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There are many interesting parallels between systems of interacting non-Abelian anyons and quantum mag-
netism, occuring in ordinary SU(2) quantum magnets. Here we consider theories of so-called su(2)k anyons,
well-known deformations of SU(2), in which only the first k + 1 angular momenta of SU(2) occur. In this
manuscript, we discuss in particular anyonic generalizations of ordinary SU(2) spin chains with an emphasis
on anyonic spin S = 1 chains. We find that the overall phase diagrams for these anyonic spin-1 chains closely
mirror the phase diagram of the ordinary bilinear-biquadratic spin-1 chain including anyonic generalizations of
the Haldane phase, the AKLT construction, and supersymmetric quantum critical points. A novel feature of
the anyonic spin-1 chains is an additional topological symmetry that protects the gapless phases. Distinctions
further arise in the form of an even/odd effect in the deformation parameter k when considering su(2)k anyonic
theories with k ≥ 5, as well as for the special case of the su(2)4 theory for which the spin-1 representation plays
a special role. We also address anyonic generalizations of spin-1/2 chains with a focus on the topological pro-
tection provided for their gapless ground states. Finally, we put our results into context of earlier generalizations
of SU(2) quantum spin chains, in particular so-called (fused) Temperley-Lieb chains.

PACS numbers: 05.30.Pr, 03.65.Vf, 03.67.Lx

I. INTRODUCTION

Ever since the early days of condensed matter physics,
quantum magnets have played an integral role in shaping our
understanding of interacting quantum many-body systems.
Following the experimental discovery of the high-temperature
superconductors whose undoped parent compounds typically
are antiferromagnets, the study of quantum magnets has fur-
ther intensified yielding a plethora of deeper insights. Early
on, quantum spin chains – typically one-dimensional arrange-
ments of SU(2) spins – have become prototypical systems
that proved to be fruitful ground for analytical descriptions
and quasi-exact numerical analysis1. One seminal result was
the exact solution of the antiferromagnetic spin-1/2 Heisen-
berg chain via the Bethe ansatz and its description in terms of
conformal field theory. Another crucial contribution was Hal-
dane’s realization2 that the antiferromagnetic spin-1 Heisen-
berg chain forms a gapped state with characteristic zero-
energy edge states for open boundary conditions – a princi-
ple observation that holds true for all half-integer and inte-
ger spin chains. More recently, it has been found that the
gapped Haldane phase of the spin-1 chain is an example of
a symmetry protected topological phase3,4 making it a one-
dimensional cousin of topological insulator states in two and
three dimensions5, which have attracted much recent interest.

Over the years, a plethora of physical systems that con-
nect to the elementary physics of quantum spin chains have
been identified, including transition metal oxides6, Au quan-
tum wires on semiconducting surfaces7, or ultra-cold atoms
in optical lattices8. Recently, it has been realized that cer-
tain ‘deformations’ of quantum spins can be used to describe

some of the more peculiar topological properties of exotic
quasiparticles, so-called non-Abelian anyons, that arise in
certain topologically ordered systems, including certain frac-
tional quantum Hall states9, px + ipy superconductors10, het-
erostructures of topological insulators and superconductors11,
heterostructures of spin-orbit coupled semiconductors and
superconductors12 and possibly certain Iridates13 which may
effectively realize the Kitaev honeycomb model14. To be more
specific, the deformations of quantum spins are representa-
tions of the anyon theories called su(2)k, which can be de-
scribed as theory of ordinary SU(2) quantum spins that is de-
formed in such a way that only the first k + 1 (generalized)
angular momenta

j = 0,
1

2
, 1, . . . ,

k

2

can occur. These generalized angular momenta capture the
non-Abelian properties of the anyonic quasiparticles present
in the su(2)k theory. For instance, the non-Abelian nature of
the so-called Majorana fermion is captured by the general-
ized angular momentum 1/2 of the su(2)2 theory. The same
holds for so-called Ising anyons, while Fibonacci anyons can
be represented by the generalized angular momentum 1 of the
su(2)3 theory. Similar to the coupling of two ordinary spins,
a pair of generalized angular momenta can be combined (or
‘fused’) into a new set of joint quantum numbers. For in-
stance, for k ≥ 2, two generalized angular momenta 1/2 can
be combined to form either a state with generalized angular
momentum 0 or a state with generalized angular momentum
1, which is written as

1/2× 1/2 = 0 + 1 , (1)
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reminiscent of two ordinary spin 1/2’s forming either a singlet
or triplet state. Similarly, two generalized angular momenta 1
can be combined into

1× 1 = 0 + 1 + 2 (2)

for deformation parameters k ≥ 4. For lower values of k, the
rules differ because the number of representations is limited
by k. In particular, for k = 3, one finds 1 × 1 = 0 + 1,
while for k = 2, one has 1 × 1 = 0. Finally, for k = 1, the
general momentum 1 is not allowed. For the anyonic theories,
the above equations are often referred to as fusion rules.

The many-body physics of a set of interacting non-Abelian
anyons can be captured by a Hamiltonian that is formed by
pairwise interactions which assign energies to the different
outcomes in the above fusion rules. Such an approach is a
straightforward generalization of the conventional Heisenberg
model, whose pairwise interaction term J ~Si · ~Sj is simply a
projector onto the singlet state, which is energetically favored
for antiferromagnetic couplings (J < 0) or penalized for fer-
romagnetic couplings (J > 0).

The first step in this direction was taken by some of us for
anyonic spin-1/2 chains in Ref. (16) and later generalized to
spin-1 chains in Ref. (17) by the current group of authors. The
careful analysis of the ground states of these one-dimensional
systems has resulted in a number of insights. First, anyonic
spin-1/2 chains typically form gapless ground states which
can be described in terms of conformal field theory16. These
gapless states turn out to be protected by a topological sym-
metry inherent to the anyon chains that renders them stable
against local perturbations16,18. Moreover, these gapless states
can in fact be interpreted as edge states that reveal the true
ground state of a two-dimensional set of anyons – a novel
topological liquid that is separated by the original topologi-
cal liquids (of which the anyons are excitations) by an edge17.
This picture has been verified by a careful analysis of ladder
systems, in which multiple chains are coupled19.

Going beyond spin-1/2 chains, we began to study the
physics of anyonic spin-1 chains with first results being re-
ported in a preceding (much more condensed) paper17. In
the manuscript at hand, we provide an in-depth discussion of
these anyonic spin-1 chains. We find that many of the distinc-
tive features of ordinary SU(2) spin-1/2 and spin-1 chains also
hold for their anyonic cousins. For instance, anyonic spin-1
chains exhibit a gapped topological phase for antiferromag-
netic couplings – the anyonic generalization of the Haldane
phase. Exploring the phase diagram of chains of pairwise
interacting spin-1 anyons, we find a striking resemblance of
the anyonic phase diagram to the one of the ordinary bilinear-
biquadratic spin-1 chain. In particular, we find multiple gap-
less phases (and phase transitions) in addition to the gapped
Haldane phase. For the former, a similar topological protec-
tion mechanism and edge state interpretation holds as for the
gapless phases of the anyonic spin-1/2 chains17.

The focus of this manuscript is to provide an exhaustive de-
scription of the phase diagram(s) of the anyonic spin-1 chains.
Our exploration of these systems has led to a large amount of
results as the phase diagrams turned out to be much richer
than initially anticipated. In particular, we find two families

of phase diagrams depending on whether the deformation pa-
rameter k of the su(2)k anyonic theories is odd or even. More-
over, we obtain a distinct phase diagram for k = 4, a result
that can be explained by the special role played by the gener-
alized angular momentum 1 in the su(2)4 theory.

