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Three dimensional (3D) topological insulators display an array of unique properties such as single
Dirac-cone surface states and a strong magnetoelectric effect. Here we show how a 3D topolog-
ical spectrum can be induced in a trivial insulator by a periodic drive, and in particular, using
electromagnetic radiation. In contrast to the two-dimensional analog, we show that a two-photon
resonance is required to transform an initially unremarkable band structure into a topological Flo-
quet spectrum. We provide an intuitive, geometrical, picture, alongside a numerical solution of a
driven lattice model featuring a single surface Dirac mode. Also, we show that the polarization and
frequency of the driving electromagnetic field control the details of the surface modes and particu-
larly the Dirac mass. Specific experimental realizations of the 3D Floquet topological insulator are
proposed.

I. INTRODUCTION

Three dimensional (3D) topological insulators exhibit
a variety of novel electronic properties. Most impor-
tantly, their surface states have the spectrum of a sin-
gle massless, chiral two dimensional Dirac fermion. Such
surface states were observed recently by angular-resolved
photo emission spectroscopy in a variety of new ma-
terials, such as BixSb1−x alloys, Bi2Te3,and Bi2Se3

1–3.
The unusual surface states lead to unique response prop-
erties of these materials, e.g., the axion magnetoelec-
tric response4,5. Furthermore, these surfaces provide
a path for realizing unconventional superconductivity,
and in particular to realize and manipulate Majorana
Fermions6, which have important applications for topo-
logical quantum computing.

The topological behavior of electrons presents a
promising resource, and therefore we must understand
all ways to realize it. Here we explore the possibil-
ity of dynamically inducing a 3D topological spectrum,
surface states included, starting with a trivial (non-
topological) bulk insulator. Topological states of time-
modulated Hamiltonians were explored in Refs. 7–11.
The Floquet spectrum of a periodically driven system
was shown to exhibit a variety of topological phases7.
For instance, graphene is expected to exhibit a quan-
tum Hall effect when subjected to radiation9,12,13; a
spin-orbit coupled semiconductor heterostructure (such
as HgTe/CdTe wells), can be turned topological using
microwave-teraHertz radiation10, and vice versa14,15.

In this manuscript we demonstrate how to induce a
“time reversal invariant” 3D topological spectrum in triv-
ial insulators using electro-magnetic radiation. Roughly
speaking, a topologically trivial band structure can be
turned topological by mixing the valence and conduction
bands by radiative transitions10. In 3D, the radiation
must be carefully tailored to produce a non-vanishing

band mixing matrix element in a closed 2D surface in
momentum space, and must obey additional topological
and symmetry constraints. Nevertheless, the polariza-
tion and frequency of the driving electromagnetic field
enable a detailed engineering of the surface states, in-
cluding the possibility of opening and tuning a gap in
the surface Dirac cone.

The paper is organized as follows: In Sec. II, we re-
view a 3D lattice model for a time reversal symmetric,
spin orbit coupled insulator which exhibits a transition
between a trivial and a topological phase. This model
will be used in Sec. III to demonstrate how a topological
Floquet spectrum can be induced starting from the triv-
ial phase, using time periodic perturbations. In Sec. IV
we describe how to realize this effect using oscillating
electromagnetic fields. In Sec. V we discuss several as-
pects regarding the applications of these ideas to solid
state systems, including candidate systems.

II. TOPOLOGICAL TRANSITIONS IN A 3D
LATTICE MODEL

In the following, we use a simple generic band struc-
ture to develop our ideas. Consider an effective low-
energy model near the Γ (k = 0) point3. The four states
near the Fermi energy at the Γ point are labeled using
two quantum numbers, corresponding to spin σ =↑, ↓
and parity τ = +,−. Time reversal symmetry (TRS) is
represented by T = iσy ⊗ IK, where K indicates com-
plex conjugation. Inversion symmetry is represented by
I = I ⊗ τz. Consider the Hamiltonian

H(k) = ~D(k) · ~γ (1)

where ~γ = (γ1, γ2, γ3; γ5) are four Dirac matrices, repre-
sented by γi = σi ⊗ τx with i = 1, 2, 3, and γ5 = I ⊗ τz.
The remaining dirac matrices are defined as γ4 = I ⊗ τy
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and γij = 1
2i [γi, γj ]. In Eq. (1) and below, we denote 3-

dimensional (space coordinate) vectors, such as the mo-
mentum, k, in bold symbols, while the 4-dimensional vec-

tors are denoted with a vector symbol ~D, and D̂ for unit

vectors. Writing ~D(k) = (d(k);D5(k)), we note that
the Hamiltonian (1) has both time reversal and space-
inversion symmetries under the restriction that the vec-
tor d(k) be odd under inversion, while D5(k) is an even
function.

3D Band insulators with TRS (T 2 = −1 ) admit a
Z2 classification16–18, distinguishing a topological phase
from a trivial one. The model in Eq. (1) can describe
both phases, depending on the choice of parameters.
Note that although Eq. (1) does not describe the most
general 3D Hamiltonian with TRS, this effective model
spans a variety of realistic systems and allows a relatively
simple visualization of the Z2 topological invariant that
we now focus on.

At each momentum, k, the Hamiltonian (1) is doubly
degenerate. Its eigenstates ψk of (1) are also the eigen-

states of the rank-two projectors P±(k) = 1
2 [I± D̂(k) ·~γ]

onto the valence (−) and conduction bands (+). We can

parameterize the unit vector, D̂(k) = ~D(k)/| ~D(k)| (lying
on a 3D sphere, S3), using two polar angles, θ and ξ, and
an axial angle, φ. We define θ as cot(θk) = D5(k)/|d(k)|.
The angles ξ, φ correspond to the spin direction, by the

unit vector d̂(ξk, φk) = d(k)/|d(k)|. Note that d̂(ξk, φk)
remains undefined at θ = 0, π.

Using the above parametrization, the topological in-
variant of the Hamiltonian (1) can be calculated by con-
sidering the map from the 3D Brillouin zone (BZ), which
is a 3D torus, T 3, to S3. The only topological invariant of
this map is an integer which counts the number of times
the map wraps the target space S3, also called the degree
of the map. Two Hamiltonians of the form (1), for which
the degree of the map differs by 2, can be deformed into
each other without closing the gap in the spectrum19, by
adding terms not included in (1). Therefore, the Z2 clas-
sification of the insulator (1) is given by the degree of the
map mod 2, with even and odd degrees corresponding to
trivial and topological insulators respectively.

