
function of consideration positive definite.

While the signs of its real and imaginary parts
will vary, the Green’s function G|TC is in fact a
bounded function, assumption (12). This is why
Vladimirov’s integral representation for functions

with positive imaginary part turned out to be
applicable.10 Let us denote the set of holomorphic
functions with positive imaginary parts on TC by
H+(TC). Due to the biholomorphic equivalence
of the Green’s function’s wedges to the bicylin-
der, one may think of H+(TC) as a generalization
of the Carathéodory functions. Note that in the
literature, sometimes functions with positive real
and sometimes functions with positive imaginary
parts are considered, resulting in marginal differ-
ences in the equations.

3. Vladimirov’s Kernel Functions for TC

We will now study the generalization of
the Herglotz-Nevanlinna representation to d-
dimensional wedges.13,20 Vladimirov’s approach
may be found for positive real parts in Ref. 20
and for positive imaginary parts in Ref. 13.

Because our original work10 referred to Ref. 13
we would like to switch to considering the class of
functions with positive imaginary part, H+(TC),
in the following.

Let us first introduce Vladimirov’s generaliza-
tions of the Poisson and Schwarz kernels, using
the Cauchy kernel KC from Eq. (26) as a starting
point.

The (generalized) Poisson kernel for the wedge
TC is defined by13

PC(z) :=
|KC(z)|2

(2π)dKC(2iy)
; z = x+ iy. (36)

In case of the tubular octant, it is the product
of usual Poisson kernels, however it is no longer
simply proportional to the imaginary part of the
Cauchy kernel. The (generalized) Schwarz kernel
with respect to a point z(0) = x(0) + iy(0) ∈ TC is
given by

SC(z, z(0)) :=
2KC(z)KC(z(0))

(2π)dKC
(
z − z(0)

)
− PC(x(0), y(0)).

(37)

For a measure µ(x) we call

PC [ dµ ](z) :=

∫
dµ(x)PC(z − x) (38)

the Poisson integral with respect to µ.

4. Vladimirov’s Theorem

We already pointed out that in the case d ≥ 3
two arbitrary different wedges, TC and TC

′
, are
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usually not biholomorphically equivalent. In par-
ticular, the wedge TC is not necessarily biholo-
morphically equivalent to Hd when d ≥ 3. Hence,
one may expect the structural similarity to the
Carathéodory functions to break down more eas-
ily in higher dimensions. This is the reason
why Vladimirov’s d-dimensional generalization13

of Herglotz’ theorem is stated in a comparably
cryptic way which will simplify considerably in
our case d = 2, for the reasons above:
Theorem. (Vladimirov, 1978/79) The fol-

lowing conditions for a function f ∈ H+(TC)
are equivalent for a cone C ⊂ Rd and µ(x) :=
Im f(x+ i0C):

1. The Poisson integral PC [ dµ ] is plurihar-
monic in TC ;

2. the function Im f(z), z = x + iy ∈ TC , is
represented by the Poisson formula

Im f(z) = PC [ dµ ](z) + (a, y), (39)

for some a ∈ C∗, where C∗ is the dual cone
of C;

3. for all z0 ∈ TC , under the assumption that
C is regular, the Schwarz representation

f(z) =i

∫
Rd
SC(z − t, z0 − t) dµ (t)

+ (a, z) + b

(40)

holds, with b = b(z0) = Re f(z0)− (a, x0).�

Note that pluriharmonic functions are the natural
multidimensional generalization of harmonic func-
tions. A regular cone C in our context is a cone
for which 1/KC is non-singular in TC . In the cases
d = 1, 2, 3 all pointed cones are regular20.

Using the equivalence of all TC in the case
d = 2, in Ref. 10 we verified that the first state-
ment of the theorem is true for G|TC . This is so
because it is known from the literature (see p. 134
in Ref. 20) that the Poisson integral is plurihar-
monic for any function H+(Hd). Due to the bi-
holomorphic equivalence of all TC to H2 in C2,
the two integral representations provide exact re-
lations for all holomorphic sheets of the interact-
ing Green’s function. A parametrization of the
Green’s function with respect to their Edge val-
ues is gained by this. In our case, the validity
of the representation has due to the biholomor-
phic equivalences first been shown by Korányi and
Pukánsky’s work on the polycylinder.32

Note that the linear growth term a is zero for
the Green’s function, because it is bounded, as
required by assumption (12).

ϑ

ratio r

Cr,ϑ

Cr,0
opening

FIG. 16: An arbitrary cone C with 0 as vertex
can be parametrized by an opening ratio r and an
orientation angle ϑ. The rotation Rϑ which maps
Cr,0 to Cr,ϑ induces a biholomorphism between

TCr,0 and TCr,ϑ .

G. Application to the Green’s function

It turns out to be reasonable to specify a given
cone domain arising from the branch cut structure
by an angle ϑ and an opening ratio r. See figure
16. It is sufficient to consider the case ϑ = 0 first,
because relations for finite ϑ may be reconstructed
from biholomorphic rotations, as explained in sec-
tion III E 2.

1. Kernels for ϑ = 0

For the case ϑ = 0, a computation of the ker-
nels KCr,ϑ and PCr,ϑ has been provided in the
appendix of Ref. 10 already, where the opening
ratio r was named ε for technical reasons.37

We used the definition

Cr,ϑ :=
⋃

λ∈(−r,r)

{(x1, x2) ∈ R2 |x2 > 0∧x1 = λx2}

(41)
and computed the Cauchy and Poisson kernels via
equations (26) and (36). The resulting Cauchy
kernel is

KCr,0(z) = −2r
∏
µ=±1

1

rz2 − µz1
, (42)

and the resulting Poisson kernel is

PCr,0(z) =
r

π2

∏
µ=±1

ry2 − µy1

(rx2 − µx1)2 + (ry2 − µy1)2
.

(43)
We have not used an explicit formula for the
Schwarz kernel (37) yet, because the occurance of
the reference point z(0) appears to introduce addi-
tional technical complications. The shape of equa-
tion (43) is so simple because it can be computed
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from the tubular octant, whose Poisson kernel is
the product of usual Poisson kernels. A simple
real-valued 2 × 2 matrix acts as the biholomor-
phism which converts the two representations.

2. Operator Notation

In order to put a stronger emphasize on the
functional-analytic nature of the integral repre-
sentations which interrelate edge and wedge val-
ues of the Green’s function, let us introduce an
operator notation for the Poisson integral and also
for the biholomorphic rotations.

Let us denote the set of all a-priori admit-
ted Green’s functions on TC by GC . By “a-
priori admitted” we mean those analytic functions
G|TC : TC → C for which axiom 2 from section
III D holds (TC has to comply with axiom 1). Fur-
thermore, let us denote the corresponding space
of boundary value distributions (edge functions)
G|TC (x+ i0C) by EC .

In order to focus on the Poisson kernel, we
introduce the corresponding spaces of imaginary

parts, G(I)
C and E(I)

C .
We denote by the operator PC the linear map

PC : E(I)
C → G(I)

C , (44)

ImG(x+ i0C) 7→
∫

dx2 PC(z − x)ImG(x+ i0C).

Note that the Schwarz kernel (37) does not di-
rectly yield a comparable map from EC to GC ,
due to the occurrence of the z(0) reference point.

Furthermore, the rotation Rϑ, which maps the
cone Cr,0 to the cone Cr,ϑ, induces a biholo-

morphic map R̃ϑ : TCr,0 → TCr,ϑ (see section
III E 2). At this point we would again like to em-
phasize that the biholomorphism does not con-
nect the different branches of the Green’s function
on the wedges. It merely yields a counterpart of
a given holomorphic branch on a biholomorphi-
cally equivalent wedge which can be formally op-
erated with. It is in that sense that is analogous
to the concept of a conformal map. This biholo-
morphism maps functions f ∈ GCr,0 to functions
f ∈ GCr,ϑ . This can be similarly represented by
the linear operator

Rϑ : GCr,0 → GCr,ϑ , (45)

f(z) 7→ f(R̃−1
ϑ (z)). (46)

The operatorRϑ also naturally extends to a lin-
ear map from ECr,0 to ECr,ϑ which we will denote
by the same symbol Rϑ.

3. Kernel functions at finite ϑ

Consequently, for finite ϑ, the Poisson kernel
operator of TCr,ϑ is

PCr,ϑ = RϑPCr,0R−1
ϑ . (47)

Equivalently, the Poisson kernel function of TCr,ϑ

is given by

PCr,ϑ(z) = PCr,0(R−1
ϑ · z). (48)

In practical computations, the function can be
evaluated combining equation (43) and the rota-
tion matrix

R−1
ϑ =

(
cosϑ − sinϑ
sinϑ cosϑ

)
. (49)

4. Edge Properties of G0

Since we essentially reduced the structure of the
Green’s function to the edge values of their holo-
morphic branches, it seems worthwhile to investi-
gate the edge structure of G0, and later also the
perturbative structure of the theory in U , more
carefully. See section III I for the deeper analysis.

The edge limit of the bare Green’s function (8),
as a function of the edge orientation ϑ, is given by

G
(edge)
0 (ϑ;x) =

∑
α=±1

G
(edge),α
0 (ϑ;x), (50)

where

G
(edge),α
0 (ϑ;x) =

Γα/Γ

xω − α(xϕ − Φ)/2− εd + iΓsgnϑ

(51)

and

sgnϑ := sgn
(

cosϑ− α

2
sinϑ

)
. (52)

Apparently, the edge function only changes as a
function of ϑ whenever cosϑ±sinϑ/2 crosses zero.
This reflects the equivalence of all directions

x+ i0ϑ := x+ i ·
(

sinϑ
cosϑ

)
0+ (53)

when approaching the edge within a holomor-
phic branch TC , as discussed in section III E 2.
The edge function changes whenever ϑ crosses a
branch cut, namely for the following singular ori-
entations in the interval [0, 2π):

ϑ
(sing)
1 = arctan 2; (54)

ϑ
(sing)
2 = π − arctan 2;

ϑ
(sing)
3 = π + arctan 2;

ϑ
(sing)
4 = 2π − arctan 2.
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These are the angles corresponding to the four
half-lines emerging from the origin in figure 13a.

The orientations ϑ
(sing)
i are also identical to the

singular directions of assumption 3’ in section
III D.

There is another subtle feature of the edge be-
haviour of the bare Green’s function. The real
part

ReG
(edge)
0 (ϑ;x) =∑
α=±1

Γα
Γ (xω − α(xϕ − Φ)/2− εd)

(xω − α(xϕ − Φ)/2− εd)2 + Γ2

(55)

is completely ϑ-independent. As a consequence,
for any branch ofG0, the edge limit ReG0(x+i0C)
is identical.

Another property is that, following the instruc-
tions (10) to obtain the physical limit as far as the
orientation of the limiting procedure is concerned,
the function

Ã0(x) := − 1

π
ImG0

(
x+ i · 0ϑ=0

)
(56)

is positive definite:

Ã0(x) =
∑
α=±1

Γα/π

(xω − α(xϕ − Φ)/2− εd)2 + Γ2
.

(57)
In particular, the non-interacting spectral func-

tion

A0(ω) = Ã0(Φ, ω). (58)

Again one can see in equation (57) that Ã0 does
not decay to zero as a function of x→∞ along the

singular directions ϑ
(sing)
i (x(0) in axiom 3’, section

III E 2). This is because the singular directions
are an essential feature of the edges and lead to
a discontinuity at ∞ when one compactifies the
edge as shown in figure 15.