In order to guide the reader through these various results
we have taken some care to structure the manuscript as fol-
lows: We will start with an introduction to the anyonic su(2)k
theories and a description of the anyonic generalization of the
Heisenberg model in Section II. The following sections will
then give a detailed exposé of our results, devoting Sec. III
to the discussion of anyonic spin-1 chains with odd deforma-
tion parameters k ≥ 5, followed by a discussion of the case of
even deformation parameters k ≥ 6 in Sec. IV. In Sec. V we
will turn to the case of k = 4 for which the spin-1 representa-
tion plays a special role and a rich phase diagram is obtained.
We will then turn to anyonic spin-1/2 chains and discuss their
physics, in particular their topological stability in Sec. VI. We
will end with a broader discussion of our results, in particu-
lar in light of other deformations of conventional spin chains
such as continuous su(2)q deformations or so-called (fused)
Temperley-Lieb spin chains. The main part of the manuscript
is followed by an appendix that provides the technical details
of our calculations.

II. THE ANYONIC QUANTUM SPIN CHAIN
HAMILTONIANS

In light of the recent interest in topological phases of matter,
it is of great importance to gain an understanding topological
models in their simplest incarnation, and we will thus study
one-dimensional chains of interacting non-Abelian anyons. In
this section, we will briefly explain the models by drawing
parallels with ordinary one-dimensional spin chains. More-
over, we will explain why the ‘topological’ nature of these
models goes beyond the fact that they are constructed from
‘topological’ particles, namely non-Abelian anyons.

One of the prototypical one-dimensional spin chain models
is the Heisenberg model, in which SU(2) spins interact via a
‘spin-spin’ interaction of the type ~Si · ~Sj , where the labels i
and j denote the locations of the interacting spins. Often, one
restricts the interaction to nearest-neighbor, or next-nearest-
neighbor pairs of spins. For the description of the anyonic
quantum spin chains, it will be beneficial to think of this in-
teraction in terms of the total spin of the two interacting spins.
In this paper, we will only consider nearest neighbor interac-
tions.

As a first example, we look at conventional SU(2) spin-1/2,
and consider the total spin ~ST = (~Si+~Si+1) of two interacting
spins ~Si and ~Si+1, whose magnitude is characterized by the
eigenvalue of (~ST )2 = (~Si + ~Si+1)2. Because the total spin
~ST can be either 0 or 1, with ~S2

T eigenvalues 0 and 2, we can
write

(~Si + ~Si+1)2 = 0P
(0)
i + 2P

(1)
i , (3)

where the projection operator P (s)
i projects onto the total spin
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s channel of the two spins ~Si and ~Si+1. Evaluating the left
hand side, one obtains

~Si · ~Si+1 = P
(1)
i − 3

4
Ii = −P (0)

i +
1

4
Ii , (4)

where in the last step we used that we can rewrite the iden-
tity operator as Ii = P

(0)
i + P

(1)
i , which holds in the case of

spin-1/2. We conclude that the Heisenberg interaction assigns
energy to two interacting spins, depending on their combined
spin, and the Heisenberg Hamiltonian can be written in terms
of projectors as

H = J
∑

i

P
(0)
i , (5)

where J = 1 corresponds to an antiferromagnetic coupling,
and J = −1 to the ferromagnetic version.

For spin-1, one can similarly write the bilinear and bi-
quadratic terms ~Si ·~Si+1 and (~Si ·~Si+1)2 respectively, in terms
of the projection operators P (1)

i and P (2)
i . In particular, the re-

lations

(~Si + ~Si+1)2 = 2P
(1)
i + 6P

(2)
i

(~Si + ~Si+1)4 = 4P
(1)
i + 36P

(2)
i , (6)

can be rewritten as

(~Si · ~Si+1) = P
(1)
i + 3P

(2)
i − 2Ii

(~Si · ~Si+1)2 = −3P
(1)
i − 3P

(2)
i + 4Ii . (7)

Consequently, the bilinear-biquadratic spin-1 Hamiltonian

Hbb =
∑

i

cos(θbb)(~Si · ~Si+1) + sin(θbb)(~Si · ~Si+1)2 (8)

can be expressed in terms of the projectors P (1)
i and P (2)

i as
follows,

Hbb =
∑

i

J2P
(2)
i + J1P

(1)
i

=
∑

i

cos θ2,1P
(2)
i − sin θ2,1P

(1)
i . (9)

Here, the relation between the two angles θ2,1 and θbb is given
by

tan θ2,1 =
tan θbb − 1/3

1− tan θbb
tan θbb =

tan θ2,1 + 1/3

1 + tan θ2,1
.

(10)

We will now shift our attention to anyonic degrees of free-
dom. Details about anyon models, in particular those of type
su(2)k, can be found in appendix A. A general introduction
can be found, e.g., in references Ref. (14,15,20). Here, we
will only introduce those concepts that are necessary for defin-
ing the chain Hamiltonians. The Hamiltonians for the anyon
chains that we will consider in this paper are of the form of
Eq. (9). The projectors P (j)

i in that equation have however a

different meaning for anyons (as compared to ordinary spins)
which will be defined in Eq. (12) below.

Anyons are labeled by generalized angular momenta, or - in
the language of anyons models - ‘topological charges’. These
generalized angular momenta correspond to quantum num-
bers, just as in the case of ordinary spin degrees of freedom.
The notion of combined spin, or tensor product of spins, cor-
responds to the notion of ‘fusion’ in the language of anyons,
and can in general result in more than one type of anyon. The
possible outcomes are called ‘fusion channels’. The general-
ization of the Heisenberg interaction for spins to the anyonic
case is to assign an energy to two interacting anyons based
on their fusion channel. How this is done in practice, will be
described in more detail below and in appendix C.

The class of anyons considered in this paper is derived from
SU(2) where spin-S ranges from S = 0, 1/2, 1, 3/2, . . .. In
contrast, su(2)k anyons contain only a subset of generalized
angular momenta, namely

j = 0,
1

2
, 1, . . . ,

k

2
.

The truncation, characterized by the ‘level’ k, has two impor-
tant consequences which we will describe in the following.

The first consequence concerns the fusion rules of the
anyons. The tensor product of two SU(2) spins S1 and S2

decomposes as

S1 ⊗ S2 = |S1 − S2| ⊕ · · · ⊕ (S1 + S2) .

The process of taking tensor products is associative, and the
same is true for the fusion rules. Because of the truncation
in the su(2)k theory, the SU(2) tensor product rule has to be
modified. It turns out that there is only one way of doing
this, consistent with the requirement that the fusion rules are
associative. In particular, the fusion rules of su(2)k anyons
read

j1×j2 = |j1−j2|+(|j1−j2|+1)+· · ·+min(j1+j2, k−j1−j2).
(11)

The second important consequence of the truncation fol-
lows from the fusion rules. The dimension of the Hilbert
space of a number N of ordinary SU(2) spin-1/2’s is equal
to 2N , and the spins can add up to a maximum spin of N/2.
In contrast, the dimension of the Hilbert space of a number N
of j = 1/2 anyons in the su(2)k theory is smaller than 2N .
In appendix A, it is shown that the dimension of the Hilbert
space forN j = 1/2 anyons grows as dN1/2, asymptotically for

large N , where d1/2 = 2 cos
(

π
k+2

)
is the so-called quantum

dimension of the j = 1/2 anyon. For 1 < k < ∞, this im-
plies that the effective number of degrees of freedom for each
anyon is irrational. This is less mysterious than it sounds: all
this is saying is that one can not think of the Hilbert space of
N anyons as a tensor product of N one-anyon Hilbert spaces.

Because the Hilbert space does not have a tensor product
structure, an alternative description of the state space and the
Hamiltonian acting on it is needed. We will describe here
how this can be done, but leave the details for the appendices
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where we also give an explicit description of the Hamiltonians
studied in this paper.