Near the Γ point, an expansion to order k2 yields

~D(k) = (Ak;M −Bk2), (2)

where spherical symmetry can be assumed for
convenience20. The topological phase of the Hamil-
tonian (1),(2) occurs for M/B > 0. In this case, the
angle, θ, changes from θ = 0 at k = 0 to θ = π at

|k| �
√
M/B. For each 0 < θ < π, the vector d̂ wraps

a sphere of 2D unit vectors, S2, which corresponds to a
“latitude” on the target space S3. Therefore, the target
space S3 of the map is covered once in the topological
phase.

Now, when M/B < 0, the valence band is character-
ized by 0 ≤ θ < π/2, while the conduction band corre-
sponds to π/2 > θ ≥ π. Therefore, the degree of the
map from the BZ to S3 is zero, leading to a trivial in-

π

0

FIG. 1. The two paraboloids represent the dispersion relation
ε±(k) of the valence and conduction bands for the Hamilto-
nian (1) in the trivial phase, projected on kz = 0. Each
energy is doubly degenerate. At each momentum, the projec-
tors P±(k) on the eigenstates of (1) can be represented by the
spin direction d(ξk, φk), and by the angle θk which is encoded
by the color scheme. The spin direction on spheres in momen-
tum space, |k| = k0 is depicted on the right. A two-photon
resonance connecting the valence and conduction bands oc-
curs at such a sphere in momentum space, and is represented
by the green circles on the parabolas.

sulator. We note that terms involving other γ matrices
can be added to H(k) in Eq. (1), while keeping TRS.
Then, the Z2 topological invariant cannot be calculated
using the above simple considerations. However, as long
as the added terms do not cause the gap in the spectrum
of H(k) to close, the Z2 invariant does not change.

III. TOPOLOGICAL FLOQUET SPECTRUM IN
THREE DIMENSIONS

Next, let us discuss the non-equilibrium case, where
the Hamiltonian Eq. (1) is initially in a trivial phase,
and a time-periodic perturbation is added in order to
make the system topological. To explore how this may
be achieved, we first consider a generic time-dependent
perturbation:

V (t) = Re
(
~V eiωt

)
· ~γ (3)

where ~V is a complex, fixed, four-component vector. Flo-
quet implies that the unitary time-evolution operator

of the system, U(t) = P exp
(
−i
∫ t
t0
dt′H(k, t′)

)
, where

H(k, t) = H(k) + V (t), can be written as

U(t) = W (t) exp [−iHF (k)t] , (4)

where W is a unitary matrix satisfying W (t + T ) =
W (t), T = 2π/ω and HF (k) is a time-independent Flo-
quet operator. The eigenstates of HF are solutions of
[−i∂t +H(k, t)] Φ(t) = εΦ(t) in the space of T -periodic
Φ(t), and ε are the quasi-energies. The solutions to the
Schrödinger Eq. are of the form Ψ(t) = e−iεtΦ(t).
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A topological Floquet spectrum is defined in terms of
the topological properties of the time independent Flo-
quet operator7,10 HF (k). These can be studied using the
available tools for classifying equilibrium Hamiltonians
for free fermions16,17.

To induce a topological Floquet operator HF (k) in a
non-topological parent system, an appropriate choice of
V (t) must be made. First, the Floquet operator HF (k)
should be invariant under an effective TRS21. This would
follow when

T H(k, t)T −1 = H(−k,−t+ τ), T 2 = −1 (5)

holds for some fixed τ (which can be redefined by choos-
ing the origin of time).7,10. The TRS constraint in Eq. (5)
is satisfied if arg(V1,2,3) = arg(V5) + π.

The most dominant effect of the time dependent per-
turbation V (t) will be to cycle transitions between two
states at a given momentum k that are at, or close to
resonance with the frequency ω. These effects are most
conveniently studied by using a rotating frame, in which
the lower band is shifted up by ω. This is achieved by
applying the unitary transformation Π(k, t) = P+(k) +
P−(k)e−iωt (here P±(k) are the projectors defined above)
to the (interaction picture) Hamiltonian, which yields:

HI(k, t) = ε+(k)P+(k) + [ε−(k) + ω]P−(k)

+ Π(k, t)V (t)Π†(k, t), (6)

where ε±(k) = ±| ~D(k)| are the band dispersion relations
of H(k). Note that HI(k, t) and H(k, t) have identical
Floquet spectrum.

We now study the spectrum of Eq. (6). Ignoring the
last term, when ω overcomes the band gap (ω > 2M), the
two bands intersect on a two-sphere in the BZ, |k| = k0,
which we will denote S (Fig 1). Away from S, the driv-
ing term (third term in Eq. (6)) is negligible22 and the
quasi-energy states are roughly eigenstates of P±(k). At
S, however, the driving term may induce a new gap
in the quasi-energy spectrum. Most crucially, for small
momenta, HI is band inverted compared to the origi-
nal Hamiltonian. Define the projectors P I±(k) onto the

quasi-energy bands of HI ; P
I
−(k) smoothly interpolates

between P+(k) near the Γ point, and P−(k) at |k| � k0

(and vice versa for P I+(k)).

To determine the topological properties of P I±(k) (and

therefore of HI(k, t)) we need to study the form of P I±(k)
near the resonance sphere. For values of k near the res-
onance sphere, we use the rotating wave approximation
(RWA), and consider only the time independent parts of
the third term of Eq. (6). This yields

VRWA = 1
2

(
P+V̌ P− + P−V̌

†P+

)
, V̌ = ~V · ~γ. (7)

The topological properties of P I±(k) are intimately re-
lated to the transformation properties of VRWA under the
group of spatial rotations in 3D. We assume a representa-
tion of spatial rotations where γ4, γ5 transform trivially,

while (γ1, γ2, γ3) transform as a vector. Since to second
order in k the projectors P±(k) are scalars, the transfor-
mation properties of VRWA at this order are determined
by those of V̌ .

Importantly, a scalar V̌ leading to a scalar VRWA

yields P I±(k) with a non-trivial topological Z2 invariant.