H. Bayesian Inference of Spectral Functions

In Ref. 10 we used Vladimirov’s integral rep-
resentation in order to reconstruct a function Ã
which was defined by equation (56) for the inter-
acting system. We chose a cone domain with ori-
entation zero, TCε,0 , and assumed the constrained
Green’s function G|TCε,0 to be analytic for suf-
ficiently small cone opening ratios ε. This was
justified, because the higher-order branch cuts of
particle-hole character (see figure 13b) occur only
in high-order terms in U . The vertex-correction

type of branch cut pointed out in Ref. 23 was ig-
nored.

Then the standard maximum entropy
procedure27 for inferring spectral functions
from quantum Monte-Carlo data could be
adopted to the inference of Ã and therefore the
spectral function.

The procedure was found to work well in the
equilibrium limit, Φ = 0. However, entering the
nonequilibrium regime, the ill-posedness of the
inverse problem increased. Similar to the inter-
twined geometric dependencies between the func-
tion structures on edge and wedge coming to the
surface in the appendix’ uniqueness proof, a geo-
metric dependency of the quality of Bayesian in-
ference was found.

Decreasing the parameter ε provided a limit to
a holomorphic function (leaving aside the vertex-
correction branch cut) on the one hand, but on
the other hand increased the ill-posedness of the
inverse problem for a finite-Φ spectral function. A
discussion of how this is reflected by the structure
of the Poisson kernel function may be found in
Ref. 10.

Apparently, the problem is very much related
to restricting to the sheet TCε,0 only taking
G(iϕm, iωn) data from the sheet into account, dis-
carding the others.

The only possible way to alleviate the increas-
ing ill-posedness is to provide a link between the
holomorphic branches of the Green’s function, be-
ing able to take into account data from not one
but several wedges in order to perform the ana-
lytic continuation (10).

I. Bogolyubov’s edge-of-the-wedge theorem

A candidate of such a link was provided by Bo-
golyubov’s famous edge-of-the-wedge theorem in
the context of axiomatic quantum field theory. It
considered the analytic continuation of Wightman
functions12 in order to establish certain dispersion
relations. From a mathematical point of view, it
also introduced a generalization of the very notion
of analytic continuation.12

There are several versions of the theorem. A
simple version which captures the essential idea
may be found in the book by Hörmander on par-
tial differential operators22. It roughly considers
two functions f± which are holomorphic on the
tube cones T±C , where C is a convex open cone
with vertex at zero. Consequently, the edges of
TC and T−C are “infinitesimal neighbours”. If
the functions have the same boundary value dis-
tributions, f+(x+i0C) = f−(x− i0C) =: f0, then
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f0 is an analytic function. f0 provides an analytic
continuation of both, f+ and f−.

In its more general formulations, the theorem
actually demands the functions f± to be holo-
morphic only locally at the edge and establishes
certain facts about the domain in which f0 is an-
alytic (global edge-of-the-wedge theorem).

An extension to several cones whose edges meet
in a single point is Martineau’s theorem. As in
Bogolyubov’s theorem, locally, holomorphic func-
tions may be found which constitute analytic con-
tinuations of pairs of functions living on wedges.
Again, the edge values of the considered set of
functions have to be interrelated in a more or less
direct way.

IV. SYSTEMATIC EXTENSION OF THE
CONTINUATION PROCEDURE BY USE

OF EDGE RELATIONS

In the previous section, we systematically an-
alyzed the function-theoretical structure of the
Green’s function with regard to the two complex
variables zω and zϕ. The former comes along with
the analytic continuation of the fermionic Mat-
subara frequency iωn associated to the dynami-
cal properties of the effective-equilibrium systems.
The latter comes along with the analytic con-
tinuation with respect to the Matsubara voltage.
A fundamental property of the Green’s function
with regard to the two variables is the branch cut
structure shown in figure 13b. It separates the
holomorphic sheets of the Green’s function which
live on wedges. Their edges meet in a branch
point. For a holomorphic sheet, we were able to
derive an integral representation of the Green’s
function with regard to two real variables, using
kernel functions such the one in Eq. (43). By this,
the functions values on the wedge are represented
linearly by boundary values on its edge and vice
versa. The physical limit (10) of the theory corre-
sponds to approaching the branch point in figure
13b along a certain direction. In order to use data
from several wedges for physical results, it is thus
necessary to find more or less explicit relations be-
tween function values on edges of different wedges.
The so-called edge-of-the-wedge theorem (section
III I) provides some insight along this line. In or-
der to construct an explicit functional-analytic ap-
proach to the analytic continuation which would
enable us to extend the numerical implementa-
tion of the maximum entropy approach, it is only
of indirect use, however.

It is clear that any simple relation between
edges of the different branches of the Green’s func-

tion provides a rather direct link between integral
representations of the respective wedges. Based
on a continuity approximation to function values
at the branch point around which the edges are
aligned, the present section derives the MaxEnt
procedure which was used to infer the numerical
results of section II.

A. Continuous real part at branch point

The relation is an exact identity of the bare
Green’s function. Namely ReG0(x+ i0ϑ) is iden-
tical for any edge orientation ϑ of the bare Green’s
function, see equation (55). It is easy to ver-
ify that same is true for the second-order self-
energy (15) and also for the functions which are
parametrized by Han and Heary’s original fitting
approach in reference 1.

We have

ReG0(x+ i0ϑ) = ReG0(x+ i0ϑ
′
), (59)

Re Σ(2)(x+ i0ϑ) = Re Σ(2)(x+ i0ϑ
′
), (60)

for all ϑ, ϑ′ ∈ [0, 2π). This structure is similar to
the conventional Green’s function causality rela-
tion

G(z∗) = G(z)∗. (61)

There, we consequently have

ReG(ω + i0+) = ReG(ω − i0+). (62)

However, in our case we only know for sure the
symmetry

G(z∗ϕ, z
∗
ω) = G(zϕ, zω)∗. (63)

From equation (63) only the edge relation

ReG(x+i0ϑ+π) = ReG(x+i0ϑ), ϑ ∈ [0, π) (64)

can be derived. I.e. conjugate wedges TC , T−C

carry the same real parts of G(z) on their edges.

B. Range of the continuity assumption

We will now investigate to what extent the re-
lations (59) and (60) also hold for higher-order
contributions to the fully interacting Green’s func-
tion G(z), i.e. to what extent we a-priori expect
the approximation

ReG(x+ i0ϑ) ≈ ReG(x+ i0ϑ=0) (65)

to hold. It is insightful to study the algebraic
properties of a conventional Green’s function G(z)
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first. Subsequently, the two-variable function
G(z) is discussed with respect to its formal struc-
ture and regarding empirical findings from the
continuous-time QMC simulation data.

a. Conventional Green’s function. As a sim-
ple example, let us consider the summation of the
Dyson series9

G = G0 −G0ΣG (66)

= G0 −G0ΣG0 +G0ΣG0ΣG0 · · · .

The entities G(z), G0(z), and Σ(z) satisfy the
causality relation (61). For the equation to hold,
the product (and the sum) of two (61)-satisfying
quantities A(z), B(z) shall also satisfy (61). This
is obviously the case, because

Re (AB)(ω + i0+) = ReA(ω + i0+)ReB(ω + i0+)

−ImA(ω + i0+)ImB(ω + i0+)

= ReA(ω − i0+)ReB(ω − i0+)

−(−ImA(ω − i0+))

(−ImB(ω − i0+))

= Re (AB)(ω − i0+).

Same can be shown for the imaginary part. It
is crucial to recall that the mutual conjugation of
imaginary parts of upper and lower functions has
been used explicitly for closedness of (61) under
multiplication. In other words: the set of func-
tions with only the property (62) is not closed
under multiplication.

b. Two-variable Green’s function. The
closedness under multiplication is in general
violated for functions with solely a continuous
real part on the branch point. This is due to the
fact that no statement about the imaginary part
is made, and case of the causality relation (61),
conjugateness of the imaginary parts is needed
for closedness of the real part’s continuity under
multiplication. For instance, one can easily verify
that G0(z) · G0(z) yields different real parts on
the edges. Same can be shown for G0(z)−1.

C. Structure of the residual term

Nevertheless, as discussed in this paragraph, we
are able to show that the continuity assumption
(65) is recovered for a certain energy range. Ad-
ditionally, empirical findings for the structure of
CT-QMC data, as discussed in appendix B, par-
tially support the assumption by observing con-
tinuity relations between edge functions. Last
but not least, the assumption is justified a pos-
teriori for a rather large collection of wedges via
the obtained numerical results (see section IV E

for further discussion). It is found in section
IV E that including upper (and lower) wedges,
|ωn| > |ϕm/2| (and |ωn| < −|ϕm/2|) into the con-
sidered collection of wedges causes the numerical
procedure to fail. Otherwise, it converges. This
observation is coherent with a strong violation of
the continuity assumption at the principal branch
cuts Im zω = ±Im zϕ/2.

It is insightful to study how the resulting dif-
ference of two given edge functions is structured,
namely to study the local residue

R(ϑ,ϑ′)(x) := ReG(x+i0ϑ)−ReG(x+i0ϑ
′
) (67)

for arbitrary values ϑ, ϑ′ ∈ [0, 2π) as a function of
x ∈ R2.

c. Angular structure. Obviously, due to
Eq. (64) we have

R(ϑ,ϑ) ≡ R(ϑ,ϑ+π) ≡ 0, (68)

for all ϑ. R(ϑ,ϑ) ≡ 0 if ϑ and ϑ′(+π) belong to the
same wedge.

d. Structure due to continuity of imaginary-
time data. Using the empirical fact that the
continuous-time quantum Monte Carlo data
Σ(iϕm, iωn) are continuous as a function of ϕm
and ωn, we can derive certain continuity relations
for R(ϑ,ϑ′). They are provided in appendix B.

e. High-energy structure. Let us also con-
sider the high-energy limit

|x| � max{Γ, |U |, |Φ|, |εd|}. (69)

For this, |G(x + i0ϑ)| is significantly larger than
zero only if xω ≈ ±xϕ/2, according to point 3’,
section III E 2. The “+” and “−” cases imply a
separation of energy scales. For both of these two
energy scales, the closedness under multiplication
is recovered.

One can easily see the recovery of the multi-
plicative structure in the high-energy limit by in-
vestigating the bare Green’s function (50). The
“+” and “−” energy scales are given by the α = −
and α = + addends (51) in Eq. (50), respectively.
Each of the addends satisfies the multiplication
rule, because the absolute value of their imaginary
part remains the same for all ϑ at fixed x. Same is
true for the sum of the corresponding

∑
i αi = ∓1

addendends in the second-order self-energy (15).

Therefore, we conclude that

lim
x→∞

R(ϑ,ϑ′) = 0 for all ϑ, ϑ′, (70)

in contrast to the limiting behaviour of G itself.
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f. Consequences for the analytic structure.
Hence, although the assumption (65) is appar-

ently only approximate, the error R(ϑ,ϑ′)(x) which
is being done by assuming the relation is localized
around 0 in the x-space. It is remarkable that the
intermediate-coupling numerical data presented
in section II appear to be rather precise in the
low-energy region, although the violation terms
are a-priori expected to be strong at low energies.

From the a-priori perspective, the assumption
(65) gives a correct picture of how the wedges
are related in the high-energy range. When as-
suming the relation, additional low-energy degrees
of freedom have to be introduced in order to re-
obtain an exact continuation theory (cf. section
V). Empirical data discussed in appendix B indi-
cate that these degrees of freedom are comparably
well-behaved.