The Hilbert space of a chain of anyons can be described in
terms of a so-called ‘fusion tree’. In Figure 1, the fusion tree
for a chain of ‘spin-1’ anyons is displayed. The lines in the
fusion tree carry a label indicating the type of anyon the line
corresponds to. The lines coming from above correspond to
the spin-1 anyons which constitute the chain. The horizontal
lines, labeled by xi, are the actual degrees of freedom. The
possible ‘values’ of the xi are the same as those of the anyons
present in the anyon model, namely xi = 0, 1/2, . . . , k/2, in
case of su(2)k anyons. The xi cannot be chosen arbitrarily,
but may only take values such that the fusion rules are obeyed
at the trivalent points. For example, the anyon type x1 has to
appear in the fusion product of x0 × 1, the anyon type x2 ap-
pears in the fusion product x1 × 1, and so on. Each labeling
of the fusion tree that is consistent with the fusion rules corre-
sponds to a (orthonormal) state in the Hilbert space, and these
states span this space.

Typically, we will use periodic boundary conditions xL =
x0, which implies that x0 has to appear in the fusion prod-
uct xL−1 × 1, where L denotes the number of sites of
the chain. States in the Hilbert space will be written as
|x0, x1, . . . , xL−1〉.

The Hamiltonian assigns an energy based on the fusion
channel of two neighboring anyons in the chain. However,
in the above discussed representation of the Hilbert space (see
Figure 1), the fusion channel of two neighboring anyons is
not explicit. To remedy this problem, we employ a local basis
transformation which changes the order in which the anyons
are fused. This is permissible because of the associativity of
the fusion rules. For ordinary SU(2) spins, this basis transfor-
mation is described in terms of the Wigner 6j-symbols. In the
case of anyons, this basis transformation is described by what
are known as the F -symbols. A detailed discussion of the F
symbols, as well as explicit representations for su(2)k anyons
can be found in appendix B.

The basis transformation is depicted in Figure 2. On the
left hand side, x1 is fused with a spin-1 anyon, resulting in
x2, which is subsequently fused with the next spin-1 anyon,
resulting in anyon type x3. After the basis transformation,
one first fuses the two spin-1 anyons, resulting in x̃2, which is
fused with x1, resulting in the anyon type x3. Both bases are
equivalent; however, in the second basis, the fusion channel
of the two spin-1 anyons is explicit, namely x̃2. Thus, after
performing this basis transformation, one can assign the ap-
propriate energy based on the value of x̃2. Subsequently, one
transforms back to the original basis. The operator projecting
onto the anyon−j channel of two neighboring anyons i and

x1 x2 x3x0 . . .

1 1 1 1 1

FIG. 1: The anyonic spin-1 chain.

x1 x3x0 . . .
x̃2F

1 1 1 1 1

x1 x2 x3x0 . . .

1 1 1 1 1

FIG. 2: The basis transformation for the anyonic spin-1 chain.

i+ 1 is thus given by

P
(j)
i = F−1

i Π
(j)
i Fi , (12)

where Fi is shorthand for the local basis transformation de-
picted in Figure 2. The operator Π

(j)
i projects onto the fusion

channel x̃i = j, i.e., the fusion of two anyons into an anyon
of type j is penalized with energy E = 1, while the other pos-
sible fusion channels are assigned E = 0. For explicit matrix
representations of P (j)

i we refer to appendix C.
It is important to realize that the form of the projector (12)

is universal and applicable to anyonic chains composed of ar-
bitrary types of anyons. Changing to a different anyon model
will merely result in a different structure of the Hilbert space
and different F -symbols.

A. Topological symmetry

In this section, we present a detailed discussion of the
‘topological symmetry operator’. The Hamiltonians consid-
ered in this paper commute with the topological symmetry
operator, and the associated symmetry plays a crucial role in
the analysis of the anyonic chain models. In ‘equation’ (13),
a chain of type-j anyons with periodic boundary conditions is
displayed (in this particular case, L = 3).

x0
x1 x2 x0

j j j

(13)

For each type of anyon l, there exists a topological operator Yl.
The action of this operator Yl on the state |x0, x1, . . . , xL−1〉,
displayed in (13) forL = 3, can be described as follows. First,
an additional anyon of type l is created inside the spine of the
fusion tree, as displayed in (14).

x0
x1 x2 x0

j j j

l

(14)

This additional spin-l anyon is ‘merged’ with the fusion dia-

gram by applying an F -matrix, namely,
(
F x0,x0,l
l

)x′0
0

, result-
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ing in the state

∑

x′0

(
F x0,x0,l
l

)x′0
0
|x0, x1, . . . , xL−1〉

as depicted in (15).

x0
x1 x2 x0

x�
0

j j j

l

(15)

Next, one ‘moves’ the additional spin-l anyon around the ring,
by applying additional F -matrices. After the first step, one
obtains the state

∑

x′0,x
′
1

(
F x0,x0,l
l

)x′0
0

(
F j,x1,l
x′0

)x′1
x0

|x0, x1, . . . , xL−1〉

as illustrated in (16).

x1 x2 x0

x�
0

x�
1

j j j

l

(16)

Another move of this sort gives

∑

x′0,x
′
1,x
′
2

(
F x0,x0,l
l

)x′0
0

(
F j,x1,l
x′0

)x′1
x0

(
F j,x2,l
x′1

)x′2
x1

|x0, x1, . . . , xL−1〉

as shown in (17).

x2 x0

x�
0

x�
1 x�

2

j j j

l

(17)

Finally, after L steps, one has come full circle, giving rise to
the states

∑

x′0,x
′
1,...,x

′
L

(
F x0,x0,l
l

)x′0
0

L−1∏

i=0

(
F
j,xi+1,l
x′i

)x′i+1

xi

|x0, x1, . . . , xL−1〉

as depicted in (18), for L = 3.

x0
x�

0

x�
1 x�

2 x��
0

j j j

l

(18)

From the general properties of anyon models (see e.g. Ref. (
14,15)), we find that x′′0 = x′0 (the overall topological quan-
tum number of an isolated set of anyons can not change). We
can now remove the additional spin-l anyon in the same way
as we added it, thereby finishing the operation of acting with
Yl on the state |x0, x1, . . . , xL−1〉. Thus, we obtain the ex-
pression

Yl |x0, x1, . . . , xL−1〉 =

∑

x′0,x
′
1,...,x

′
L−1

L−1∏

i=0

(
F
j,xi+1,l
x′i

)x′i+1

xi

|x0, x1, . . . , xL−1〉 . (19)

We can now state the matrix elements of the topological oper-
ator Yl in the fusion tree basis

〈
x′0, x

′
1, . . . , x

′
L−1

∣∣Yl |x0, x1, . . . , xL−1〉 =

L−1∏

i=0

(
F j,xi,l
x′i+1

)x′i
xi+1

.

(20)
The above definition of the topological operator does not

depend on whether the additional spin-l anyon is encircled by
the anyon chain (as in Figures (14)-(18)) or whether the ad-
ditional spin-l anyon encircles the entire anyon chain. When
using the latter description of the topological operator, one can
think of the additional spin-l anyon as going around the ‘fu-
sion product’ of all the spin-j anyons constituting the anyonic
chain, or better, encircling the flux through the chain. This
flux through the chain is related to the additional spin-l anyon
as follows,

l

i

=
Sl,i
S0,i

i , (21)

where i denotes the flux going through the chain, and the ma-
trix S is the modular S-matrix of the anyon model. For a
derivation of Eq. (21), see e.g. Ref. (14,15), and the explicit
form of S in the case of su(2)k anyons is given in appendix A.