In contrast, a purely vector V̌ (and therefore a vector
VRWA) yields a P I±(k) which is topologically trivial. To
illustrate this, we use the explicit form of VRWA,

VRWA = 1
2

(
~V⊥ · ~γ +DiIm{Vj}γij

)
(8)

where

~V⊥ = Re{~V } − (Re{~V } · D̂)D̂. (9)

Consider two illuminating examples: (i) V̌ = V5γ5

and (ii) V̌ = V1γ1, with V1 and V5 real. This choice
allows us, using Eqs. (8),(9) to approximate P I±(k) ≈
1
2 (1 ± n̂(k) · ~γ). Therefore, we can deform P I±(k) such

that P I±(k)→ P̃ I±(k) = 1
2 (1±n̂(k)·~γ) while keeping TRS

and without closing the Floquet gap. The topological
properties of P I±(k) are determined by the degree of the
map from the BZ to S3 defined by n̂(k).

In case (i), V̌ is a scalar under spatial rotations, and

hence so is VRWA = ~V⊥ · ~γ. Therefore, the first three

components of ~V⊥ must be proportional to k while the
fifth components is a scalar. Indeed, using Eq. (8) we get

~V⊥ =
(
− V5D5

D2
Ak, V5 −

V5D
2
5

D2

)
(10)

where D = | ~D(k)|. On the resonance sphere S, we have

n̂(k, t)
∣∣∣
S

= ~V⊥/| ~V⊥|, which maps S to an S2 sphere with

fixed latitude θ(k0) in the target space S3. Therefore,
n̂(k) defines a map from the BZ to S3, which maps the
Γ point to the south pole (since P I−(k) ≈ P+(k) around
the Γ point); maps S2 spheres in the BZ to S2 spheres
(“latitudes”) on S3; and maps |k| � k0 towards the north
pole of S3 (since P I−(k) ≈ P−(k) for |k| � k0 ) . It is
therefore a map of degree one, which implies a topological
spectrum.

In Case (ii), however, V̌ and VRWA give a vector repre-
sentation of spatial rotations. Therefore, the first three

components of ~V⊥ must either be scalars or belong to
a spin-2 representation of spatial rotations, while the
fourth and fifth components must belong to a vector rep-
resentation. Indeed, an explicit calculation gives

~V⊥ =
(
V1x̂− V1

A2kxk

D2
, V1

Akx
D

D5

D

)
(11)

Clearly, on S, the vector ~V⊥ does not wrap around an S2

sphere on S3, and the resulting map defined by n̂(k) is
topologically trivial.

More generally, VRWA will be a superposition of a
scalar and vector component. Whether a topological
spectrum is obtained depends on the relative magnitude
of the two components.
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IV. REALIZATION USING
ELECTROMAGNETIC FIELDS

These geometrical considerations are crucial for
achieving a 3D topological Floquet spectrum using os-
cillating electromagnetic fields. The electric field oper-
ator is a vector under spatial rotations, rendering it in-
adequate, by the above discussion, for inducing a topo-
logical Floquet spectrum. This challenge is overcome,
however, by considering multipole tensors of the electric
field. More specifically, the trace of the quadrupole ten-
sor EiEj is a scalar under rotations. This scalar would
appear in the matrix element of a two photon transition
connecting the two bands. To employ this scalar, we need
a frequency ω which satisfies M/2 < ω < M , such that
interband single-photon resonances (due to linear field
effects) are excluded, but two-photon transitions, which
are second order in E, are allowed. Note that in order to
satisfy the TRS constraint, as defined by Eq. (5), the os-
cillating field must be linearly polarized10. An ellipticity
in the polarization of the driving field leads to interesting
effects, which will be discussed later.

Let us now summarize the analysis of the two-photon
effects (for complete details see Appendix A). We choose
a gauge E = ∂tA, φ = 0, whereby the Hamiltonian

becomes H(k, t) = ~D(k + A(t)) · ~γ. Choosing A =
A0 cos(ωt)x̂, we obtain the Hamiltonian

H(k, t) = ~D′(k) ·~γ+ ~V1 ·~γ cos(ωt)+ ~V2 ·~γ cos(2ωt), (12)

with ~V1 = (AA0x̂ ; 2BA0kx), ~V2 = (0 ; 1
2BA

2
0), and

~D′(k) =
(
Ak;M −BA2

0 −Bk2
)

.

Our focus is the effect of 2ω-terms, arising both from
~V2, and from second order processes in ~V1. Both con-
tributions scale, to lowest order in the light intensity, as
A2

0/M . In order to calculate their effect, we perform two
consecutive unitary transformations (see Appendix B for
an alternative derivation). We first perform a transfor-
mation to a frame rotating with frequency ω, of the form
leading to Eq. (6). The new Hamiltonian has no new res-
onances, and we diagonalize its time independent terms,
which yields new eigenvalues and projection operators,

denoted by ε
(1)
± (k) and P

(1)
± (k) respectively. A second

unitary transformation, Π2(k, t) = P
(1)
+ +P

(1)
− exp(−iωt),

yields a new interaction-picture Hamiltonian, in which
the two bands cross at a surface S (topologically, a

sphere) with ε
(1)
+ (k) = (ε

(1)
− (k) +ω). Applying the rotat-

ing wave approximation yields on the resonance surface,

H2,RWA|S = 1
2
~V

(1)
⊥ · ~γ. (13)

The vector ~V
(1)
⊥ is defined, to lowest order in A0 and k,

as in Eq. (9) with the replacement D̂ → D̂(1) and ~V →
~V (1) ≡

(
(~V1 − ~V2) · D̂

)
D̂ + ~V2. A detailed derivation

of the exact form of ~V
(1)
⊥ is given in Appendix A. The

topological properties of ~V
(1)
⊥ , however, can be read off

𝑘𝑧/|𝒌𝑆| 
0.1 
0.7 
0.9 

a) b) 

FIG. 2. a) The first three components of the vector field
~V

(1)
⊥ (k) resulting from a two photon resonance of an electro-

magnetic field linearly polarized in the x direction. The mag-
nitude of the plotted vector field, on the resonance sphere S
(depicted), gives the gap in the Floquet spectrum. Its direc-
tion determines the spin direction of the quasi-energy states
on S. The map from S to the two-sphere S2, defined by these
three components, is of degree one. The resulting gap in the
Floquet spectrum is not isotropic, due to the necessary choice
of the direction of polarization of the electric field. b) A po-
lar plot showing the gap in the Floquet spectrum. The radial
direction gives the magnitude of the gap (in units of M) on
the resonance sphere, while the azimuthal coordinate is given
by tan−1 (ky/kx). Different colors correspond to different val-
ues of |kz|/|kS |, where |kS | is the resonance momenta. The
parameters chosen are such that 4M = A/|kS | = B/|kS |2.

without referring to its specific form: note that ~V2 · ~γ
is a scalar under spatial rotations, and according to the
discussion in Sec. III, will lead to a non-trivial topological

properties of ~V
(1)
⊥ . The contributions from ~V1,produce

anisotropy in the gap of the Floquet spectrum, without
changing its topological properties.