D. Functional-analytic consequences of the
shared-real-part assumption

We will see that the continuity assumption (65)
leads to a complete description of the entire func-
tion G(z) on all wedges only as a function of the
single edge ImG(x + i0ϑ=0). This is extraordi-
narily attractive from a numerical point of view,
because by this, the number of degrees of freedom
when doing the maximum entropy inference is
not increased, but all imaginary-time theory data
G(iϕm, iωn) may be taken into account, without
any a-priori constraint. As in the single-wedge ap-
proach of Ref. 10, the spectral function can still
be directly extracted from the MaxEnt result. We
will see that for functions which comply with the
assumption, it in fact alleviates the ill-posedness
of the inverse problem, as desired.

g. Construction of the kernel. Starting from
equation (65) we can derive a representation of the
Green’s function with respect to ImG(x+ i0ϑ=0)
in the following way. First, we introduce the
Hilbert transform operator H as

(Hf)(x) :=
1

π
P
∫

dx′2
f(x1, x

′
2)

x2 − x′2
. (71)

Then we can use condition 3’ (section III D) in or-
der to apply the Hilbert transform for computing
real and imaginary part from each other on the
boundary of certain H-isomorphic complex lines.

One can show that

ImG|TCr,ϑ = − 1

π
Qr,ϑ · ImG(x+ i0ϑ=0), (72)

where we introduced the operator

Qr,ϑ := Pr,ϑRϑHR−1
ϑ H. (73)

Q(edge)
ϑ

Rϑ

Im
G

(x
+

i0
ϑ )

R−1
ϑ

(65)

Eq.

Im G(x+ i00) −HH

FIG. 17: (color online) Action of the operator

−Q(edge)
ϑ . It translates between functions liv-

ing on edges of wedges with two different angular
orientations. The orientation ϑ is the one of the
considered data wedge, and 0 is the orientation of
the physical limiting procedure (10). Initially act-
ing on the physical edge function, the consecutive

formal operations which comprise −Q(edge)
ϑ either

change the angular rotation or leave it invariant,
as indicated by the respective arrows.

Let us also introduce a symbol for the right part
of the operator sequence,

Q(edge)
ϑ := RϑHR−1

ϑ H. (74)

The action of −Q(edge)
ϑ on ImG(x + i0ϑ=0) is

depicted in figure 17: First, the Hilbert trans-
form H with respect to the xω variable yields
ReG(x + i0ϑ=0). Then, via equation (65) it is
identified with ReG(x + i0ϑ). In order to obtain
ImG(x + i0ϑ) one formally has to transform to
the biholomorphic equivalent of G|TCr,ϑ in the do-

main TCr,0 via the operator R−1
ϑ = R−ϑ. The in-

verse Hilbert transform −H yields the imaginary
part of the edge value of the function TCr,0 → C,
z 7→ (R−1

ϑ (G|TCr,ϑ ))(z). Transforming the func-

tion back to the edge of TCr,ϑ using Rϑ yields the
result ImG(x+ i0ϑ).

Using the Poisson kernel Pr,ϑ, Eq. (48), the
Green’s function is obtained in the desired wedge
TCr,ϑ . The entire procedure is contained in Qr,ϑ.

h. Feature of Q(edge)
ϑ : decoding branch cut ge-

ometry from single edge function. The opera-

tor Q(edge)
ϑ is a map of pure “edge” character.

Therefore, it is worthwhile to study it separately.

Q(edge)
ϑ is well-defined for any square-integrable

function f(x), no matter which orientation ϑ is
considered.

Considering an edge function which is compat-
ible with the Green’s function properties 1,2,3’
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(section III D), Q(edge)
ϑ is not defined for the singu-

lar orientations (54). For example, a straightfor-

ward calculation shows that applying Q(edge)
ϑ step

by step to G0(x+i0ϑ=0) yields exactly the formula
(50), with the switching behaviour (52) whose
value is undefined for the orientations (54). The
missing square-integrability of the edge functions
along these directions is the corresponding math-

ematical reason. In particular, whenever Q(edge)
ϑ

crosses a singular orientation of ImG0(x+i0ϑ=0),
it exactly generates the jump in ImG0(x+i0ϑ) as
a function of ϑ.

Consequently, assuming (65) is correct, both,
not only the holomorphic structure, but also the
complete information about the entire branch
cut structure, namely the exact geometry of the
branch cuts, are encoded in the single edge
function ImG(x + i00). Same is true for the
(ϑ = 0)-edge limit of the second-order self-energy,
Im Σ(2)(x+i00), due to equation (60). It is always
square-integrable, except for the directions xω =
−3/2xϕ, xω = −xϕ/2, xω = xϕ/2, xω = 3/2xϕ,
namely for the geometry of the 2nd-order branch
cuts.

For practical computations, we find that an ex-

ploitation of symmetries of Q(edge)
ϑ is mandatory.

Those are translational invariance and scale in-
variance, but no rotational invariance: For the
translation operator

(Tx′f)(x) := f(x− x′), (75)

and for the homogenous scaling operator

(Λλf)(x) := λ2f(λx), λ > 0, (76)

we have [
Q(edge)
ϑ , Tx

]
= 0, (77)[

Q(edge)
ϑ ,Λλ

]
= 0, (78)[

Q(edge)
ϑ ,Rϑ′

]
6= 0. (79)

The proof of these commutator relations is pro-
vided in appendix C. Note that because direc-
tional scaling implies a shear and therefore non-
conserved angles in the shapes of ImG(x + i00),
it is no symmetry of the operator, in contrast to
uniform scaling.

E. Numerical implementation of Qr,ϑ

The numerical implementation of the kernel
Qr,ϑ is nontrivial. Assuming that G(x + i00) is
sufficiently smooth, we can represent it by super-
imposing localized test functions which span the
space of edge functions.

i. Integral structure of the mapping. Qr,ϑ in-
troduces a quadruple integral. The first two inte-
grals are the two principal value integrals which
come with the Hilbert transforms. The second
ones are included by the Poisson kernel Pr,ϑ. The
integrations are formally very similar to a se-
quence of convolutions A ∗ (B ∗ (C ∗ e)), where
e is an edge function. A crucial point is that due
to the distributional nature of both, the principal
values and the edge functions, the associativity
rule cannot be expected to hold for these con-
volutions (see section 4.2 in Ref. 22): Principal
value and our type of edge functions (functions
with singular directions, Eqs. (54)) are no distri-
butions with compact support. Therefore, it is
impossible to simply contract some “inner inte-
grals” within Qr,ϑ analytically in order to obtain
a simple kernel function for Qr,ϑ. The use of a set
of test functions which spans the space of edge
functions is mandatory.

j. Construction of the test functions. The
test functions would preferably be structured in
a way which allows the quadruple integral in the
operator Qr,ϑ to be solved essentially analytically.
Using the translation operators TX , Eq. (75), and
scaling operators Λ1/ε, Eq. (76), we define the
functions

fX,ε := TXΛ1/εf, (80)

with

f(x) :=
1

π2

∏
α=±1

1

(xω − αxϕ/2)2 + 1
. (81)

They turn out to be a good choice as test func-
tions: First, we have the Dirac delta distribution

lim
ε→0

fX,ε = δ(x−X) (82)

as a limit. Second, due to the symmetries (77)
and (78), the use of scaling and translation oper-
ators yields – regarding the action of the integrals

in Q(edge)
ϑ – the much more simple expression

(Qr,ϑfX,ε)(x) = (Pr,ϑTXΛ1/ε(Q
(edge)
ϑ f))(x)

(83)

rather than (Pr,ϑ(Q(edge)
ϑ TXΛ1/εf))(x) as a ma-

trix element of Qr,ϑ. Third, the simple pole
structure of (81) allows us to compute most of
the integrals analytically. Note that the simpler
looking symmetric Lorentzian function 1

x2
ω+x2

ϕ+1

is, in fact, no good alternative to f , because the
poles with respect to zω or zϕ contain square roots
of zϕ or zω, respectively. Similar problems arise
for localized Gaussians.
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The directional arbitrariness xω ± xϕ/2 aris-
ing in Eq. (81) from choosing a product of 1-
dimensional Lorentzians in (81) is still to be dis-
cussed. For example, one could also have chosen it
to be xω ± xϕ, adjusting the normalization factor
from 1

π2 to 2
π2 in order to assert (82). A concep-

tional advantage of our choice of f is, however,
that for any domain TCr,ϑ , for which G is holo-
morphic, we have r ≤ 2. Consequently, due to
the pole structure of (81), f is holomorphic in the
domain TCr,0 ⊂ TC2,0 , whose edge is the starting
point of the Qr,ϑ transform. Nevertheless, a cer-
tain ambiguity remains which could be technically
useful.

k. Computation of the matrix elements. We
found it feasible to calculate at least the first three
integrals of the right-hand side of expression (83)
analytically, using a computer algebra system. In
order to compute the fourth integral, an adaptive
numerical quadrature can be used.

The result of the analytical integration of

the first two integrals, namely (−Q(edge)
ϑ f)(x) is

shown in figure 18 for selected edge orientations.

We find that (−Q(edge)
ϑ f)(x) is a rational func-

tion which changes continuously as a function of
ϑ, in contrast to the transformation behaviour of

ImG0(x + i00). Note that since Q(edge)
ϑ is scale-

invariant, Eq. (78), the transformation behaviour
of the Dirac delta distribution is analogous to fig-
ure 18. Consequently, the transformed delta dis-
tribution on the edge R + i0ϑ is not a function
but rather a distribution with a relatively com-
plicated structure. Therefore, the limit δ → 0 in
(83) cannot be taken before the last two integrals
from the Poisson kernel Pr,ϑ are computed.

In the special case ϑ = π/2, figure (18c), the
asymptotic behaviour of the result decays ∝ 1

|x|
when x→∞, in contrast to the original test func-
tion behaviour f(x) ∝ 1

|x|2 . This is because the

Hilbert transforms are taken with respect to mu-
tually orthogonal directions in R2, here.

The angles between 0 and π/2 interpolate
smoothly between the extremal cases of the un-
perturbed well-localized f(x) at ϑ = 0 and the
long-range function at ϑ = π/2. The solution
at ϑ = π is again strongly localized and equals
−f(x). The behaviour in the interval [π, 2π) is
analogous due to symmetry reasons.

l. Implementation. As mentioned above, the
third integral of the operator sequence (83) can
still be computed analytically. However, each in-
tegration of the sequence adds additional poles to
the resulting function, and more and more com-
plex distinguishments have to be done in order to
decide whether a pole is on the upper or lower

half-plane and whether it contributes or not to
certain residue sums.

Because translational and scale invariance do
not seem to be as useful concepts as applied to
Pr,ϑ, not only the extra variable r appears in
the computation of the remaining expressions, but
also the shift X and the scale λ of the test func-
tion (80). For the third integral, one can still de-
termine the poles and residues before doing the
latter substitution with the computer algebra sys-
tem, however.

At present, very lengthy expressions result for
the last integrand. As a consequence, the last in-
tegral was evaluated numerically for each matrix
element. The limit δ → 0 can only be taken nu-
merically, depending on the grid. An algebraic
determination of the poles of this expression is
cumbersome, because high-order polynomials ap-
pear in the denominator of the resulting expres-
sions. Nevertheless, numerical computations in-
dicate that the limit δ → 0 yields well-defined
functions after the fourth integration. Once an
algebraic expression is found, the expression for
the limit δ → 0 would be more simple than the
intermediate terms. As already stated in the be-
ginning of this section, we compute the fourth
integral with an adaptive numerical integration
routine in practice. In the numerical MaxEnt im-
plementation, one can adjust δ as a function of x,
denoted by δx, depending on how well a specific
region of the edge should be resolved.