The definition of the topological operator contains elements
of the F matrices only. This is also true for the anyonic spin
Hamiltonians we consider in this paper. It follows that the
operators Yl commute with the Hamiltonian and that a topo-
logical quantum number can be assigned to all the eigenstates.
This has far reaching consequences for the stability of the crit-
ical phases. Excited states which are relevant in the renormal-
ization group sense (i.e., have energy smaller than 2) may lie
in a different topological sector than the ground state and thus
do not drive the system into a different phase. In addition,
we will see that the operators Yl play an important role in the
zero-energy ground states at the AKLT point in the Haldane-
gapped phase of the spin-1 models.

III. ANYONIC SU(2)k SPIN-1 CHAINS: ODD k ≥ 5

A. Introduction

We will start our discussion of anyonic quantum spin chains
with the anyonic version of the ordinary SU(2) spin-1 Heisen-
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nematic

SU(3)

SU(3)

dimerized

Haldane

AKLT

SU(2)2

ferromagnet

c = 2

c = 3/2

SU(3)

SU(2)    spin-1 chains

FIG. 3: (color online) Phase diagrams of the ordinary SU(2) spin-1
chain in a projector representation (9) with J1 = − sin(θ2,1) and
J2 = cos(θ2,1).

berg chain, which has long been appreciated as one of the
paradigmatic spin chain models. For antiferromagnetic cou-
plings the spin-1 chain is well known to form a gapped phase,
in distinction from the gapless spin-1/2 Heisenberg chain2.

In the following sections, we discuss in detail the anyonic
su(2)k deformations of the ordinary SU(2) spin-1 chain. We
will see that much of the seminal features of the SU(2) spin-1
chain carry over to these anyonic deformations with a number
of new subtleties arising. One is a dependence of the observed
phases and phase diagrams on the deformation parameter k.
In particular, we find an even/odd effect in k for k ≥ 5 and
a distinctive behavior for k = 4. We have therefore split our
discussion of the anyonic spin-1 chains into three different
sections. We will address anyonic spin-1 chains with odd k ≥
5 in the remainder of this section, in which we will also give
a brief recount of the phase diagram of the ordinary SU(2)
spin-1 chain. The subsequent section will be devoted to the
case of k ≥ 6 with k being even. Finally, an entire section
is devoted to a detailed account of the physics for the special
case of k = 4.

B. The ordinary SU(2) Heisenberg spin-1 chain

Before addressing the physics of the anyonic spin chains we
briefly recapitulate the phase diagram of the ordinary SU(2)
spin-1 Heisenberg chain. While the latter is typically dis-
cussed as a circle phase diagram in terms of bilinear and bi-
quadratic spin exchange, we will recast the phase diagram in
terms of the projector representation in Eq. (9) - the generic
representation of anyonic spin chains. Fig. 3 shows the phase
diagram in the projector representation of Eq. (9). It contains
four different phases, of which two are gapped phases and two
are gapless phases. The well known Haldane phase2 extends

in the parameter regime − arctan(2/3) < θ2,1 < π/2 and
includes the so-called Affleck-Kennedy-Lieb-Tasaki (AKLT)
point21 at θ2,1 = 0 (in which only the projector P (2) is present
in the Hamiltonian), at which the exact form of the ground-
state wave function in terms of a valence bond solid state
can be obtained. The conventional (gapped) Heisenberg chain
(bilinear in spin-1 operators) with antiferromagnetic coupling
corresponds to θ2,1 = − arctan(1/3). The second gapped
phase is a (spontaneously) dimerized phase22 that occurs in
the parameter regime −π/2 < θ2,1 < − arctan(2/3). The
phase transition at θ2,1 = − arctan(2/3) between the two
gapped phases is described by the su(2)2 conformal field the-
ory with central charge c = 3/2, which happens to possess
N = 1 supersymmetry – a result that can be obtained by
means of a (nested) Bethe Ansatz23.

At the other end of the Haldane gapped phase, θ2,1 =
π/2, there is a phase transition to gapless phase that ex-
tends over the range π/2 < θ2,1 < 3π/4. This critical
phase can be described by a conformal field theory with cen-
tral charge c = 2. There are characteristic quadrupolar (ne-
matic) spin correlations24 in this phase, as well as a three sub-
lattice structure25 resulting in soft modes at momenta K =
0, 2π/3, 4π/3. At the transition from the gapped Haldane
phase to this critical nematic phase at θ2,1 = π/2, the system
has enhanced SU(3) symmetry. This point in the phase dia-
gram of the spin-1 SU(2) chain represents actually the SU(3)
chain with a fundamental representation at each site, which is
known to be described by the SU(3)1 conformal field theory.
(This chain is again exactly solvable by a Bethe Ansatz26,27.)

Finally, there is a gapless ferromagnetic phase, extending
over the parameter range 3π/4 < θ2,1 < 3π/2. The phase
transitions from this phase to both the adjacent dimerized
phase as well as the nematic phase are first order. In the vicin-
ity of the transition between the dimerized and ferromagnetic
phase, early analytical work28 suggested the possibility of an
intermediate nematic phase, which, however has later been
found to not materialize24,29,30.

C. Phase diagram of the anyonic spin-1 chains – overview

In this section, we provide an overview of the phase dia-
gram of the anyonic spin-1 chains for odd k ≥ 5. This phase
diagram bears great resemblance to the corresponding phase
diagram of the SU(2) spin-1 Heisenberg chain (Fig. 3). The
generic phase diagram for the su(2)k spin-1 chain is given
in Figure 4. In Figures 5 and 6, we display the phase di-
agrams for k = 5 and k = 7, as well as the character-
istic spectra of the four different phases and the (N = 1)
super-symmetric critical point which separates the Haldane
gapped phase and the phase which will be called “Z2 sublat-
tice phase” (this is the phase intervening between the Haldane
phase and the Zk-parafermion phase, and it encompasses the
angles θ2,1 . −0.19π ≈ − arctan(2/3)).

The spin-1 anyonic spin chain is gapped in a finite region
around θ2,1 = 0. This gapped phase is the anyonic analogue
of the Haldane gapped phase, and the point θ2,1 = 0 is equiv-
alent to the AKLT point. At this point, the Hamiltonian penal-
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‘Haldane’
Zk-parafermions AKLT

su(2)k�4 � su(2)4
su(2)k

su(2)k�1 � su(2)1
su(2)k

super CFT
(N = 1)

su(2)k�2 � su(2)2
su(2)k

su(2)k    spin-1 chains (odd k)

FIG. 4: (color online) Phase diagrams of the anyonic su(2)k spin-
1 chain with odd k in a projector representation (9) where J1 =
− sin(θ2,1) and J2 = cos(θ2,1). With increasing (odd) index k ≥ 5
the phase boundaries move as indicated by the arrows.

izes the fusion of two neighboring anyons in the spin-2 chan-
nel. The ground states with periodic boundary conditions can
be found exactly at this point, for all k, and the ground state
degeneracy is (k + 1)/2.

For θ2,1 < 0, there is a phase transition at θ2,1 ≈ −0.19π
into an extended critical region. The position of this phase
transition did not show any appreciable dependence on the
value of k (remember that k ≥ 5 throughout this section).
This gapless region occurs where the ordinary SU(2) spin-1
chain is in the gapped dimerized phase. This difference in be-
havior is the most remarkable distinction between the ordinary
SU(2) spin-1 chain, and the anyonic spin-1 chains.

The critical point at θ2,1 ≈ −0.19π ≈ − arctan(2/3), sep-
arating the Haldane phase and the extended critical region, is
described in terms of an N = 1 super-symmetric minimal
conformal model.

For angles θ2,1 > 0, there is a phase transition from the Hal-
dane phase into another extended critical region which bears
some resemblance to the extended nematic region in case of
the ordinary spin-1 chain. In particular, this phase has a Z3

sublattice structure. The location of the phase transition does
depend on k, and moves towards θ2,1 = π/2 with increasing
k.