The vector field ~V
(1)
⊥ for a generic choice of param-

eters is plotted in Fig. 2. Clearly, it maps S to a sin-
gle covering of the unit sphere. The Floquet spectrum
is fully gapped at the resonance, with a gap anisotropy
that depends on the polarization direction, see Fig. 2b.
The smallest gap occurs at resonance momenta kS per-
pendicular to E, and is given by

Egap =
ABA2

0

2M
|kS | = η

W
ω2

AB

2M
|kS |, (14)

(in the above, W is the intensity of the driving field,

and η =
e2
√
µ/ε

~2 , where µ and ε are the magnetic and
dielectric constants in the material)

A striking feature of the topological band structure
in 3D is the mid-gap, single Dirac-cone, surface modes23.
Precisely such surface modes also emerge in the Floquet
spectrum due to the driving electric field. We demon-
strate this by studying numerically the Floquet problem
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FIG. 3. Quasi-energy spectrum of the Floquet operator for
the model (15) in the slab geometry: boundary conditions
are periodic in x, y and homogeneous in the z direction. (a)
Quasi-energy spectrum inside the bulk gap with a linearly
polarized periodic electric field, ε = x̂, yielding a Dirac cone
on the surface. (b) Same as (a) with an elliptically-polarized
electric field, ε = x̂ + iδŷ, with δ = 0.05. The ellipticity
opens a small gap in the Dirac cone. Note the anisotropy
of the Dirac conem due to the polarization of x̂. (c) Quasi-
energy spectrum of a linearly polarized field, ε = x̂, showing
bulk bands and edge states as a function of kx, for ky = 0.
Note that at kx = ky = 0, the smallest Floquet gap occurs
at finite kz. This gap is smaller then the one occuring at
ky = kz = 0 and finite kx, due to the anistropy arising from
the choice of polarization. (d) Spectrum as a function of ky,
for kx = 0, with ε = x̂+ iδŷ. The inset magnifies the gapped
Dirac surface spectrum.

of the tight binding Hamiltonian

D(k, t) =
(
d(k);M − 2B(3−

∑
j

cos(kj +Aj(t))
)
,

dj(k, t) = A sin(kj +Aj(t)), j = x, y, z, (15)

whose low k expansion corresponds to the model in
Eq. (12). We consider a finite slab with homogeneous
boundary conditions at z = 0, L and a driving elec-
tric field polarized in the x̂ direction. Fig. 3 shows the
quasi-energy spectrum inside the quasi-energy gap, which
clearly exhibits a Dirac cone.

Broken time reversal symmetry results in a gapped
surface mode of 3D topological insulators, which entails
unique transport properties4,5. Remarkably, a gap of
the surface Floquet spectrum can be induced and con-
trolled by choosing an elliptical polarization of the elec-
tromagnetic driving field (see Fig 3). Indeed, elliptically-
polarized light breaks TRS as it precludes Eq. (5), as
shown in Fig 3 b) and d), and allows for control of the
edge state spectrum which is unique to the Floquet sys-
tem.

V. DISCUSSION

The 3D topological Floquet spectrum may be real-
ized in a variety of systems: Cold atoms with synthetic
spin orbit couplings24,25, and even more naturally, semi-
conductors with direct band-gaps occurring in an odd
number of points in the Brillioun zone. By Eq. (14),
a narrow bandgap and the use of low- frequency drive
are advantageous for achieving a sizeable gap in the
Floquet spectrum. Candidate materials are rhombohe-
dral Sb2Se3

3, GeSb2Te4
26, and the gap-tunable Heusler

compounds27,28 with applied strain, and TlBiSex2S2−x
alloys29, where a gap of ∼ 10K can be achieved using
microwave fields of intensity ≤ 1 W

mm2 .

As opposed to the its 2D counterpart10, the sur-
face modes emerging in the 3D driven system, allow
direct probing of the driven topological state using a
multitude of all-optical means. These include photoe-
mission spectroscopy30,31; the measurements of the Kerr
and Faraday effect32, which can detect a gapped Floquet
surface spectrum (whereas in the material these effects
should be negligible absent the driving); measurement of
induced photocurrents33, and photoluminiscence34.

In a solid-state realization of our proposal, the elec-
tronic distribution in the presence of a periodic drive
poses an important question. It was previously studied
theoretically and experimentally34–39, and we intend to
address it in future work. According to Ref. 35, coupling
to phonons can yield a steady state described by a filled
Floquet band with an effective temperature (on the order
of the lattice temperature). Furthermore, in Ref. 34 the
Floquet gap in a semiconductor system is directly ob-
served. These suggest the feasibility of our proposal in
solid-state systems.

A finite density of particles and holes in the Floquet
bands may attenuate the driving electromagnetic field.
By assuming that electrons participating in the band
inversion act as free charge carriers36,37, we estimate a
lower bound to the attenuation length, ξ ≈ 1/

√
ωµeµek3

0,
due to carrier density ∼ k3

0 and mobility µe. By Eq. (14),
the localization length λ of the surface modes scales lin-
early with k−1

0 . Therefore, a regime for which λ < ξ is

attained for k0 <
η2

µµee
BW2

Mω5 .
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Appendix A: Topological properties of the
two-photon resonance

In this section we study the topological properties
of the Floquet operator corresponding to an insulator
driven with an electromagnetic field whose frequency al-
lows only for a two photon resonance, M < ω < 2M ,
where 2M is the bandgap of the insulator. The two-
photon resonance is a second order process in the electric
field. In the chosen gauge, a 2ω-term arises both directly

from ~V2, and from a second order process in ~V1. Both
terms therefore yield contributions of order A2

0. In or-
der to consider both terms on an equal footing we shall
perform two consecutive time dependent unitary trans-
formations, where each transformation is characterized
by the frequency ω. In order to analyze the resulting
time dependent Hamiltonian, we shall employ the rotat-
ing wave approximation and expand to lowest orders in
k and A0.