When defined according to the interacting
branch cut geometry, Qr,ϑ will be simply called
Q, in the following. Details on the numerical rep-
resentation of Q are provided in appendix D. A
detailed description of implementation and setup
of the maximum entropy method using Q is given
in appendix E.

m. Details of the MaxEnt procedure The
quality of the results of the MaxEnt method us-
ing the Q-mapping critically relies on a careful a-
posteriori identification of the high-energy struc-
ture of the physical edge function Ã(xϕ, xω) along
its singular directions. The information is in-
corporated into the default model as described
in appendix E. In brief, we first determine the
most probable lateral width of the default model
(E3). In the same fashion, a second step optimizes
the low-energy structure of the default model, by
a posteriori determining the most probable low-
energy bandwidth, i.e. the quantity σ̃def in equa-
tion (E4) with the highest posterior probability.
In equation (E4) we set the low-energy scale to
R = 5Γ. In tested examples, no strong depen-
dence of the inferred results on R was observed.
In future applications however, in order to in-
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FIG. 18: (color online) Transformation behaviour of the test function f(x) as a function of the edge-to-

edge map −Q(edge)
ϑ for different values of ϑ. Function values are shown within the range [−5, 5]× [−5, 5].

Due to translational and scale invariance, it represents the edge-to-edge transformation behaviour of a
Dirac delta function under the continuity assumption (65).
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FIG. 19: (color online) Comparison of χ2 as a
function of the MaxEnt regularization parameter
for single-wedge kernel Pr,ϑ and multi-wedge ker-
nel Q at weak interaction U = 2Γ, β = 5Γ−1, and
eΦ = Γ as a function of the regularization param-
eter α. For the same input set, the single-wedge
approach clearly fails to converge due to the pres-

ence of higher-order branch cuts.

crease accuracy, it may be advantegeous to also
perform an optimization with respect to the pos-
terior probability of R.

Let us provide an example of how the method
works for the weak-coupling case, i.e. for parame-
ters U = 2Γ, β = 5Γ−1, eΦ = Γ. The final results
for the spectral function were already presented in
Fig. 3. It turns out that the applicability of the
Q-approach is limited a posteriori by bad behav-
ior of the inferred spectral functions to input data
with ωn > |ϕm/2| for n ≥ 0. This condition cor-
responds to not crossing the principal branch cut
γ = ±1 in figure 13b, when coming from the re-
tarded Green’s function (edge orientation ϑ = 0).
Apart from this restriction, there appears to be
no further problem with the approach. Conse-
quently, at least for weak coupling, the central
continuity assumption of the Q-approach is prac-
tically solely violated with respect to the branch
cuts γ = ±1. The violation already occurs at
very small values of the many-body interaction,

U ≤ 2Γ. However it vanishes at U = 0, since the
continuity assumption is exact for G0. This ob-
servation is compatible with the observed strong
violation of the assumption within the Dyson se-
ries which was reported in section IV B.

We therefore can use all Matsubara data of our
Monte-Carlo simulation subject to ωn > |ϕm/2|.
For the inverse temperature β = 5Γ−1, these
extend from n = 1 to n = 8 for ωn with
m = ±1, . . . ,±5 for ϕm. As a first test, we
show in Fig. 19 the performance of the Max-
Ent method for both, the single-wedge10 and
the multiple-wedge approach for the given data
set. Because data from the comparably widely
opened wedge ωn > |ϕm/2| are used in the single-
wedge approach, it implicitly assumes the inter-
acting Green’s function to be analytic for Im zω >
|Im zϕ/2|. Apparently, this wrong assumption
makes it impossible to obtain a reasonable fit
with a positive definite Ã(x). Consequently, the
χ2 value of the procedure does not drop below
106 ·Ndata, and the MaxEnt fails to converge. In
sharp contrast, values of χ2/Ndata ≈ 1 may be
reached with the MaxEnt with respect toQ. Also,
controls such as the MaxEnt error rescaling merit
do not indicate the presence of any abnormalities.

Thus, for the Q-mapping, a well-behaved Max-
Ent solution is obtained. As further discussed
in appendix E, the quality of the solution very
much relies on appropriately including the prior
knowledge on singular directions of the Green’s
functions in C2 into the default model of the edge
function. For this purpose, within a set of smooth
default models with the correct singular direc-
tions as x → ∞, a most probable one is identi-
fied within the Bayesian framework of the MaxEnt
method. The thus identified default model for the
edge function is displayed in figure 20a. Using
this default model, the well-behaved edge func-
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Ã(Re z)Γ

(b) inferred Ã(x)

FIG. 20: (color online) Application of the MaxEnt procedure for the Q-mapping to the nonequilibrium
weak-coupling case U = 2Γ, β = 5Γ−1, eΦ = Γ, with CT-QMC data as input. The default model has

been identified via its maximal posterior probability.

tion Ã(xϕ, xω) shown in panel 20b is obtained.
An overall moderate sharpening of the edge func-
tion along the cross-like structure is observed as a
result of this final step of the Bayesian inference
procedure.

With such appropriately optimized default
models, the results presented in section II were
obtained from weak to intermediate coupling
strengths. Throughout, the only major data
range constraint, ωn > |ϕm/2| was found, which
prohibits crossing the principal branch cut due
to violations of the continuity assumption. On
occasion, for stronger correlation strengths, val-
ues with small ωn had to be discarded in order
to obtain a converging MaxEnt solution, i.e. a
solution which meets the continuity assumption
constraints. At the comparably small inverse
temperature β = 5Γ−1 used, calculations require
only moderate computer resources, mainly due to
the comparably small QMC data space of approx-
imately 50 imaginary-time-theory data points. In
general, the amount of data will grow quadrati-
cally as a function of inverse temperature, due to
the simultaneous presence of Matsubara voltage
and Matsubara frequency. Additionally, at low
temperatures, sharp features in the spectral func-
tion and hence the edge function Ã will have to be
resolved, requiring an enhanced grid refinement.
Altogether, matrix sizes in the MaxEnt will in-
crease substantially when the temperature is de-
creased. In particular, the computational effort
for the generation of an appropriate kernel ma-
trix (cf. appendix D) grows dramatically and the
memory consumption of the MaxEnt itself poses
a limitation at lower temperatures at the present
stage of code development. Additionally, it is
well-known that the resolution of low-temperature
features with the MaxEnt method requires a care-

ful Bayesian analysis based on higher-temperature
data, i.e. an “annealing procedure”, involving a
sequence of QMC plus MaxEnt runs for a reason-
ably fine temperature grid27,28.

V. PERSPECTIVE: UNBIASED
MULTIWEDGE APPROACH

From a mathematical point of view, the under-
lying continuity assumption of the multiwedge-
approach, i.e. the mapping Q, is only approx-
imate, because in higher orders of perturbation
theory, terms which do not characterize the full
collection of wedges, but rather just isolated
wedges or subcollections of wedges, are generated.
These terms are manifested in discontinuities of
the real part of the Green’s function at the branch
point Im z = 0.

In order to extend the Q-approach to the full
nonequilibrium Kondo regime U ≥ 2πΓ, eΦ ∼
TK , β−1 ∼ TK , one has to take these contribu-
tions into account. This requires the considera-
tion of the full analytic structure of the theory,
i.e. the full set of edge functions.

As a consequence, extra terms have to be added
to the representation of G(zϕ, zω) within the Max-
Ent procedure. Obvious candidates for such de-
grees of freedom are the residual imaginary parts
of edge functions

R̃n(x) := ImG(x+i0ϑn)−π ·(Q(edge)
ϑn

Ã)(x), (84)

for the edge of the n-th wedge with orientation
ϑn. Because the Q-mapping is exact at high en-
ergies ‖x‖, the terms R̃n(x) are essentially local-
ized within a finite radius around 0. This range
is expected to be of the order of magnitude of the
energy scales Γ, U , εd, and eΦ.
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Regarding the inverse problem, for data in the
n-th wedge, one has the exact representation

ImG(iϕm, iωn) =(Prn,ϑnR̃n)(iϕm, iωn)

+ π · (QÃ)(iϕm, iωn),
(85)

where rn is the opening ratio of the respective
data wedge38. The MaxEnt procedure must de-
termine R̃n and Ã simultaneously. Practically,
the terms R̃n would act as “valves” for the con-
ceptual imperfection of the Q-mapping within the
Bayesian information flow.

It is an interesting question if the formally in-
finitely many two-dimensional variable vectors in
practice lead to a dramatic increase in the fit space
or not. Due to locality of the terms R̃n(x), the ef-

fort is probably less than for the Ã function which
itself encodes many aspects of the analytic struc-
ture. Furthermore, the rather large Poisson kernel
matrix elements at low energies will possibly lead
to a comparably good MaxEnt performance in the
determination of R̃n(x), as long the opening ratio
ϑn of the n-th wedge is comparably large.

Because the functions R̃n(x) cannot be ex-
pected to be positive, it is necessary to introduce a
shift to a positive function, such as for the spectral
functions of the static observables in paper 1. The
terms R̃n(x) are presumably most dominant for
wedges next to the noninteracting Green’s func-
tion’s branch cuts. A very careful Bayesian anal-
ysis, including an appropriate set of choosable de-
fault models constructed from a-priori informa-
tion, is probably required for a successful applica-
tion of the exact approach (85). It is also possi-
ble that the perturbative structure of the theory
reorganizes terms R̃n in subcollections of wedges
which result in a more moderate MaxEnt problem
than equation (85). In particular, the branch cut
at Im zϕ = 0 probably leads to a nonzero limit

limn→∞ R̃n, where the limit n → ∞ shall con-
sider a sequence of wedges with ϑn→∞ = 0 or
ϑn→∞ = π.

VI. SUMMARY

We systematically studied the mathematical
structure of the dot-level Green’s function and
the Bayesian inference of non-equilibrium spectral
functions and transport properties from effective-
equilibrium quantum Monte-Carlo data within
the Matsubara-voltage theory. Furthermore, a
continuity assumption on the analytic structure
was introduced which strongly improved the nu-
merics of the MaxEnt approach of an earlier
publication.10

Formal parts of the paper introduced the es-
sential concepts of the function theory of sev-
eral complex variables and connected to the re-
spective mathematical literature. Using insights
from perturbation theory, the Green’s function
was characterized axiomatically with regard to
its function-theoretical structure. As the funda-
mental domains of holomorphy, so-called wedges
(tubular cones) emerged. The Green’s function
is composed of sheets which are holomorphic on
the wedges enclosed by branch cuts. Within each
wedge, the Matsubara data of the Green’s func-
tion uniquely map to a real-time limit on the so-
called edge of the wedge. For this purpose, an
explicit integral representation was constructed.
However, depending on the considered wedge, the
edge structure does not necessarily have a direct
physical interpretation.

In an earlier publication,10 we had been un-
able to compute reliable non-equilibrium spectral
functions from a MaxEnt procedure based on inte-
gral representations within wedges, due to rather
strong assumptions on the analytic structure and
weak assumptions on the physical structure. The
assumptions had limited us to a single wedge with
a rather small opening ratio, on which the Green’s
function is not strictly analytic but which directly
includes the physical limit procedure on its edge.
While as compared to the present work the nu-
merical effort of the MaxEnt procedure was rather
low, due to the wedge structure and simple ker-
nel structure, we had not been able to consider
most available quantum Monte-Carlo data within
the MaxEnt procedure. The hereby implied loss
of information from available simulation data had
not affected the equilibrium spectra but the non-
equilibrium spectra, due to the kernel structure.