Finally, there is an extended critical region in the vicinitiy
of θ2,1 = π, the point where the fusion of two neighboring
anyons into the spin-2 channel is favored. This critical phase
is the anyonic analogue of the ferromagnetic phase of the or-
dinary spin-1 chain, and the critical behavior is described by
the Zk parafermion conformal field theory.

The phase transitions from the ferromagnetic phase to the
neighboring extended critical regions are first order. The
phase transition into the anyonic version of the nematic phase
occurs at θ2,1 = 3π/4, independent of the value of k. The lo-
cation of the other phase transition depends on k, and moves

towards θ2,1 = 3π/2 for increasing k.
Below, we will discuss in detail each of the phases men-

tioned above. We will focus on the topological properties and
the similarities to the ordinary SU(2) spin-1 chain.

D. Critical phases

We investigate the phase diagram of our model numeri-
cally using exact diagonalization. In our analysis, we follow
a standard procedure to determine the conformal field theory
describing the behavior of the extended critical regions and
the critical points: the numerically obtained spectrum is first
shifted (by some constant offset) such that the ground state
has zero energy zero. The spectrum is then rescaled such that
the energy of the lowest lying excitation matches the energy
of the lowest lying excitation of the conformal field theory de-
scribing the phase. The so obtained energy spectrum is finally
compared to the energy spectra of candidate CFTs. The CFT
(if any) which matches the numerically obtained energy levels
is the one describing the system at the angle θ. We note that
the list of candidate CFTs is limited: If the chain is critical,
each energy level in the spectrum corresponds to a field in the
applicable conformal field theory. These fields satisfy fusion
rules which have to be compatible with the fusion rules of the
underlying su(2)k theory. This constraint restricts the candi-
date conformal field theories that could describe the criticality
of anyonic quantum chains.

The eigenenergies in a system of finite size described by a
conformal field theory take the form31

E = E1L+
2πv

L

(
− c

12
+ h+ h̄

)
, (22)

where the velocity v is an overall scale factor, and c is the cen-
tral charge of the CFT. The scaling dimensions h+ h̄ take the
form h = h0 +n, h̄ = h̄0 + n̄, with n and n̄ non-negative inte-
gers, and h0 and h̄0 are the holomorphic and antiholomorphic
conformal weights of the primary fields in the given CFT. The
momenta K (in units 2π/L) are such that K = h− h̄+K0 or
K = h − h̄ + K0 + L/2, where K0 is a constant shift of the
momentum that determines at which momentum the primary
field occurs. This shift can be determined from the numer-
ics, and is not fixed by conformal symmetry. Thus, different
microscopic realizations of the same conformal field theories
can give rise to different values for K0.

As explained in section II A, the anyonic spin chains have a
topological symmetry; all the states in the spectrum can there-
fore be assigned a topological quantum number. The pos-
sible eigenvalues of the topological symmetry operator, also
denoted as topological quantum numbers, are in one-to-one
correspondence with the types of anyons which appear in the
particular anyon theory considered.

1. Zk-parafermion phase

We begin the discussion of the phase diagram given in Fig-
ure 4 with the Zk-parafermion phase which corresponds to the
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gapless ferromagnetic phase in the SU(2) spin-1 chain. In the
anyonic spin-1 chains, this phase contains the point θ2,1 = π
where it is favorable for two neighboring anyons to be in the
spin-2 channel. One of the phase boundaries of this phase
is located at θ2,1 = 3π/4. The location of the other phase
boundary depends on k: with increasing k, it moves towards
the location of the phase boundary in the SU(2) spin-1 chain
(at angle θ2,1 = 3π/2).

The spectra at angle θ2,1 = π for k = 5 and k = 7 are
displayed in the middle panel of Figures 5 and 6, respec-
tively. The energy spectra were rescaled such that the energy
of the lowest excitation matches the energy predicted by the
Zk parafermion conformal field theory32. Some details of this
CFT are reviewed in appendix E 4. In the Figures, we indi-
cate the locations of the energies of the states corresponding
to the primary fields by green squares, while blue crosses cor-
respond the numerically obtained energy levels. We find good
agreement between numerically obtained energy spectra and
theZk parafermion CFTs for both the su(2)5 and su(2)7 anyon
models. For su(2)5, we also indicate the location of a few
descendant fields that match the numerical prediction. Gen-
erally, the identification of descendant fields is more difficult
due to finite size effects.

The fields of the Zk parafermion theory carry two la-
bels, (l,m) that take the values l = 0, 1, . . . (k − 1), and
m = 0, 2, . . . 2(k−1). The momentum and topological quan-
tum number of the fields is determined by the labels m and
l, respectively. The topological quantum number simply is
given by l. For the momentum, the following relation holds:
K = 2mπ

k .
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FIG. 5: (color online) The su(2)5 spin-1 chain: The energy spectra for the various phases of the phase diagram are shown in the upper left
panel. For the critical phases/point the energy spectra have been rescaled to match the conformal field theory prediction given in Eq. (22).
Green squares indicate the location of the primary fields, red circles the descendant fields. The energies predicted by conformal field theory
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We find that there are no relevant primary fields which have
the same set of quantum numbers as the identity field. This
implies that there are no relevant operators that can be added
to the Hamiltonian to drive a phase transition if both transla-
tional and topological symmetry are left unbroken. This phase
is an example of a critical phase whose criticality is protected
by the topological symmetry.

2. Z2-phase: (A,D) modular invariant of coset
su(2)k−1 × su(2)1/su(2)k

Upon increasing θ2,1, one encounters a first order transition
from the Zk parafermion phase into a different extended criti-
cal phase that has a Z2 sublattice symmetry. We identified the
CFTs describing these critical phases for k = 5 and k = 7
as Virasoro conformal minimal models, with central charge
c = 1 − 6

(k+1)(k+2) . However, the field content describing
the criticality is not the ‘usual’ minimal model – the diagonal
(A,A) modular invariant – but the so-called (A,D) modular
invariant which contains a different number of fields. Details
of these different modular invariants can be found in33–35. For
our purposes, it suffices to notice that some of the primary
fields in the (A,A) invariant do not appear in the (A,D) in-
variant while others appear twice. The details of this CFT are
summarized in table VII in appendix E 1. The scaling dimen-
sions of the fields are given in equation (E1).

Again, it is possible to identify the topological sectors and
the momenta at which the various fields occur from the labels
of the fields. As discussed in appendix E 1, the fields can be
labeled by (r, s), where s takes the values s = 1, 3, . . . , k.
The topological sector is determined by (s − 1)/2, while the
momenta are fixed by the r label. In particular, for k = 5, the
fields with labels r = 1, 5 occur at K = 0, while the fields
with label r = 3 occur both at K = 0, π. For k = 7, the fields
with r = 1, 3, 5, 7 occur at K = 0, while the fields at r = 4
are doubly degenerate and occur K = π.

3. Z3-phase: coset su(2)k−4 × su(2)4/su(2)k

At θ2,1 = 3π/4, there is a first order transition between
the Zk ‘ferromagnetic’ phase and a critical region of critical-
ity that exhibits a Z3 sublattice symmetry. We determined
that the CFT describing the Z3 critical region is a series of
coset models with S3 symmetry, namely su(2)4×su(2)k−4

su(2)k
. In

appendix E 3, we list some details of these coset models, in
particular, the scaling dimensions of the primary fields (a de-
tailed analysis can be found in36,37). The primary fields are
labeled by two integers (r, s). As was the case for the Z2 crit-
ical phase, only a subset of the fields appear in the spectrum,
namely those with r + s even. In addition, the label s has to
be odd, and it determines the topological quantum number via
(s−1)/2. The location of the second endpoint of this Z3 crit-
ical region (i.e., the transition to the Haldane gapped phase) is
found to vary with k.