We first introduce some useful notations. We decom-
pose any four dimensional vector ~V into the components
parallel and perpendicular to a four dimensional unit vec-
tor D̂ as

~V⊥D̂ = ~V −
(
~V · D̂

)
D̂, (A1)

and

~V‖D̂ =
(
~V · D̂

)
D̂. (A2)

For notational convenience, we shall relabel ~D′(k) →
~D(k), c.f. Eq. (12) in the main text. The first rotat-
ing wave transformation is done via the unitary

U1(k, t) = P+(k) + P−(k)e−iωt, (A3)

which leads to the Hamiltonian in the first rotating frame
given by

H1 = U1(k, t)H(t)U†1 (k, t)

=
(
~D(k) + 1

2
~V1⊥D̂

)
· ~γ + ωP−(k) + V(1)(t).(A4)

In the above, the time dependent part is given by

V(1)(t) = (~V1‖D̂ + 1
2
~V2⊥D̂) · ~γ cos(ωt)

+ 1
2 (~V2⊥D̂)iD̂jγij sin(ωt) + Ṽ(t). (A5)

Note that V(1)(t) contains terms with frequencies ω (the
first two term in Eq. (A5)) and 2ω, 3ω (corresponding to

Ṽ(t), the third term above).
It is convenient to define

D̂(1)(k) = ∆ε(k)D̂(k) + 1
2
~V1⊥D̂(k), (A6)

with

∆ε(k) = ε(k)− 1
2ω, ε(k) = |D̄(k)|, (A7)

which enables us to write Eq. (A4) as

H1 = D̂(1)(k) · ~γ + V(1)(t) (A8)

The time-independent part of Eq. (A4) can be ex-

pressed using eigenvalues ε
(1)
± (k) and projection opera-

tors P
(1)
± (k). We now perform a second rotating wave

transformation

U2(k, t) = P
(1)
+ (k) + P

(1)
− (k) exp(−iωt), (A9)

which yields the Hamiltonian in the 2nd frame,

H2 = ε
(1)
+ (k)P

(1)
+ (k) + (ε

(1)
− (k) + ω)P

(1)
− (k)

+ U2(k, t)
(

(~V1‖D̂ + 1
2
~V2⊥D̂) · ~γ

)
U†2 (k, t) cos(ωt)

+ U2(k, t)
(

( 1
2
~V2⊥D̂)iD̂jγij

)
U†2 (k, t) sin(ωt). (A10)

In the above, we have omitted from H2 the term

U2Ṽ(t)U†2 which does not contain any time independent
contributions to H2, and therefore does not contribute to
the two photon resonance.

After the second transformations, the two bands cross

at a surface S for which ε
(1)
+ (k) = (ε

(1)
− (k) +ω). We now

employ the rotating wave approximation. The contribu-
tion coming from the second term in Eq. (A10) can be
deduced from inspecting Eq. (8) and (9) in the main text.
The contribution arising from the third term in Eq. (A10)

yields a term of the form 1
4iD̂i(~V2⊥D̂)jD̂k[γij , γk]. Some

algebra reveals that to lowest order in A0 and k, the

two terms in Eq. (A10) involving ~V2⊥D̂ yield the same
contribution to the rotating wave approximation.

Therefore, on the surface S we have,

H2,RWA|S =
1

2
~V

(1)

⊥D̂(1)
· ~γ (A11)

where the vector ~V
(1)

⊥D̂(1)
is defined as in Eq. (A1) by re-

placing

D̂ → D̂(1), ~V → ~V (1) = ~V1‖D̂ + ~V2⊥D̂. (A12)

In order to achieve a topological Floquet spectrum,

the vector field ~V
(1)

⊥D̂(1)
needs to map the resonance surface

S to an S2 sphere on the three dimensional sphere S3. In
the following we shall show that this is indeed the case.

As a first step, we inspect the contributions to ~V (1),
which arise after the first unitary transformation. Keep-
ing only terms only up to second order in k, we find

~V1‖D̂ =
A0(A2 − 2BM)

M
kx

( A
M

k, 1
)
,

and

~V2⊥D̂ =
ABA2

0

2M

(
k,− A

M
k2

)
. (A13)
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The vector field ~V2⊥ clearly maps a sphere in the BZ to
an S2 sphere on the target space S3. This is of course

expected from noting that ~V2 ·~γ is a scalar under spatial
rotations. However, we are interested in its contribution
to the two-photon resonance, i.e., to Eq. (A11).

To this end, we note that ~V2⊥D̂ is orthogonal to D̂ by

construction, and D̂(1) = D̂ + o
(
|~V1⊥|
∆ε

)
≈ D̂ + o

(
|A0|
M

)
.

Therefore, the correction to ~V2⊥D̂, when it is inserted

into the expression for ~V
(1)

⊥D̂(1)
, are of higher order in A0.

Explicitly, we have

~V2⊥D̂ · D̂
(1) =

1

2| ~D(1)|
~V2⊥ · ~V1

=
1

| ~D(1)|
ABA3

0

4M

(
A+ 2

AB

M
k2
)
kx

≈ 1

∆ε(k)

A2BA3
0

4M
kx

where we have kept terms only up to order k2 and A3
0.

Therefore, the final contribution of ~V2 to ~V
(1)

⊥D̂(1)
to this

order is

~V2⊥D̂(1) = ~V2⊥D̂ −
( A2BA3

0

4M∆ε(k)
kx

)
D̂ (A14)

The second term in the above equation correspond

to a correction to the spatial (1 − 3) parts of ~V2⊥D̂,

Eq. (A13), of order k2 and A3
0. The spatial part of ~V2⊥D̂

are originally of order k and A2
0. Therefore, to lowest

order in k and A0, this correction does not alter the

topological property of ~V
(1)

⊥D̂(1)
, which we shall describe

below.
We now calculate the contribution of ~V1 to ~V

(1)

⊥D̂(1)
,

which will turn out to be of the same order as the con-
tribution of ~V2, c.f. Eq. (A14).