In order to overcome these previous limitations,
we introduced a continuity assumption to the real-
time structure of the Green’s function, i.e. its
structure at the branch point around which the
edges of the wedges associated to the branches of
the Green’s function are aligned. The assumption
includes structures generated by the earlier fit ap-
proach introduced in Ref. 1, which was motivated
by perturbation theory. Mathematically, the as-
sumption lead to a uniform description of data
from all branches of the Green’s function and gave
rise to a linear operator Q which, while hard to
implement, enhanced the MaxEnt procedure to a
larger set of quantum Monte-Carlo data.

We found that the continuity assumption ap-
pears to be valid for a very broad range of data,
up to intermediate coupling strengths, eventually
yielding reasonable non-equilibrium MaxEnt re-
sults for spectral function and transport proper-
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ties, which are dramatically improved as com-
pared to the results of Ref. 10. However, as
the nonequilibrium Kondo regime is approached,
we expect the continuity assumption to break
down eventually. For this parameter regime, the
method could be extended along the line discussed
in section V.

VII. ACKNOWLEDGMENTS

The authors acknowledge useful discussions
with J. Freericks, F.B. Anders, S. Schmitt,
K. Schönhammer, and A. Schiller. AD acknowl-
egdes financial support by the DAAD through the
PPP exchange program. JH acknowledges the Na-
tional Science Foundation with the Grant number
DMR-0907150. MJ acknowledges the NSF LA-
SiGMA cooperative agreement, EPS-100389. AD
and TP would also like to acknowledge computer
support by the HLRN, the GWDG and the GOE-
GRID initiative of the University of Göttingen.
Parts of the implementation are based on the
ALPS 1.3 library33.

Appendix A: Uniqueness of the Analytic
Continuation of Dynamical Quantities

In the following, we would like to show that
the continuation of Matsubara data G(iϕm, iωn)
to the multisheeted holomorphic function G(z) is
unique, i.e. we will prove assumption 3 in section
III D, relation (13). We will derive the unique-
ness using the axiomatic statements 1, 2, and 3’
of section III D. Since the proof will involve some
elementary geometry, it will be accompanied by
several sketches.

We may focus our attention to a single wedge
TC which is defined by subsequent branch cuts
from Eqs. (11). The data G(iϕm, iωn) which
are located in the wedge are our starting point,
(ϕm, ωn)T ∈ C. Without loss of generality we
can assume that we have entire lines of data,
G(iϕm, iωI), ωI ∈ R, because arbitrary continu-
ous imaginary ωI may be computed by Fourier
transform in the ϕmth effective equilibrium the-
ory, having again (ϕm, ωI)

T ∈ C. Let us denote
the effective equilibrium data range by

E0 := {i(ϕm, ωI)T |m ∈ Z, ωI ∈ R} ∩ TC . (A1)

These lines of known data of the unknown func-
tion G(z) in the wedge TC are depicted in Fig. 21.
They constitute one-dimensional lines in the four-
dimensional wedge TC for which the function
G|TC shall be reconstructed.

E0

TC

FIG. 21: (color online) The wedge to be con-
sidered. The dash-dotted lines denote the data

yielded by imaginary-time theory.

We will, step by step, prove the uniqueness
of the continuation of the imaginary-time data
by applying biholomorphic maps and the identity
theorem of complex analysis. The central idea will
be to extend larger and larger subsets for which a
unique continuation is obtained.

1. Reconstruction of edge values using
complex lines which are isomorphic to H

Due to assumptions 1 and 2, we found that the
Green’s function G|TC may be reconstructed from
their edge values, using Eqs. (39) and (40). There-
fore, it suffices to show that we can reconstruct all
edge values of the function G from the data G|E0

.

We will first show that one may reconstruct a
certain set of single lines through zero on the edge.
Each of these lines is defined by an angle ϑ. All
function values on the line may be reconstructed
if the angle ϑ is contained by the cone C.

The proof of the latter statement is the follow-
ing. Consider a single line in the cone C, given by
the angle ϑ. A biholomorphic rotation in the sense
of section III E 2 can then be applied in such a way
that the line is horizontal and may after complex-
ification be interpreted as the upper half plane H
of C, see Fig. 22. The real line is then associated
to a horizontal line on the edge of R−ϑT

C .

The biholomorphic equivalent to the yet un-
known function is now G̃(z) = G(R−1

−ϑ · z). Note

that the line (0, iλ)T in R−ϑT
C , λ > 0, contains

infinitely many known values of G̃(z). These are
denoted by the crosses in Fig. 22. Extending to
the upper half plane (0,H), one may apply the
identity theorem of complex analysis for recon-
structing G̃(z) on the whole plane (0,H). In par-

ticular, the boundary values G̃(0,R+ i0+) are re-
covered. This proves the statement of this sub-
section.
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R−ϑT
C

R−ϑ

∼= H

ϑ

TC

FIG. 22: (color online) A single line contained by
the cone C may after biholomorphic rotation R−ϑ
and subsequent complexification be interpreted as

the upper half plane H of C.

a. Identity Theorem

Let us comment on the satisfaction of the as-
sumptions of the identity theorem. Since (0,∞) is
the accumulation point of the known data points
on (0,H), i.e. of the “series of crosses in Fig. 22”,
given by (0,H) ∩ R−ϑE0, we have to show that

G̃(0, 1/z) may be extended to an analytic func-
tion at z = 0. Once this is possible, the function
is uniquely determined by the set of function val-
ues.

Combining assumptions 1 and 3’, we know that
G(ζx(0)) (in the sense of assumption 3’) behaves
like a conventional Green’s function, because the
singular case coincides with a branch cut which is
by construction not contained by the wedge. Due
to this rapid decay one may extend G̃ to the lower
half plane such that G̃(0, z∗) = G̃(0, z)∗ and is
holomorphic at z = ∞. This can be done explic-
itly using a spectral representation with respect
to the boundary values of Im G̃(0, z) on the real
axis. The spectral representation exists due to the
1/z asymptotics which lets the line integral con-
tribution vanish on the infinitely large semicircle
attached to the real axis. Note that this construc-
tion is also compatible with the symmetry relation
G(−iϕm,−iωn) = G(iϕm, iωn)∗.

As a consequence, the identity theorem is appli-
cable for G̃(0, z) at z =∞ such as it is for regular

0

TC
reconstructed

area
Edge of

ted area
reconstruc-

FIG. 23: Uniquely reconstructed range

Edge
(recon,0)

TC
of G(z)|TC on the edge of TC

following from the partial argument of subsection
A 1. The wiggly lines in the boundary mean that

the area extends to infinity.

Matsubara Green’s functions.
One may also think of G(ζx(0)), ζ ∈ H as

a meromorphic function of ζ ∈ C, because it
may due to boundedness and 1/ζ asymptotics be
approximated arbitrarily well by a meromorphic
function, such as in an infinite Padé expansion.
Since meromorphic functions on C are holomor-
phic on the Riemannian sphere, the identity the-
orem holds at the accumulation point ∞.

b. Resulting reconstruction of edge values

Sweeping through all possible angles ϑ which
are contained by the cone C, the uniquely recon-
structed edge behaviour of G|TC is given by the
area depicted in Fig. 23.

It is obviously given by

Edge
(recon,0)

TC
:= C ∪ (−C). (A2)

2. Extending the unique range to the entire
edge

In order to show that the function values of
G|TC are also uniquely defined by G|E0

for the

complement of Edge
(recon,0)

TC
, the argument has to

be extended in a similar way. The trick is to con-
sider yet another set of H-isomorphic subspaces
and then apply the argument of the last section
to a larger set of data.

a. Extending the known data range within the wedge

The first step is depicted in Fig. 24. In contrast
to before, we consider a constant angle ϑ0 and
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R−ϑ0
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R−ϑ0

FIG. 24: (color online) Enhancing the formal
holomorphic reconstruction within the wedge.

various lines which start at different points on the
boundary of the cone with the orientation ϑ0.

After biholomorphic rotation to the wedge
R−ϑ0

TC we can again complexify the lines

l̃ỹ(0) := {iỹ(0) + i(0, λ)T , λ > 0}; ỹ(0) ∈ ∂C (A3)

to

L̃ỹ(0) := iỹ(0) +

(
0
H

)
. (A4)

The isomorphy of L̃ỹ(0) to H and assumption 3’

again enable us to apply the identity theorem to
the crossed data in Fig. 24, namely to the infinite
sequence (G ◦Rϑ)|(R−ϑE0)∩L̃

ỹ(0)
.

By this, the transformed Green’s function G̃ =
G ◦Rϑ0 is reconstructed for all points of the set

D :=
⋃

ỹ(0)∈∂C

L̃ỹ(0) = (R−ϑ0
TC) ∩

(
iR
C

)
. (A5)

For simplicity, we may now just look at a subset
of D, namely

Ẽ1 := R−ϑ0E0 +

(
0
R

)
. (A6)

It enables us to see that the values of G are now
known on the set

E1 := E0 +Rϑ0

(
0
R

)
. (A7)

Rϑ0(0, 1)T

0

TC
Edge of

FIG. 25: (color online) Reconstructing the
Green’s function on the complete edge. The re-

constructed area Edge
(recon,0)

TC
(see Fig. 23 and

Eq. (A2)) may be extended by affine transforma-
tions along the Rϑ0(0, 1)T direction using the in-

formation from the set E1.

b. Full Reconstruction of the Edge

With the information from E1 one may reinter-
pret the procedure associated with Fig. 22 and de-
scribed in section A 1. The dashed lines of known
data now contain an additional real dimension
along the direction Rϑ0

(0, 1)T .
We can use each point λ ·Rϑ0

(0, 1)T (λ ∈ R) of
this new degree of freedom as an offset of the lines
used in section (A 1) and reapply the entire pro-
cedure. Using the resulting affine subspaces, the
Green’s function may be reconstructed on further
regions of the edge which are affine to the one in
Fig. 23, namely

Edge
(recon,λ)

TC
:= Edge

(recon,0)

TC

+ λ ·Rϑ0
(0, 1)T .

(A8)

Applying the argument to all λ ∈ R
reconstructs the entire edge and hence
the entire Green’s function G|TC , because⋃
λ∈R Edge

(recon,λ)

TC
= EdgeTC .

This “affine procedure” is sketched in Fig. 25.

Appendix B: Empirical properties of the
residual term

The empirical observation that the quantum
Monte Carlo data are continuous as a function
of iωn, as one crosses higher-order branch cuts,
yields the following structure. Let ϑ0 be the ori-
entation of the corresponding branch cut. Then,
due to the observed continuity, we have

G(iρ sin(ϑ0 − δ), iρ cos(ϑ0 − δ)) =

= G(iρ sin(ϑ0 + δ), iρ cos(ϑ0 + δ)),
(B1)
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for any ρ > 0.
Using the identity theorem along the directions

ϑ0 ± δ, one find that the relation

R(ϑ0−δ,ϑ0+δ)(ρ sin(ϑ0), ρ cos(ϑ0)) = 0 (B2)

holds for any ρ > 0. Consequently, the continuity
in Matsubara space induces a continuity relation
in the edge space. Similarly, one could construct
relations for the derivatives of G which help con-
strain R(ϑ,ϑ′)(x).

Appendix C: Commutator relations of Q(edge)
ϑ

We will derive the commutator relations (77),
(78), and (79).

1. Translational invariance

Let us consider the action of Q(edge)
ϑ =

RϑHR−1
ϑ H on a function Ã(x, y) which is trans-

lated by the operator TX , where we set X =

(X,Y )T . We also write x := (x, y)T .