In Figures 5 and 6, we display representative energy spec-
tra for this phase (angle θ2,1 = 0.7π). In these spectra, we

indicate the topological sectors of some of the low lying fields
and give the scaling dimensions of the primary fields.

4. Superconformal critical point

The transition between the Z2 phase and the Haldane
gapped phase occurs at the angle θ2,1 ≈ −0.19π, which
shows little dependence on the level k. The critical point itself
is described by a N = 1 superconformal minimal model38,
su(2)2×su(2)k−2

su(2)k
. Details on this theory can be found in ap-

pendix E 2. In the limit of k →∞, this theory approaches the
su(2)2 theory, which describes the critical point in the SU(2)
spin-1 bilinear-biquadratic spin chain.

In the spectra for k = 5 and k = 7 of the anyonic spin-
1 chain at this critical point, we indicate the scaling dimen-
sions and topological sectors of the primary fields which are
labeled by (r, s). Like in the other coset models (excluding
the Zk parafermion theory), the label s is associated with the
su(2)k denominator of the coset and hence labels the topolog-
ical sector. The momentum at which the primary fields appear
is determined by K = (r + s mod 2)π.

The superconformal critical point separates the Haldane
gapped phase from the Z2 sublattice critical region. There-
fore, we expect that there will be a relevant perturbation which
drives the phase transition between these two different phases,
and that this perturbation does not break any symmetries. A
relevant perturbation is a field which has the same quantum
numbers as the ground state and whose scaling dimension is
smaller than two. Such a field indeed exists: it carries the la-
bels (r, s) = (3, 1) and has scaling dimension 1 + 4

k , i.e., it
is a relevant field for all k. We note that at K = π, there also
is a relevant field with labels (r, s) = (2, 1) which has scaling
dimension 3

8 + 3
2k . As a consequence, a gap is expected to

develop if a perturbation which staggers the chain is added to
the system.

5. Stability of the critical phases

We recapitulate that in all three extended critical phases
there is no relevant field in the same symmetry sector as the
ground state, which is a requirement for the phases to be sta-
ble. This notion of topological stability will be explained in
more detail in the section VI dealing with the anyonic spin-
1/2 chains, where we show in detail that the critical behavior
of those chains is protected by the topological symmetry.

As was explained above, there is a relevant operator with
the same quantum numbers as the ground state at the super-
conformal point. This operator drives the transition from the
superconformal point to the Haldane gapped phase on one side
of the phase diagram, and the extended critical region with Z2

sublattice symmetry on the other side.
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gapless theory coset description central charge
k k = 5 k = 7 SU(2) (k →∞)

Zk phase su(2)k/u(1)2k c = 2 k−1
k+2

c = 8/7 c = 4/3 c = 2

Z2 phase su(2)k−1 × su(2)1/su(2)k c = 1− 6
(k+1)(k+2)

c = 6/7 c = 11/12 c = 1

Z3 phase su(2)k−4 × su(2)4/su(2)k c = 2− 24
(k−2)(k+2)

c = 6/7 c = 22/15 c = 2

superconformal point su(2)k−2 × su(2)2/su(2)k c = 3
2
− 12

k(k+2)
c = 81/70 c = 55/42 c = 3/2

TABLE I: Critical theories in the su(2)k spin-1 chains for k ≥ 5.

E. The gapped Haldane phase

In addition to the gapless phases that were discussed in de-
tail in the previous section, the spin-1 anyonic chains also ex-
hibits a gapped phase, as can be seen in Figure 4. The proper-
ties of this gapped phase are strikingly similar to the proper-
ties of the Haldane phase in the ordinary bilinear-biquadratic
spin-1 chain. For instance, the point θ2,1 = 0 allows for a
straightforward generalization of the AKLT point of the ordi-
nary SU(2) model. At this AKLT point, the degenerate ground
states can be constructed explicitly (see section III E 3). In
section III E 4, we discuss the ground states of the open chain,
and find the degeneracy of the anyonic spin-1 chain can be
understood in a similar way as the degeneracy of the SU(2)
model at the AKLT point. Before we deal with the ground
states at the AKLT point, we first discuss the energy spectrum
and the phase boundaries of the Haldane phase.

1. Energy spectrum

The energy spectrum in the gapped phase is shown in Fig-
ures 5 and 6 for coupling parameter θ = 0. It can be seen
that there exists a quasiparticle band whose qualitative shape
is identical to the magnon band of triplet excitations of the
ordinary AKLT point. The complete spectrum is shown at an-
gle θ2,1 = 0: the ground states occur at momentum K = 0,
and there exists a quasiparticle band (shown in blue color)
and a continuum of scattering states (shown in gray color).
The quasiparticle band is also displayed for coupling param-
eters θ2,1 close to θ2,1 = 0 (in red for θ2,1 > 0, in green
for θ2,1 < 0). It can be seen that when approaching the crit-
ical phase with Z3 sublattice symmetry – i.e., for increasing
θ > 0 – the minimum of the quasiparticle band moves away
from K = π towards K = 2π/3 and K = 4π/3. When
decreasing the angle θ2,1 < 0, the quasiparticle band remains
at momentum K = π, which is consistent with the Z2 sub-
lattice symmetry of the superconformal critical point. From a
finite-size scaling analysis of the energy spectra, we confirm
that the gapped phase does indeed extend over a finite range
of coupling parameters θ. Figs. 5 and 6 show that the size of
energy gap (at θ2,1 = 0) increases from ∆E(k = 5) ≈ 0.16
to ∆E(k = 7) ≈ 0.24.

This behavior suggests that the qualitative shape of the en-
ergy spectra at the AKLT point is preserved for all k with the
energy gap at θ2,1 = 0 approaching ∆E(k →∞) ≈ 0.4139.

2. Phase boundaries

The Haldane phase and the su(2)k−1× su(2)1/su(2)k crit-
ical phase are separated by a superconformal critical point,
which is located at coupling parameter θ2,1 ≈ −0.19π for
both k = 5 and k = 7. This is very close to the position of the
phase transition where the Haldane gapped phase gives way
for a different phase in the ordinary SU(2) spin-1 chain (see
the phase diagram in figure 4), namely θ2,1 = − arctan(2/3).

The position of the phase boundary at the other end of the
gapped phase clearly depends on the level k. Comparing the
position of this point for k = 5 and k = 7 suggests that it
moves towards θ2,1 = π/2 for increasing k. This scenario is
consistent with the ordinary model, as can be seen by com-
paring the phase diagrams of the anyonic and ordinary SU(2)
spin-1 chain (Figs. 4 and 3 respectively).

3. Ground states in the periodic chain
(anyonic equivalent of AKLT point)

In the ordinary SU(2) spin-1 chain, there exists a point
within the Haldane gapped phase - the so-called AKLT21 point
- where the ground state can be obtained exactly. At the AKLT
point, the Hamiltonian penalizes two neighboring spins who
are in the spin-2 channel. To construct the ground state, it is
helpful to think of the spin-1’s as composed of two spin-1/2’s
which are projected onto the spin-1 channel. In the ground
state, each of these spin-1/2 forms a singlet with a spin-1/2
particle that is associated with a neighboring spin-1, as de-
picted in Figure 7. In this situation two neighboring spin-1’s
will never combine into an overall spin-2 and, therefore, the
state has zero energy. It can be shown that for periodic bound-
ary conditions this ground state is non-degenerate21.