First, we note that

~V1‖D̂ · D̂
(1) =

∆ε

| ~D(1)|

(
~V1 · D̂

)
(A15)

From Eq. (A15), and for ∆ε(k)� |~V1⊥D̂|, we have

(
~V1‖D̂ · D̂

(1)
)
D̂(1) =

(
1−
|~V1⊥D̂|2

8∆ε2
) (
~V1 · D̂

)
×
(
1−
|~V1⊥D̂|2

8∆ε2
)(
D̂ +

~V1⊥D̂
2∆ε

)
(A16)

Using the definition of ~V1‖, Eq. (A2), we see that the

total contribution of ~V1 to ~V
(1)

⊥D̂(1)
, to order A2

0 is

~V1‖ −
(
~V1‖ · D̂(1)

)
D̂(1) ≈ −

(
~V1 · D̂

)
2∆ε

~V1⊥ (A17)

Therefore, this contribution to ~V
(1)

⊥D̂(1)
is of the same or-

der in the driving field as the contribution coming from
~V2⊥D̂, Eq. (A13) and its inclusion was necessary for com-

pleteness. Note that ~V1⊥ = AA0x̂+ o(|k|), and therefore(
~V1 · D̂

)
2∆ε

~V1⊥D̂ · x̂ =
A2

0

(
A2 − 2BM

)
2M∆ε

Akx + o(A2
0, |k|3)

(A18)
while the y and z components of Eq. (A17) are of order
A2

0 and k3. Note that the x̂5 component of Eq. (A17) is

of order A2
0 and k2. From Eq. (A16), we see that the ~V1

term also contributes terms of order A3
0 and k2 to ~V

(1)

⊥D̂(1)
.

All of the above higher order corrections do not change

the topological properties of ~V
(1)

⊥D̂(1)
, to lowest order in

A0 and k.

Summing up both contributions to ~V
(1)

⊥D̂(1)
, we have,

to lowest order in k and A0,

~V
(1)

⊥D̂(1)
· x̂ =

(
~V2⊥D̂ −

(
~V1 · D̂

)
2∆ε

~V1⊥

)
· x̂

=
A2

0

2M

(
B − (A2 − 2BM)/∆ε

)
Akx,(A19)

while the other two spatial components are given by

~V
(1)

⊥D̂(1)
· x̂α =

A2
0B

2M
Akα, α = y, z (A20)

From Eqs. (A19,A20), we see that the vector field
~V

(1)

⊥D̂(1)
maps the resonance surface S to an 2-sphere on

the target space S3. This 2-sphere is not at a constant
“latitude”, i.e. its θ coordinate on S3 is not constant.
Importantly however, this 2-sphere winds around the
poles of S3, i.e., it is an incontractible sphere on the
space S3 \ (N ∪ S), the space of S3 with the north and
south pole removed.

From the above considerations, we see that H2(t),
given in Eq. (A10) can be characterized by projection

operators of the form P
(2)
± (k) = 1

2 (1 ± n̂2(k) · ~γ). The

unit vector n̂2(k) defines a map from the BZ to S3 with
the properties: (i) For regions in the BZ near the Γ point,

n̂2(k) ≈ −D̂(k), and therefore it maps 2-spheres in the
BZ to 2-spheres on S3, close to its south pole; (ii) Maps
the sphere S in the BZ to an S2 sphere on S3 which
is incontractible on S3 \ (N ∪ S) (as discussed above) ;

(iii) For large values of k, n̂(k) ≈ D̂(k), therefore these
are mapped to 2-spheres close to the north pole of S3.
From continuity of n̂2(k), it must therefore define a map
of degree one. This implies that the Floquet operator
corresponding to H2(t) and H(t), has a non trivial Z2

topological invariant.
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Appendix B: Virtual absorption perturbation theory

The two consecutive RW transformations are very reminiscent of a perturbation expansion. One RW transforma-
tion fails to produce a degenracy, and therefore a second transformation is necessary to expose the role of two-photon
processes. In this section we will show how indeed such processes can be analyzed as virtual absorption processes,
and derive a formula which replaces second-order degenerate perturbation expansions.

The first step involves mapping the time-dependent Floquet problem to a time-independent problem using an
auxiliery degree of freedom. Let us introduce an additional Hilbert space which serves as a counter of photons
absorbed (for the experts, we note that this auxiliery variable is just a way of keeping track of the Floquet block
index). We introduce an infinite lattice for a single particle, which we denote F , with states |n〉F ; n is essentially
counting the number of photons absorbed by the system. The original system has a Hamiltonian which is split to
time independent Hsys and time dependent pieces:

H(t) = Hsys + Ôeiωt + Ô†e−iωt, (B1)

we now replace the time dependent terms with hopping terms for the register particle F. We also add a diagonal
energy term that determines the energy of the F states. The Hilbert space after this mapping is a tensor product
state between the F-states and the system’s states. The time dependent Hamiltonian is therefore replaced by an
operator that acts on the larger Hilbert space,

HF = Hsys +
∑
n

(
Ô |n+ 1〉F F 〈n|+ Ô† |n〉F F 〈n+ 1|

)
+Hω, (B2)

with

Hω =
∑
n

nω |n〉F F 〈n| . (B3)

and Hsys = Hsys ⊗ IF .
To retrieve the original Hamiltonian, Eq. (B1) all that is necessary is to initiate the auxiliary F-states in the

zero-momentum state:

|ψ〉F =
1

N

∑
n

|n〉F . (B4)

with N providing a normalization.
Our first claim is that the time-independent Hamiltonian, Eq. (B2), initiated with |ψ〉F has the same propagator

for the system as the one for the original Hamiltonian, Eq. (B1):

U(t) = P
[
exp

[
−i
∫ t

0

dtH(t)

]]
=F 〈ψ| exp[iHωt] exp [−iHF t] |ψ〉F . (B5)

where P denotes path ordering. To show this, we first move to the interaction picture in terms of the states F . More
precisely we consider:

U(t) = eiHωt · e−iHF t. (B6)

We note that

dU(t)

dt
= −ieiHωt(HF −Hω)e−iHωtU(t). (B7)

Since HF −Hω = Hsys +HOF , we write:

eiHωt(HF −Hω)e−iHωt = Hsys +HOF (t) (B8)

with:

HOF (t) = eiHωt
∑
n

(
Ô |n+ 1〉F F 〈n|+ Ô† |n〉F F 〈n+ 1|

)
e−iHωt =

∑
n

(
Ô |n+ 1〉F F 〈n| eiωt + Ô† |n〉F F 〈n+ 1| e−iωt

)
.