As a first step, we apply the Hilbert transform,

(HTXÃ)(x) =
1

π
P
∫

dỹ
Ã(x−X, ỹ − Y )

y − ỹ

=
1

π
P
∫

dỹ
Ã(x−X, ỹ)

(y − Y )− ỹ
.

(C1)

Using the short-hand notation c := cosϑ, s :=
sinϑ, we then have

(R−1
ϑ HTXÃ)(x) =

1

π
P
∫

dỹ
Ã(cx+ sy −X, ỹ)

(−sx+ cy − Y )− ỹ
.

(C2)
In the next two steps one obtains

(Q(edge)
ϑ TXÃ)(x) =

1

π2
P
∫

d˜̃y
1

sx+ cy − ˜̃y︸ ︷︷ ︸
→(C5)

P
∫

dỹ
Ã(

→(C6)︷ ︸︸ ︷
(cx− sy)c+ s˜̃y −X, ỹ)

−(cx− sy)s+ c˜̃y − Y︸ ︷︷ ︸
→(C7)

−ỹ
. (C3)

By substituting X = 0 and then applying TX from the left, one finds

(TXQ(edge)
ϑ Ã)(x) =

1

π2
P
∫

d˜̃y
1

s(x−X) + c(y − Y )− ˜̃y
P
∫

dỹ
Ã((c(x−X)− s(y − Y ))c+ s˜̃y, ỹ)

−(c(x−X)− s(y − Y ))s+ c˜̃y − ỹ
. (C4)

In order to verify that the expressions (C3) and (C4) are, in fact, equal, we consider the following
system of linear equations:

sx+ cy − ˜̃y = sx0 + cy0 − y∗ (C5)

(cx− sy)c+ s˜̃y −X = (cx0 − sy0)c+ sy∗ (C6)

−(cx− sy)s+ c˜̃y − Y = −(cx0 − sy0)s+ y∗c, (C7)

in matrix form: −1 s c
s c2 −sc
c −sc s2


︸ ︷︷ ︸

=:M

·

 ˜̃y
x
y

−
 0
X
Y

 =

−1 s c
s c2 −sc
c −sc s2


︸ ︷︷ ︸

=:M

·

y∗x0

y0

 . (C8)

The equations correspond to the idea of substituting the terms in equation (C3) as denoted there in

such a way that y∗ is the new integration variable,
∫

d˜̃y → κ
∫

dy∗ , where κ is some regular prefactor
from the integral transformation, and such that the external variables x and y are replaced by x0 and
y0. We will see that the resulting form will exactly be (C4):
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The system (C5)-(C7) can be solved by inversion of the matrix M : One has

M−1 =

0 s c
s 1 0
c 0 1

 , (C9)

detM = −1, and consequently the well-defined solution

y∗ = ˜̃y − (sX + cY ), (C10)

x0 = x−X, (C11)

y0 = y − Y. (C12)

The integral transformation constant κ = 1, and performing the substitutions (C5)-(C7) in (C3) yields

(C4), when y∗ is again renamed ˜̃y.

Therefore, [Q(edge)
ϑ , TX ] = 0.

2. Scale invariance

Similarly, we show the scale invariance (78). We have

(Q(edge)
ϑ ΛλÃ)(x) =

λ2

π2
P
∫

d˜̃y
1

sx+ cy − ˜̃y
P
∫

dỹ
Ã(λ[(cx− sy)c+ s˜̃y], λỹ)

−(cx− sy)s+ c˜̃y − ỹ
(C13)

=
1

π2
P
∫

d˜̃y
1

sx+ cy − ˜̃y/λ
P
∫

dỹ
Ã((cλx− sλy)c+ s˜̃y, ỹ)

−(cx− sy)s+ c˜̃y/λ− ỹ/λ
(C14)

=
λ2

π2
P
∫

d˜̃y
1

sλx+ cλy − ˜̃y
P
∫

dỹ
Ã((cλx− sλy)c+ s˜̃y, ỹ)

−(cλx− sλy)s+ c˜̃y − ỹ
(C15)

= (ΛλQ(edge)
ϑ Ã)(x). (C16)

3. Absence of rotational invariance

We provide a simple example for which [Q(edge)
ϑ ,Rϑ′ ] 6= 0.

We consider the bare Ã0, equation (57). Setting ϑ = ϑ′ = π/2, we find

(Q(edge)
π/2 Ã0)(x) =

∑
α=±1

αΓα/π

(xω − α(xϕ − Φ)/2− εd)2 + Γ2
, and (C17)

(Rπ/2Q
(edge)
π/2 Ã0)(x) =

∑
α=±1

αΓα/π

(xϕ − α(−xω − Φ)/2− εd)2 + Γ2
. (C18)

On the other hand,

(Rπ/2Ã0)(x) =
∑
α=±1

Γα/π

(xϕ − α(−xω − Φ)/2− εd)2 + Γ2
, and (C19)

(Q(edge)
π/2 Rπ/2Ã0)(x) =

∑
α=±1

−αΓα/π

(xϕ − α(−xω − Φ)/2− εd)2 + Γ2
. (C20)

Hence, Q(edge)
π/2 Rπ/2Ã0 = −Rπ/2Q

(edge)
π/2 Ã0, and therefore [Q(edge)

π/2 ,Rπ/2] 6= 0.
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Appendix D: Numerical representation of the multi-wedge map Q

In this appendix, a recipe for the numerical computation of the quadruple integral Q is given. The
application to the test function (80), fX,δ, for a function value at (iϕm, iωn) is to be computed. The
first three integrals can be computed analytically by use of a computer algebra system. A numerical
quadrature method can be used for the approximation of the remaining integral.

1. Analytic computation of first three integrals

Using the translational and scale invariance of the edge-to-edge contribution Q(edge)
ϑ , only the action

of Q(edge)
ϑ on our test function

f(x, y) =
1

π2

1

(y − x/2)2 + 1
· 1

(y + x/2)2 + 1
(D1)

has to be computed, yielding the results shown in figure 18. For brevity we set y = xω and x = xϕ.
The first principal integral can be eliminated by straightforward application of the residue theorem:

(Hf)(x, ỹ) =P
∫

dy
π−1

ỹ − y
f(x, y)

=− 8

π2

(
x2 − 12− 4 ỹ2

)
ỹ

(16 ỹ4 + 32 ỹ2 − 8 ỹ2x2 + 16 + 8x2 + x4) (x2 + 4)
.

(D2)

As a next step, introducing the short-hand notation s = sinϑ and c = cosϑ, imposing the rotation
operator R−1

ϑ , one obtains

(R−1
ϑ Hf)(k, l) = subs (x→ kc+ ls, ỹ → lc− ks; (Hf)(x, ỹ)). (D3)

Here, “subs” denotes the operation of a variable substitution. In order to apply the second Hilbert
transform, it is necessary to determine the poles of the corresponding integrand

g(k, ˜̃y; l) :=
π−1

˜̃y − l
· (R−1

ϑ Hf)(k, l)

=8

(
k2c2 + 10 kcls+ l2s2 − 12− 4 l2c2 − 4 k2s2

)
(lc− ks)

π3 (k2c2 + 2 kcls+ l2s2 + 4)
·

·
(
4 l2c2 − 6 kcls+ 4 k2s2 + 4 + 4 kc2l−

− 4 k2cs+ 4 l2sc− 4 ls2k + k2c2 + l2s2
)−1·

·
(
−˜̃y + l

)−1

(D4)

with respect to the integration variable l. One finds that the function has the following seven poles in
the complex plane:

l1 := ˜̃y, (D5)

l2,3 :=
−kc+ 2ks± 2i

s
, (D6)

l4,5 :=
−kc+ 2ks± 2i

s+ 2c
, (D7)

l6,7 :=
kc+ 2ks± 2i

−s+ 2c
. (D8)

The Hilbert transform can now be evaluated through the residue sum

(HR−1
ϑ Hf)(k, ˜̃y) =

7∑
n=1

Re
[
2πi · Resl=lng(k, ˜̃y; l)

]
· θ(Im ln). (D9)
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The Heaviside function θ(x) ensures that only poles from the upper half plane are taken into account
for the evaluation of the contour integral which corresponds to the principal value integral. An explicit
evaluation of the residue sum (D9) can be accomplished with a computer algebra system. A dramatic
increase in complexity is coming along with the constraints Im ln > 0 which depend on the wedge
orientation angle ϑ. In fact, six separate cases emerge as a function of ϑ. They can be parametrized by
three overlapping different cases, namely (A) terms which are proportional to sgn(s), (B) proportional
to sgn(2c+s), and (C) terms which are proportional to sgn(2c−s), discriminating between the different
signs of Im ln. The term

(RϑHR−1
ϑ Hf)(x, y) = subs (k → xc− ys, ˜̃y → yc+ xs; (HR−1

ϑ Hf)(k, ˜̃y)) (D10)

is then best reorganized into rational functions as coefficients of the sign functions,

(Q(edge)
ϑ f)(x, y) = (RϑHR−1

ϑ Hf)(x, y) =A(x, y) · sgn(s)+

+B(x, y) · sgn(2c+ s)+

+ C(x, y) · sgn(2c− s).
(D11)

This explicit split is necessary for the study of the interplay of the rational functions A(x, y), B(x, y),
and C(x, y) in a computer algebra system.

a. Rational coefficients of the transformed edge test function

The rational functions

A(x, y) =
Aenum(x, y)

Adenom(x, y)
, (D12)

B(x, y) =
Benum(x, y)

Bdenom(x, y)
, (D13)

C(x, y) =
Cenum(x, y)

Cdenom(x, y)
. (D14)

have the following polynomials as enumerators and denominators:

Aenum(x, y) =− 8

((
−1 + x2 + 1/4 y2 − 41

16
xy

)
c4 − 13

16

(
12

13
xy + x2 +

12

13
− 28

13
y2

)
sc3

+

(
1 +

13

8
xy − 1/2 y2

)
c2 + 1/16 s

(
−4 + x2 − 4xy − 12 y2

)
c

− 1/16 y (−4 y + x)

)
,

(D15)

Adenom(x, y) = π2
(
x2 + 4− 4xy + 4 y2

)
·K(x, y), (D16)

Benum(x, y) =− 8

((
−1 + x2 + 1/4 y2 +

41

16
xy

)
c4+

+
13

16
s

(
−12

13
xy + x2 +

12

13
− 28

13
y2

)
c3 +

(
1− 13

8
xy − 1/2 y2

)
c2

− 1/16 s
(
−4 + x2 + 4xy − 12 y2

)
c+ 1/16 y (4 y + x)

)
,

(D17)

Bdenom(x, y) =
(
x2 + 4xy + 4 y2 + 4

)
π2 ·K(x, y), (D18)
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Cenum(x, y) =− 3
(
−1/3 y2 − 3 + x2

)
yxc4 − s

((
−3x2 + 4

)
y2 − 5x2 + 4 + x4

)
c3

+ 3
(
−10/3 + x2 − 2/3 y2

)
yxc2

+
((
−3x2 + 4

)
y2 − x2 + 4

)
sc+ yx

(
y2 + 1

)
,

(D19)

and

Cdenom(x, y) =
(
x2 + 4

)
π2 ·K(x, y). (D20)

For the denominators, we introduced the shared polynomial

K(x, y) =
(
y4 +

(
−3− 6x2

)
y2 + 3x2 − 4 + x4

)
c4

− 4
(
3/2 + x2 − y2

)
xsyc3 +

(
−2 y4 +

(
2 + 6x2

)
y2 + 4 + x2

)
c2

− 4
(
1/2 + y2

)
xsyc+ y2 + y4.