At the corresponding point (angle θ2,1 = 0) in the phase di-
agram of the anyonic chains, the Hamiltonian (Eq.(9,12)) pe-
nalizes two neighboring anyons to fuse in the spin-2 channel.
As for the ordinary SU(2) quantum spin model, the ground
state can be obtained exactly at this point. In contrast to the
SU(2) case, there exists a topological symmetry which dic-
tates that the ground state is degenerate even in the case of pe-
riodic boundary conditions (we will deal with the open chain
in the next subsection). One of these degenerate ground states
is easily found, while the others can be obtained by making
use of the topological symmetry operator (see section II A for
details).

We will present the simplest case of k = 5 here, and give
the results for arbitrary k in appendix D. We start by con-
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structing one zero energy ground state. For k = 5, the allowed
spins are 0, 1, 2, and the fusion rules read

0× 0 = 0 0× 1 = 1 0× 2 = 2

1× 1 = 0 + 1 + 2 1× 2 = 1 + 2

2× 2 = 0 + 1

In particular, the fusion rule 2 × 1 = 1 + 2 im-
plies that in the labeling of the Hilbert space, the assign-
ment (xi−1, xi, xi+1) = (2, 2, 2) is allowed. In addition,
(xi−1, xi, xi+1) = (2, 1, 2) is allowed as well. Fixing xi−1 =
xi+1 = 2, one finds that the allowed values of x̃i in the trans-
formed basis are x̃i = 0, 1, because 0 and 1 are the two possi-
ble fusion outcomes of 2 × 2 = 0 + 1. Because at the AKLT
point, only the value x̃i = 2 is penalized, it follows that the
state |v0〉 = |2, 2, . . . , 2〉 is a zero energy ground state (recall
that that Hamiltonian is a positive sum of projectors).

By employing the topological symmetry operators Yl, with
l = 1, 2, we can construct other zero energy ground states.
The operators Yl commute with the Hamiltonian, thus the
states |v1〉 = Y1 |v0〉 and |v2〉 = Y2 |v0〉 also have zero en-
ergy. It turns out that |v0〉 is neither an eigenstate of Y1 nor of
Y2. As a result, the number of ground states is three, which is
in accordance with the number of particle types in the model.
We note that Y0 is the identity operator.

The explicit form of the states |v1〉 and |v2〉 is easily written
down. First of all, the only basis states with non-zero coeffi-
cient in |v1〉 have xi = 1, 2, for all i. Similarly, the only
basis states with non-zero coefficient in |v2〉 have xi = 0, 1,
for all i. To specify the coefficients, we introduce the nota-
tion #l which denotes the number of i’s such that xi = l. In
addition, #(l,m) denotes the number of i’s such that xi = l
and xi+1 = m, where we use periodic boundary conditions,
xL = x0.

Then, we have

|v1〉 =
∑

xi∈{1,2}
f1({xi}) |x0, x1, . . . xL−1〉 (23)

f1({xi}) = (−1)#2d−L1 d
L/2
2 d

3
#(2,1)

2
1 d

−#(2,1)+#(2,2)
2

2

as well as

|v2〉 =
∑

xi∈{0,1}
f2({xi}) |x0, x1, . . . xL−1〉 (24)

f2({xi}) = (−1)#1d
−L/2
1 d

L/2
2 d

#1
2

1 d−#1
2 .

Here, d1 and d2 are the quantum dimensions of particles
with spin-1 and 2 respectively, and are given by d1 = 1 +
2 sin(3π/14) and d2 = 2 cos(π/7), respectively.

We labelled the ground states at the AKLT point by |vl〉
with l = 0, 1, 2 for a good reason. In section II A, we ex-
plained that the topological symmetry operators Yl effectively
‘add’ or fuse a particle of type l to the fusion chain. At the
AKLT point, this notion becomes very explicit. The states |vl〉
are thought of as states of the chain in the l sector. In partic-
ular, |v0〉 corresponds to the identity sector. Adding a particle
of type l, i.e., acting with the operator Yl, gives rise to a state in
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FIG. 7: The AKLT construction of the valence-bond-solid state on
a finite chain of spin-1 degrees of freedom. Each filled circle repre-
sents a spin-1/2 variable, each dotted ellipse corresponds to a spin-1
particle, and and each line connecting two spin-1/2 variables sym-
bolizes a singlet bond.

sector l, or |vl〉 = Yl |v0〉. Moreover, if one acts with Yl on the
state |vj〉, one obtains a combination of states, which is given
by the fusion rules. In particular, Y1 |v1〉 = |v0〉+ |v1〉+ |v2〉,
Y1 |v2〉 = |v1〉 + |v2〉 and Y2 |v2〉 = |v0〉 + |v1〉. Thus,
loosely speaking, the ground states of the periodic anyonic
spin-1 chain at the AKLT point form a representation of the
fusion algebra su(2)k. Because the modular S matrix diag-
onalizes the fusion rules, one can easily write down combi-
nations of the ground states which are also eigenstates of the
operators Yl, namely |ψAKLT,i〉 =

∑2
j=0 Si,j |vj〉, where Si,j

is the modular S matrix for (the integer sector of) su(2)5, and
the sum is over integer values.

For the explicit form of the AKLT ground states in the gen-
eral case su(2)k, we refer to appendix D.

4. Ground states in the open chain
(anyonic equivalent of AKLT point)

Before describing the structure of the ground states of the
open anyonic chains at the AKLT point, we briefly review the
physics of the valence bond solid ground state at the AKLT
point (θ2,1 = 0 in phase diagram Fig. 4) of the ordinary
bilinear-biquadratic spin-1 Heisenberg chain1,21. The Hamil-
tonian at θ = 0 consists only of the projector onto a total spin-
2 of two nearest-neighbor spins with a positive sign. Thus, in
the ground state, a total spin-2 of two-nearest-neighbor spins
is suppressed. In the usual tensor product basis of local (site)
states, the valence bond solid ground state is given by

|Ψab〉 = εb1a2εb2a3 ... εbL−1aL |ψab1〉⊗|ψa2b2〉⊗ ...⊗|ψaLb〉 ,
(25)

where the summation over repeated upper and lower indices
is assumed. The local spin-1 state |ψab〉 is represented as the
symmetric part of the tensor product of two spin-1/2 vari-
ables:

|ψab〉 =
1√
2

(|ψa〉 ⊗ |ψb〉+ |ψb〉 ⊗ |ψa〉) , (26)

where ψa denotes one of the two eigenstates of the Sz spin-
1/2 operator, which we label by a = 1, 2. The antisymmetric
tensor εab enforces a singlet bond of the spin-1/2 variables
al+1 and bl. Therefore, the total spin of the two nearest-
neighbor spin-1 variables, consisting of four spin-1/2 vari-
ables which are labeled by al, bl, al+1, bl+1, can only assume
the values 0 or 1. For a chain with open boundary conditions
(see Fig. 7) the first and the last spin-1/2 variables indexed
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by a1 and bL do not form a singlet bond. These two spin-
1/2 variables can add up to a total spin 0 or a total spin 1,
giving rise to a four-fold degeneracy for the spin-1 bilinear-
biquadratic chain at the AKLT point with open boundary con-
ditions.

With the results above in mind, we will now consider the fu-
sion basis of the anyonic spin-1 chain, as shown in Figure 1.
We consider a chain of length L with open boundary condi-
tions in the sense that variables x0 and xL+1 form the ends
of the chain. In analogy with the above discussion, we as-
sume that variables x0 and xL+1 can add up to a total spin of
x0 × xL+1 of 0 or 1 in the zero-energy ground states.

For a given choice of x0 and xL+1, we expect that there
are no zero-energy ground states if |xL+1 − x0| > 1 because
the fusion product x0 × xL+1 does not contain 0 nor 1 in this
case. We expect one ground state to be present if x0 × xL+1

contains 0 or 1, but not both. Finally, if both 0 and 1 appear
in the fusion product x0 × xL+1, we expect two zero-energy
ground states. There is no Sz quantum number in anyonic
spin chains associated with the ‘spins’, and the state with total
spin-1 (or better, topological charge 1) is thus not degenerate.