(B9)
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U(t) is easily solved to be:

U(t) = P
[
exp

[
−i
∫ t

0

dt (Hsys +HOF (t))

]]
(B10)

And therefore, the identity (B5), which we are trying to prove, becomes

U(t) =F 〈ψ| U(t) |ψ〉F . (B11)

Now that we have essentially eliminated Hω from the expression for U(t), the only operators relating to the F-states
remaining are the hopping operators

∑
n
|n+ 1〉F F 〈n| and

∑
n
|n〉F F 〈n+ 1|. These operators are simple to handle

since |ψ〉F is an eigenstate of both, with eigenvalue 1:∑
n

|n+ 1〉F F 〈n|ψ〉F =
∑
n

|n〉F F 〈n+ 1|ψ〉F = |ψ〉F . (B12)

Thus we can write:

HOF (t) |ψ〉F = |ψ〉F
(
Ôeiωt + Ô†e−iωt

)
= |ψ〉F HO(t) (B13)

and also:

U(t) |ψ〉F = P
[
exp

[
−i
∫ t

0

dt (Hsys +HOF (t))

]]
|ψ〉F

= |ψ〉F P
[
exp

[
−i
∫ t

0

dt (Hsys +HO(t))

]]
= |ψ〉F U(t) (B14)

which confirms Eq. (B11), and therefore completes the proof of the mapping.
To conclude this section, we note on the correspondence between the formalism presented above and the Floquet

theorem

U(t) = W (t) exp [−iHF t] (B15)

where W (t+ T ) = W (t) and HF is an operator acting on the system Hilbert space only, see main text, Eq. (4). The
correspondence is given by noting that choosing W (t = 0) = I gives

exp [−iHF t] = 〈ψ|F exp [−iHF t] |ψ〉F (B16)

1. Elimination of single photon processes

The auxiliery F-states formalism allows accounting for a sequence of virtual photon absorptions, by systematically
eliminating the F-states associated with intermediate parts of the process. In the case we considered, for instance,
there is no resonant single photon process. Therefore, if we start the system and F-state wave function with only an
even number of photons, odd-photon F states will only appear with a suppressed amplitude since they have a large
energy mismatch with the initial states of the wave function - they must be about an ω away.

Accounting for two-photon processes in our system is thus possible along the lines of ordinary second-order
perturbation theory. We start by consdiering the propagator applied to the low-energy subspace, and read-off the
effective hamiltonian that emerges after resumming connected diagrams. In our case, the low-energy subspace of the
F-states is the superposition of all even states:

|ψeven〉F =
1

N ′

∑
n

|2n〉F . (B17)

The effective two-photon propagator is then given by:

U(t) ≈ U2(t) =F 〈ψeven| U(t) |ψeven〉F . (B18)

Next, we need to expand the interaction Hamiltonian in powers of HOF (t).
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Before carrying out the expansion, let us move to the interaction picture of Hsys as well:

eiHsystU2(t) ≈F 〈ψeven| eiHsystU(t) |ψeven〉F =F 〈ψeven| Ũ(t) |ψeven〉F . (B19)

with

Ũ(t) = P
[
exp

(
−i
∫ t

0

dtH̃OF (t)

)]
. (B20)

We denote

H̃OF (t) = ei(Hsys+Hω)tHOF e−i(Hsys+Hω)t =
∑
n

(
Ô(t) |n+ 1〉F F 〈n| e

iωt + Ô†(t) |n〉F F 〈n+ 1| e−iωt
)
. (B21)

with Ô(t) = eiHsystÔe−iHsyst.

Now we are ready to expand the interaction Hamiltonian in powers of H̃OF (t). Up to second order we encounter
the terms:

Ũ(t)− 1 = −
∫ t

0
dt2
∫ t2

0
dt1

(
Ô(t2) |n+ 1〉F ei(n+1)ωt2 + Ô†(t2) |n− 1〉F ei(n−1)ωt2

) (
F 〈n|n〉F e−inω(t2−t1)

)(
Ô†(t1)F 〈n+ 1| e−i(n+1)ωt1 + Ô(t1)F 〈n− 1| e−i(n+1)ωt1

)
.

(B22)

Note that we split the compound: |n〉F F 〈m| e−iω(m−n)t = |n〉F eiωnt ·F 〈m| e−iωmt. The operators Ô, Ô† could at
this point be construed as first quantized operators, which change the state of a particle interacting with the radiation
field.

Further progress is made by projecting on the initial, intermediate, and final states of the system described by
Hsys. Let us denote Pσ to be a projector of the system’s state on the subspace of energy εσ. For now, we maintain the
generality of the discussion, although eventually, we will restrict ourselves to Hsys = H(k) which is a 4×4 Hamiltonian
describing two 2d subspaces with energies ±ε(k); at that point it will be simple to use σ = ±1 to indicate the valence
vs. conduction subspaces. Armed with this notation we can write:

Ũ(t)− 1 = −
∑

σ1, σ2, σ3

∫ t
0
dt2
∫ t2

0
dt1Pσ3

(
Ô(t2) |n+ 1〉F ei(n+1)ωt2 + Ô†(t2) |n− 1〉F ei(n−1)ωt2

)
Pσ2e

−inω(t2−t1)(
Ô†(t1)F 〈n+ 1| e−iω(n+1)t1 + Ô(t1)F 〈n− 1| e−iω(n−1)t1

)
Pσ1

(B23)
This allows us to resolve the time dependence of the operators:

Ũ(t)− 1 = −
∑

σ1, σ2, σ3

∫ t
0
dt2
∫ t2

0
dt1Pσ3e

−i(εσ2−εσ3 )t2
(
Ô |n+ 1〉F ei(n+1)ωt2 + Ô† |n− 1〉F ei(n−1)ωt2

)
Pσ2(

Ô†F 〈n+ 1| e−i(n+1)ωt1 + ÔF 〈n− 1| e−i(n−1)ωt1
)
Pσ1

e−i(εσ1−εσ2 )t1e−inω(t2−t1)
(B24)

The expressions compactify by defining two indices µ1,2 = ±1, and denoting Ô(+1) = Ô† and Ô(−1) = Ô, and dropping
the subscript F ,

∆Ũ(t)− 1 = −
∑

σ1, σ2, σ3

∑
µ1,µ2=±1

∫ t
dt2
∫ t2
−∞ dt1Pσ3

Ô(−µ2)

|n+ µ2〉Pσ2
Ô(µ1) 〈n+ µ1|Pσ1

e−i(εσ1−εσ2 )t1−i(n+µ1)ωt1e−i(εσ2−εσ3 )t2+i(n+µ2)ωt2e−inω(t2−t1)
(B25)