(D21)

b. Composition of the rational coefficients

In contrast to the actual edge functions

Q(edge)
ϑ f , the coefficients A(x, y), B(x, y), and

C(x, y) are comparably ill-behaved. For example,
one obtains

B(x, y)|ϑ=0 = −8
x+ y

π2 (x2 + 4) (x2 + 4xy + 4 y2 + 4)
· 1
x
.

(D22)
Apparently, the function diverges for x→ 0. The
functions A(x, y) and C(x, y) are similarly struc-
tured. However, the actual edge functions, as dis-
played in figure 18, have no such singularities, but
do rather represent smooth deformations of the
test function when the wedge orientation angle ϑ
is tuned. As a consequence, the real singularities
are cancelled as the rational functions are added
up in equation (D11). For a consistent further
evaluation of the action of Q on the test function
it is thus necessary to study each of the full com-
binations (D11) separately. There are six possible
combinations, namely the sectors

(a) 0 ≤ ϑ ≤ arctan 2, (D23)

(b) arctan 2 ≤ ϑ ≤ π − arctan 2,(D24)

(c) π − arctan 2 ≤ ϑ ≤ π, (D25)

(d) π ≤ ϑ ≤ π + arctan 2,(D26)

(e) π + arctan 2 ≤ ϑ ≤ 2π − arctan 2,(D27)

(f) 2π − arctan 2 ≤ ϑ ≤ 2π. (D28)

For example, the expression for the sector (a)
reads

(Q(edge)
ϑ f)

∣∣∣
(a)

(x, y) = A(x, y) +B(x, y) +C(x, y).

(D29)

c. Contraction with the Poisson kernel

As a next step, one of the integrals introduced
by Vladimirov’s Poisson kernel (47) will be eval-
uated analytically. For this, the pole structure
of both, the Poisson kernel (48), and the edge-
transformed test function have to be analyzed.

a. Pole structure of edge-transformed
test functions In fact, we are interested in
the pole structure of the scaled and then
translated edge-transformed test functions

(TXΛ1/δQ
(edge)
ϑ f)(x′, y′), from equation (83).

The poles and also the residues of these functions
are however easily calculated from the poles and

residues of (Q(edge)
ϑ f)(x, y). This is the crucial

advantage of translational and scale invariance of

Q(edge)
ϑ .
For example, in sector (a), the following poles

of (Q(edge)
ϑ f)(x, y) with respect to x are obtained:

x1,2 = ±2i, x3,4 = sy ± 2i, x5,6 = −2y ± 2i,
x7,8 = 2y ± 2i. The corresponding residues are

r1,2 = 1
2π2y , r3,4 = − 1

2π2y , r5,6 = 1
4π2 · −1∓iy

(y2+1)y ,

r7,8 = 1
4π2 · 1∓iy

(y2+1)y . The resulting residues of

(TXΛ1/δQ
(edge)
ϑ f)(x′, y′) are then given by

r′i =
1

δ
· subs

(
y → y′ − Y

δ
; ri(y)

)
, (D30)

where the center of mass of the test function is
X = (X,Y ). They are associated to the poles

of (TXΛ1/δQ
(edge)
ϑ f)(x′, y′), which are similarly

given by

x′i = X + δ · subs

(
y → y′ − Y

δ
;xi

)
. (D31)

In order to obtain the true residues with respect
to the x′-contraction with the Poisson kernel, one
only has to evaluate the Poisson kernel at the
poles (48) and multiply r′i with the value.
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b. Pole structure of Poisson kernel The pole
structure of Vladimirov’s Poisson kernel is rather
straightforward to compute, however rather
lengthy expressions result for the poles. Similar
to above, the residues have to be multiplied by
the function values of the edge-transformed test

function (TXΛ1/δQ
(edge)
ϑ f)(x′, y′) at the pole of

the Poisson kernel. Poles of the rotated Poisson
kernel Pr,ϑ(ϕm, ωn;x′, y′) with respect to x′ are

x′1,2 =
s− cε
sε+ c

y′ ± i
η1 + εη2

sε+ c
, (D32)

x′3,4 =
cε+ s

c− sε
y′ ± i

η1 − εη2

sε− c
. (D33)

We introduced the short-hand notations η1 =
ϕmc − ωns, η2 = ϕms + ωnc. The associated
residues of Pr,ϑ are easily determined.

c. Residue sum for the x′ integral An alge-
braic expression for the residue sum correspond-
ing to the x′ integral can be generated symboli-
cally by evaluating

I3(ϕm, ωn; y′) =

∫
dx′ Pr,ϑ(ϕm, ωn;x′, y′)︸ ︷︷ ︸

“Poisson”

· (TXΛ1/δQ
(edge)
ϑ f)(x′, y′)︸ ︷︷ ︸

“edge”

=

=

“edge”∑
x′i

Re [2πi · Pr,ϑ(ϕm, ωn;x′i, y
′) · r′i] · θ(Imx′i) +

+

“Poisson”∑
x′i

Re
[
2πi · (TXΛ1/δQ

(edge)
ϑ f)(x′i, y

′)·

· Resx′=x′iPr,ϑ(ϕm, ωn;x′, y′)
]
· θ(Imx′i).

(D34)

However, it yields rather lengthy formulae, be-
cause the integrations with respect to x′ have to
be done separately, for each of the sectors (D23)
to (D28). The growth in complexity is also due to
amount of parameters which increased dramati-
cally by introducing the Poisson kernel and in-
serting the translations TX and scaling Λ1/δ of
the edge functions. It is possible to export the ex-
pressions resulting from (D34) from the computer
algebra system to a file of Fortran code which is
500 kilobytes in size. Similar to the procedure
described in section D 1 b for the second integral,
the expression (D34) includes removable disconti-
nuities.

2. Numerical quadrature of the fourth
integral

Due to the vast complexity of expression (D34),
the last remaining integral

I4(ϕm, ωn) =

∫
dy′ I3(ϕm, ωn; y′) (D35)

is evaluated numerically, making use of the
exported Fortran code. Adaptive integration
routines from the GNU Scientific Library are
imposed.31 Because the resulting matrix elements
give rise to an inverse problem, it is compulsory to
achieve a high integration accuracy. By definition,
the integrand is most distinguishly structured in
the area y′ ≈ Y , on a scale δ. Special attention
has to be drawn to the appropriate integration of
this range.

The high-frequency tails (−∞,−R] and [R,∞)
need to be integrated out separately, where R is
the integration range of the conventional quadra-
ture. For some parameter values of δ, X, etc.,
problems with the convergence of these high-
energy integrals may occur, due to floating point
precision. Choosing a finite interval extending to
±max(106, |X| · 103, |Y | · 103) is then usually suf-
ficient for numerically satisfactory data.

A typical shape of the integrand I3 is shown in
figure 26. The structure at y′ ≈ Y is not necessar-
ily δ-shaped, but depending on the values of ϕm
and ωn it may rather look like the Hilbert trans-
form of such. The integral may be computed at
each point (X,Y ) of the Ã discretization lattice
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FIG. 26: Example for I3 as a function of y′, us-
ing ϕm = 2.0, ωn = 2.0, with test function loca-
tion X = 0.0, Y = 4.0, and test function width
δ = 10−3. The interacting branch cut geometry is

used for the determination of r and ϑ.

for all values of the simulation data (iϕm, iωn) on
a computer cluster. In practice, the computation
of the matrix elements has to be done only once
for each temperature β, regardless of the bias volt-
age. This is because an adjustment of the Ã grid
is not necessary in the latter case.

In future applications, one should aim at sym-
bolically programming the residue sum of the
fourth integral and then take the limit δ → 0 an-
alytically.

Appendix E: MaxEnt implementation for
data from multiple wedges

In this appendix chapter, the implementation
of the MaxEnt algorithm for the Q-mapping is
described. Details on the computation of the nu-
merical representation of Q were provided in ap-
pendix D.

The local test function width δx for the map
Qr,ϑ can be adjusted to the local grid resolution

when the function Ã(x) is discretized. The inverse
problem for the inference of spectral properties
using assumption (65) is, by construction

ImG(iϕm, iωn) = (Qr,ϑÃ)(iϕm, iωn). (E1)

The values r, ϑ are those which specify the TCr,ϑ

branch ofG the vector (iϕm, iωn)T is located in, as
defined by point 1 of section III D. The spectral
function of the dot electrons can then again be
gained by evaluating along the physical line,

A(ω) = Ã(Φ, ω), (E2)

of the inferred (ϑ = 0)-edge function. See refer-
ence 10 for details.

a. Discretization of Ã(xϕ, xω)

The single-wedge MaxEnt-based analytic con-
tinuation problem proposed in Ref. 10 only re-
quired a rather straightforward discretization of
the function Ã(xϕ, xω). In contrast, for the mul-
tiwedge mapping, the discretization of the edge
function has to pay tribute to the strong inter-
twining of edge structure and branch cut struc-
ture which is revealed by Q(edge) (cf. paragraph
IV D 0 h).

Especially, it turns out that the limiting be-
haviour along the singular directions of Ã has to
be captured numerically. In terms of the multi-
wedge approach, the singular directions dominate
the mathematical structure. In our experience,
also the lateral structure of Ã(x) along the singu-
lar directions has to be resolved. We constructed
a grid as follows. Let x̃

(i)
1 and x̃

(j)
2 be two variables

which are discretized on i-th and j-th logarithmic
grid points around zero, respectively. Then the

grid x(i,j) =
√

5
20

(
8 10
−4 5

)
x̃(i,j) yields an appro-

priate discretization of the edge, because the given
matrix maps the double-cone R+×R+∪R−×R−
and its complement to the wedges defined by the
singular directions. The numerical test function
width δx can then be adjusted to the local grid
resolution.

Also the high-energy structure of the Green’s
function has to be taken into account explicitly,
because along the singular directions it does not
decay. In practice it seems to be important to
have a very large logarithmically discretized fit
region, for which in practice a xϕ/Γ region of at
most [−800, 800] is subject to modifications by the
MaxEnt algorithm and a xω/Γ region of at most
[−400, 400]. The singular-direction contributions
beyond this range also prove not to be negligible,
in a test with the bare Green’s function (see also
the G0 benchmark below). In order to take them
into account, their contribution up to very large
energies (xϕ ≈ 105Γ) is computed assuming a G0-
like structure along the directions, positioning ad-
equately weighted δ-spikes along it and substract-
ing the corresponding contributions from the raw
data, as done for the negative-spectral-function
contributions of static observables in the first pa-
per.
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b. Kernel structure

The kernel Qr,ϑ may exhibit rather sharp struc-

tures with respect to the Ã function space. In
particular, this may be the case in regions where
the to-be-determined Ã is expected to be very
smooth and physically noninteresting. Conse-
quently, for these regions, the MaxEnt discretiza-
tion grid would be chosen rather coarse-grained.
These potentially disturbing structures can al-
ready be seen from the formal structure of Pr,ϑ
which features strong anisotropies. The con-
volution with the (transformed) test functions

Q(edge)
ϑ fX,δ is in general no cure for this problem,

because Q(edge)
ϑ fX,δ is even more sharply struc-

tured, on the scale δ, which is of the order of the
discretiziation scale (see figure 18).

In order to discuss this in more detail, some
matrix elements of Qr,ϑ are plotted in figure 27.
The orientation of the considered data point in
Matsubara space defines the orientation of the
structure which emerges in the kernel with respect
to the (xϕ, xω) coordinates of Ã-space. A ma-
jor qualitative difference to the structure of the
single-wedge kernels Pr,ϑ is the emergence of dis-
tinguished negative regions. They are generated
by the combinations of Hilbert transforms within

the edge-to-edge map Q(edge)
ϑ . As such, they are

a direct consequence of the branch cuts. The neg-
ative and positive regions spread over a compa-
rably wide range and will compete in the process
of Bayesian inference, in which several (iϕm, iωn)
pairs and differently overlapping combinations of
positive/negative regions are involved. The wide
range of the regions appears to result from super-

imposing the 1/x tails of Q(edge)
ϑ fX,δ which are

dominant for ϑ ≈ π/2 and ϑ ≈ 3π/2 and absent
for ϑ ≈ 0, as well as ϑ ≈ π. Note that since
the continuity assumption (65) becomes exact for
larger energies, this feature can be expected to be
contained in the kernel of an optimal continuation
theory of Green’s functions within the Matsubara
voltage formalism.

The kernel structure moreover indicates that
due to the leverage of the single-wedge con-
straint (as it applied to the MaxEnt calculations
in Ref. 10), the nonequilibrium spectral function
could now well be resolved. In the following, the
interacting branch cut geometry will always be
used for the operator Qr,ϑ. For brevity, the ac-
cordingly defined operator will be shortly written
as Q, since r and ϑ are now well-determined.
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FIG. 27: (color online) Cut through Qr,ϑ in

Ã-space for different pairs of iϕm and iωn, at
βΓ = 5.0. The wedge opening ratios r and
wedge orientations ϑ (figure 16) are chosen ac-
cording to the interacting branch-cut geometry.
The “nonequilibrium” line represents the location
of the dot-electron spectral function for a system
with source-drain voltage eΦ = 0.5Γ. Wiggly
structures at higher energies result from the in-

creasingly coarse-grained Ã grid.

c. Non-interacting Green’s function as benchmark

The fundamental assumption of this chapter,
equation (65), is exact for G0 (equation (55)). As
a consequence, we use the noninteracting Green’s
function as a benchmark for our multiple-wedge
numerical analytic continuation procedure, al-
ready assuming the interacting branch cut geome-
try for the construction of Qr,ϑ, which is certainly
also valid for G0. At present, from a numerical
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FIG. 28: Successive improvement of kernel qual-
ity by averaging out the local kernel structure
within the local Ã grid resolution. Data are shown
for U = 0, Φ = 0, βΓ = 5, n = 0, . . . , 9,
m = −3, . . . , 3 and a realistic mock diagonal co-

variance matrix C = diag ( 10−13

Γ2 ). Abscissa de-
notes xϕ/Γ, ordinate denotes xω/Γ, grayscale de-

notes Ã(xϕ, xω) in units of Γ−1.

point of view, the method is comprised of two tech-
nically challenging consecutive steps: First, the
kernel and its high-energy convolution with the
Green’s function have to be evaluated numerically
up to a certain precision. Second, an appropriate
default model has to be defined and the MaxEnt
must converge to a good estimate in a controlled
way.

In order to test the performance of the first step,
we can take the exact solution as default model
and run the MaxEnt with the discretized kernel.
By construction, due to the design of Bryan’s
algorithm6, MaxEnt changes of the Ã(xϕ, xω)
function will directly correspond to the numeri-
cal errors in the computation of the kernel ma-
trix elements: evidence for changes of the exact
solution is taken from the exact data due to nu-
merical imperfections in the kernel. Without in-
tegrating out the sharp structures of the kernel
properly for these regions, serious artifacts are ob-
tained even for larger test function broadnesses δx.
This can be seen in the “historic” MaxEnt data
shown figure 28. Here, δx is chosen adaptively
with respect to the local kernel resolution, namely
δx = 0.3 · (local kernel grid resolution). The Max-

Ent is able to modify the Ã function on a large
grid varying over the ranges xϕ ∈ [−800, 800],
xω ∈ [−400, 400]. As the local kernel resolution is

increased, averaging out its structure within the Ã
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FIG. 29: Sensitivity to the default model, using
the same parameters and scales as in figure 28d.

grid, an increasingly appropriate discretization of
the kernel is obtained. In the computations shown
in figure 28, realistic covariance weights for the
imaginary-time data were assumed. If numerical
errors'

√
10−13 were included into the realization

of the kernel, there would probably be stronger de-
viations from Ã0(xϕ, xω) than observed. For some
single points the δx is so small that the adaptive
quadrature of the fourth integral in Q does not
converge. This can be seen best in figure 28d, be-
cause here the kernel discretization grid is eight
times finer than the Ã(xϕ, xω) discretization grid.
Similarly, in the nonequilibrium situation, Φ 6= 0,
the function Ã0 is not significantly altered by the
8× 8-averaging kernel. This was tested explicitly
also for large bias voltages, such as eΦ = Γ.

The performance of the second step can be
tested by using a kernel realization which suc-
ceeded in the first step and then performing runs
with a modified default model. Because the non-
interacting Ã0(xϕ, xω) function has the correct
singular behaviour as x → ∞ we investigate the
dependence of the MaxEnt results on the follow-
ing default models:

D̃σdef
(xϕ, xω) =

1

2π

∑
α=±1

σdef

(xω − α
2 (xϕ − Φ))2 + σ2

def

.

(E3)

As compared to Ã0(xϕ, xω), the width of the
Lorentzians is varied. Using the best-quality ker-
nel, i.e. 8×8-averaging (see figure 28d), increasing
the default-model width quickly results in spuri-
ous features in the low- to intermediate-energy re-
gion, even though Q represents an exact relation
between data and Ã and the numerical represen-
tation of Q is sufficiently accurate. Away from
the low-energy region also for σ = 1.5Γ a good
agreement with Ã0 is obtained, i.e. a sharpened
structure along the cross-shaped directions with
an approximately correct amplitude (as compared
to figure 28a). The strong sensitivity of especially
the low-energy range on the default model may
be interpreted as a result of the subtle interplay
of positive and negative regions of high-amplitude
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kernel matrix elements for different (iϕm, iωn).
The structure of the matrix elements was dis-
cussed above and plotted in figure 27. As shown
in figure 30 a problem often encountered for not
well-chosen default models is apparently an in-
crease of spectral weight in the low-energy region
|x| ≈ 0, which exceeds the color scale used in the
plots by up to a factor of three, even for moderate
deviations of σdef from Γ. This is unfortunate, be-
cause not only for spectral functions unphysically
high values may be deduced, but also the over-
all weight of the spectral function is too large.
However, since the kernel Q imposes an exact re-
lation on G0 and is resolved well enough, this un-
fortunate aspect is identified as a pure MaxEnt
(“second step”) artifact. As such it is no concep-
tual problem of the Q-approach and can in prin-
ciple be removed by developing a more sophisti-
cated MaxEnt algorithm which imposes the phys-
ical constraints as prior information. In fact, this
issue can be significantly reduced by a careful but
straightforward analysis of the posterior probabil-
ities within a set of smooth default models.

From our data we can conclude that de-
fault models with the shape (E3) are appar-
ently not of much use for functions whose high-
energy behaviour along the singular directions is
a Lorentzian with width Γ. Once the high-energy
structure is known to be such, an interesting ex-
periment is to flatten out the low- to intermediate-
energy structure of the default model, by impos-
ing an x-dependent

σdef(xϕ) = Γ + (σ̃def − Γ)
R2

x2
ϕ +R2

, (E4)

where R is the flattening radius and σ̃def � Γ
is a strong flattening of the default model’s low-
energy region. For G0 it turns out that the re-
sulting MaxEnt solution is practically identical to
the σdef = Γ solution. Consequently, the “second
step”-artifact for G0 of overshooting low-energy
values (Fig. 30) can just be cured by imposing
the correct high-energy limit. The low-energy ar-
tifact is thus caused by missing a-priori informa-
tion about the high-energy structure. This ap-
pears to be another manifestation of the fact that
the kernel Q puts a large range of energy scales
in relation to each other.

1. Application to the interacting model

Switching on a finite Coulomb interaction, one
has to be aware of the fact that the Q-mapping
can no longer be expected to be fully exact. How-
ever, a special case of the assumption, namely the
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FIG. 30: MaxEnt results for flat low-energy de-
fault models (E4), R = 5. As compared to
Fig. 29b, the quality of low-energy data is in-
creased significantly, due to the correct high-
energy behaviour of the default model. Scales are

as in figure 28d.

fitting ansatz in Ref. 1, is found to yield reason-
able results which agree with other methods up
to a certain extent23. Therefore, it seems worth-
while to investigate how far one can go with the
controlled MaxEnt approach to the inversion of
the Q-mapping39.

a. Lateral structure along singular directions

As shown in the preceding section, the a-
posteriori determination of a most adequate ap-
proximate a-priori picture of the high-energy
structure is crucial for the success of the Max-
Ent procedure. As sketched in figure 31, at fi-
nite U , one may, for example, expect the lateral
structure be an unphysical copy of a spectral func-
tion, i.e. two Hubbard peaks with possibly an ad-
ditional peak associated to a quasi-particle res-
onance. Such a structure would extend over a
range ≈ U . However, the two parallel Hubbard
peaks can be expected to approximately have a
Lorentzian structure of width ≈ Γ and would gen-
erate a type of branch cut in theQ-mapping which
is equivalent to the one in G0. In the strongly cor-
related regime, Hubbard satellites may be broad-
ened up to a width of 2Γ, due to many-body
correlations11.

It is a priori uncertain to which extent either
of the intuitive pictures in figure 31 is correct.
However, one of the conceptual strengths of the
Q-mapping is the precise rendering of the high-
energy structure of the imaginary-voltage theory
(cf. section IV C). One can expect that only a
characteristic width of the lateral structure along
the singular directions is needed in order to model
the correct high-energy contribution to the am-
plitude of the discontinuity of G(zϕ, zω) at the
low-to-intermediate energy portions of the branch
cuts. Based on this, we can investigate the poste-
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xω ≈ ±xϕ/2
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(b) “asymptotic free-
dom”

FIG. 31: At high energies, one might (a) ex-

pect the lateral structure of Ã(xϕ, xω) to be com-
posed of two Hubbard peaks and possibly a quasi-
particle resonance which combine to the physical
spectrum A(ω) at the intersection point. In the

complementary scenario (b), the function Ã would
not differ from the noninteracting one at high en-

ergies.
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FIG. 32: (color online) Posterior probability of
the default model (E3) at βΓ = 5, eΦ = Γ for
several interactions strengths. The result is found
to be essentially independent of the bias voltage.
The kernel validated in figure 28d has been used.

rior probability Pr(σdef|Ḡ) for default models (E3)
as a function of their width σdef.

The thus determined most probable σdef then
serves as an effective description of the high-
energy structure Ã(xϕ, xω) for the actual com-
putations. However, as input data from the
QMC simulations, only low- to intermediate-
energy data are available. Therefore, the posterior
probability probe with respect to default models
(E3) has to be interpreted with care. In figure
32, posterior probabilities for different interaction
strengths are displayed. Due to the width being
significantly larger than 2Γ for U = 15Γ it is ob-
vious that the lateral width cannot solely be in-
terpreted as a signature of the Hubbard bands.
Merely, the overall Lorentzian broadness of the
spectral function seems to be obtained. Based
on our data, neither of the scenarios of figure 31
can be preferred. However, based on our expe-
rience, the most probable high-energy structure
also yields reasonable results in the case of com-
parably strong interactions. Thus, in the practi-
cal computations, first the most probable default
model is identified. As a next step, the actual
spectral functions are estimated.
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21 L. Hörmander, An Introduction to Complex Anal-
ysis in Several Variables, van Nostrand (1966)
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