By moving to average time, t = t1+t2
2 and time difference, t− = t2− t1, as well as integrating over t− (while assuming

that t is large and ignoring boundary terms for t−, we get:

Ũ(t)− 1 = −
∑

σ1, σ2, σ3

∑
µ1,µ2=±1

∫
dtPσ3Ô

(−µ2) |n+ µ2〉Pσ2Ô
(µ1) 〈n+ µ1|Pσ1

ie−it(εσ1−εσ3)e−itω(µ1−µ2)

εσ1+εσ3
2 + ω µ1+µ2

2 − εσ2

(B26)

The time dependence on t is simply the interaction-representation time dependence. Therefore, by going back to the
Schrd̈inger representation, we are able to get rid of the remaining time dependence in the expression, and we readily
extract the effective second-order contributions to the effective HF :

Heff2−ph =
∑

σ1, σ2, σ3

∑
µ1,µ2=±1

∑
n

|n+ µ2〉F F 〈n+ µ1|
Pσ3

Ô(−µ2)Pσ2
Ô(µ1)Pσ1

εσ1+εσ3
2 + ω µ1+µ2

2 − εσ2

, (B27)
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whereby now

HeffF = Hsys +Heff2−ph +Hω (B28)

Again we note that |ψeven〉F is an eigenstate with eigenvalue 1 of
∑
n
|n+ µ2〉F F 〈n+ µ1| for µ1,2 = ±1, which allows

the mapping back to the original system. As before, the way to go back to the language of the original time dependent
problem is to evaluate Eq. (B18), which yields

U2(t) = P
[
exp

[
−i
∫ t

0

dt
(
Hsys +Heff

2−ph(t)
)]]

, (B29)

with

Heff
2−ph(t) =

∑
σ1, σ2, σ3

∑
µ1,µ2=±1

∑
n

ei(µ2−µ1)ωt Pσ3Ô
(−µ2)Pσ2Ô

(µ1)Pσ1

εσ1+εσ3
2 + ω µ1+µ2

2 − εσ2

, (B30)

The form of Eq. (B30) is clearly in accord with degenerate perturbation theory. The reason for the putative
degeneracy is the fact that we consider the energy of the F states representing the photons together with the energy
of the system. A resonance, therefore, translates to a degeneracy in this language. It is interesting to note that Eq.
(B27) generalizes degenerate perturbation theory to the case of near degeneracy. The energy denominator is actually
the difference between the average of the initial and final energies, and the intermediate energy.

2. Application to the 3d FTI construction

Applying the formalism above to the 3d FTI construction is quite straightforward. We let Ô = Ô† = 1
2 V̂ = 1

2
~V ·~γ,

and Pσ = 1
2

(
1 + σH(k)

εk

)
with H(k) = D̄ · ~γ. We separate to two cases: (1) σ1 = σ3, µ1 = µ2, and (2)σ1 = −σ3,

µ1 = −µ2 = −σ1.
a. Case 1 - diagonal elements. The case of diagonal elements can be treated for both the valence and conduction

band simultaneously, since terms that do not excite between the bands are time independent, and therefore the f terms
factor out. Therefore:

Heffσ1=σ3
= |n〉F F 〈n|

∑
σ1,σ2=±1, µ=±1

Pσ1

V̂
2 Pσ2

V̂
2 Pσ1

(σ1 − σ2)εk − µω
(B31)

Clearly σ2 = −σ1, otherwise the denominator makes the sum vanish. Thus:

Heffσ1=σ3
= |n〉F F 〈n|

∑
σ1=±1

Pσ1
V̂ P−σ1

V̂ Pσ1

4ε2k − ω2
· σ1εk (B32)

Elementary algebra of the Dirac matrices reduces this expression to:

Heffσ1=σ3
= |n〉F F 〈n|

(
~V − 1

ε2k
D̄ · ~V D̄

)2

4ε2k − ω2

1

2
D̄ · ~γ (B33)

where we also recognize ~V⊥D̂ = ~V − 1
ε2k
D̄ · ~V D̄. Note that a term corresponding to Eq. (B33) also arises in the

treatment involving the two rotating wave transformations. Consider the Hamiltonian H2(t), Eq. (A10), evaluated at

values of k for which 2ω = ε(k), in the rotating wave approximation. For these k values, the terms ε
(1)
+ (k)P

(1)
+ (k) +

(ε
(1)
− (k) + ω)P

(1)
− (k) do not vanish, but give, to order |~V1|2 a term corresponding to Eq.(B33).

b. Case 2 - interband elements. The interband elements are to some extent more complicated, since we need to
consider excitation and relaxation separately. We consider a term connecting the initial state σ1 with σ3 = −σ1. For
this process to be viable, we must have µ1 = −µ2 = −σ1. Therefore, the specific term is:

Heffσ1→−σ1
= |n+ µ2〉F F 〈n+ µ1|

∑
σ2=±1

P−σ1

V̂
2 Pσ2

V̂
2 Pσ1

−σεk
(B34)
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Using the form of Pσ2
we can carry out the sum, and obtain:

Heffσ1→−σ1
= |n+ µ2〉F F 〈n+ µ1|

P−σ1 V̂ H(k)V̂ Pσ1

−4ε2k
(B35)

Once again, elementary manipulations of the Dirac matrices yields:

Heffσ1→−σ1
=

1

4
|n+ µ2〉F F 〈n+ µ1|

(
−
~V · D̄
ε2k

~V⊥D̂ · ~γ −
σ1

2

~V · D̄
ε3k

[
D̄ · ~γ, ~V · ~γ

])
. (B36)

This term seems indeed complicated. A simplification occurs, however, when we consider the RWA directly applied
with a 2ω energy. The effective Hamiltonian connecting the two bands (that arises from V ) is (the RWA eliminates
the time dependence, and hence the F’s):

Heffinterband = Heff1→−1 +Heff−1→1 = −
~V · D̂
2εk

~V⊥D̂ · ~γ (B37)

This term joins the direct two-photon process that arises from the ~A2 term appearing in D5 due to the mass curvature.
This term also coincides to second order in V, with the corresponding effect on the radiation-induced gap within the
two consecutive rotating wave transformations. Note that at resonance εk = 2∆εk, and thus Eq. (B37) agrees with
Eq. (A19).
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