The analysis of the previous subsection is helpful in un-
derstanding the above discussed results. We found that the
ground states of the periodic chain have a particular form;
namely, the only basis-states which have non-zero coefficients
in these states are such that all the xi take at most two values
that have to differ by one. Thus, there is a ground state with
all the xi ∈ {0, 1}, one ground state with the xi ∈ {1, 2}, etc.
In addition, the state with all xi = (k − 1)/2 is also a zero
energy ground state.

The ground states of the open chain must be such that
the bulk part of these states does not give an energy con-
tribution. Thus, for a particular choice of boundary condi-
tions x0 and xL+1, one can construct one ground state if
|x0 − xL+1| = 1, because there is exactly one corresponding
zero energy ground state with periodic boundary conditions.
For x0 = xL+1 = 0, there is also one zero energy ground
state, while for x0 = xL+1 > 0, there are two zero energy
ground states. For |x0 − xL+1| > 1, one finds that there are
no zero energy ground states. All of this is in accordance with
the considerations above.

We computed the ground state degeneracies for all possi-
ble choices of fixed boundary occupations (x0, xL+1) for both
the k = 5 and the k = 7 model, and find that the above de-
scribed picture is indeed the appropriate one. At the AKLT
point θ2,1 = 0, the ground state energy is independent of
the system size. In the Haldane gapped phase away from the
AKLT point, the ground state degeneracy is not exact and fi-
nite size effects occur. In Fig. 8, we show the lowest energies
∆Ei(x0, xL+1) = Ei(x0, xL+1) − E0(x0, xL+1), i ≥ 1, of
the su(2)5 spin-1 chain at coupling parameter θ2,1 = −0.01π.
The energy E0(x0, xL+1) is the lowest energy of the open
chain with fixed boundary occupations x0 and xL+1, and it is
not necessarily a ground state energy. By this we mean that
the state is not a perturbation of a zero energy ground state at
θ2,1 = 0. For the boundary condition x0 = 0, xL+1 = 2,
the lowest energy E0(0, 2) is not a ground state (in the above
sense) since both ∆E1(0, 2) and ∆E2(0, 2) approach zero
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FIG. 8: The eigenenergies ∆Ei(x0, xL+1) := Ei(x0, xL+1) −
E0(x0, xL+1) (i ≥ 1) of the su(2)5 anyonic spin-1 chain with fixed
boundaries x0 and xL+1 as a function of 1/L at θ2,1 = −0.01π.
The legend at the lower left side indicates the values of x0 and
xL+1. The energy E0(x0, xL+1) is the lowest energy and not nec-
essarily a ‘ground state energy’. For x0 = xL+1 = 1, and for
x0 = xL+1 = 2, there are two almost degenerate zero-energy states,
and ∆E1(x0, xL+1) corresponds to the finite-size splitting of the
two ground states that decays exponentially with system size (see
the inset).

in the limit 1/L → 0, as demonstrated in Fig. 8. For the
boundary condition x0 = 1, xL+1 = 1, as well as x0 = 2,
xL+1 = 2, the ground state is two-fold degenerate, and the
splitting of the two ground state energies at finite system size
L decays exponentially in 1/L, as illustrated in the inset of
Fig. 8. Again, this is in agreement with the above discus-
sion because 1 × 1 = 0 + 1 + 2 and 2 × 2 = 0 + 1 (for
su(2)5), i.e. both fusion products allow for a total spin 0 and
a total spin 1. For all remaining possible boundary condi-
tions, there is one ground state, as can be seen from Fig. 8
where ∆E1(x0, xL+1) approaches a finite energy in the limit
1/L → 0. We also verified this scheme for the su(2)7 model,
and for different values of θ2,1 in the gapped phase.

IV. ANYONIC SU(2)k SPIN-1 CHAINS: EVEN k ≥ 6

In the previous section, we discussed in detail the odd-k
anyonic spin-1 chains. We found that the phase diagram of
these models (see Fig. 3), bears great resemblance to the phase
diagram of the SU(2) spin-1 chain (see Fig. 4). We observed
one striking difference between the ordinary and the anyonic
spin-1 chains; namely, the absence of a (gapped) ‘dimerized’
phase in the case of the anyonic spin-1 chains. In this section,
we present our result for the even-k anyonic spin-1 chains.
For even k, the phase diagram is very similar to the case of
odd k with the exception of an additional gapped phase which
resembles the dimerized phase of the SU(2) spin-1 chain.

In this section, we focus on the case k = 6; however, our
analysis for k = 8 indicates that the case k = 6 is generic
for k even. The generic structure of the phase diagram for
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‘Haldane’

super CFT
(N = 1)

su(2)k−2 × su(2)2
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su(2)k    spin-1 chains (even k)

Zk-parafermions

su(2)k−4 × su(2)4
su(2)k

‘dimerized’

AKLT

FIG. 9: (color online) Phase diagram of the even-k anyonic
su(2)k spin-1 chain in a projector representation (9) where J1 =
− sin(θ2,1) and J2 = cos(θ2,1). The locations of the phase bound-
aries correspond to the case k = 6. Some of the phase boundaries
move with increasing (even) k; the arrows indicate the direction of
the change.

even k ≥ 6 is analogous to the generic structure of the phase
diagram for odd k ≥ 5. We note that the case k = 4 is special
and will be considered in detail in the following section.

The fact that the phase diagrams for k even and odd dif-
fer is a very interesting feature of our model. As far as we
are aware, this is the first time that a dependence on the par-
ity of the level k has been observed. As we will point out in
the discussion, Koo and Saleur40 considered a closely related
loop model which contains a continuous parameter that plays
the role of the discrete level k. The model considered by Koo
and Saleur does not show any sign of the ‘even-odd’ effect we
observe. It would be very interesting to understand the differ-
ences and similarities of these two models in greater detail.

The phase diagram of the k = 6 anyonic spin-1 chain is
presented in Figure 9. We will discuss the similarities and
differences of this phase diagram to the phase diagram of the
case k = 5 (Fig. 4). The locations of the phase boundaries in
Figure 9 correspond to the case k = 6. As was the case for
k odd, we observe that some of the phase boundaries change
upon increasing the value of (even) k. The direction of the
movement of the phase boundaries is indicated by the arrows
in the phase diagram.

Comparing the phase diagrams for odd and even k in Fig-
ures 4 and 9, we first note that large parts of the phase diagram
have a similar structure. At angle θ2,1 = 0, we encounter a
gapped Haldane phase, precisely as in the case of odd k. At
angle θ2,1 ≈ −0.19π, there is a phase transition that is de-
scribed by a N = 1 supersymmetric minimal model from the
Haldane phase into an extended critical region (we will com-
ment on the latter critical region below). At the other end
of the gapped Haldane phase, there is a phase transition at
angle θ2,1 ≈ 0.09π (for k = 6) to a critical region that ex-
hibits a Z3 sub-lattice symmetry and is described by the coset
su(2)4 × su(2)k−4/su(2)k (we note that the corresponding

critical region for odd k is described by the same CFT). This
critical region extends all the way to θ2,1 = 3π/4 at which
point there is a first order transition to a critical region with
Zk sublattice symmetry. So far, the phase diagram for even k
has the same structure and phases as the one for odd k.

The phase diagrams for odd k versus even k begin to di-
verge at the angle where for k odd, the critical region with
Zk sublattice symmetry transitions to a critical phase with Z2

sublattice symmetry. While the former (Zk) critical phase
also appears for k even, the latter (Z2 critical phase) does
not; rather, there is a phase transition at θ2,1 ≈ 1.41π (for
k = 6) to a gapped phase. This gapped phase is char-
acterized by broken translational invariance, as signified by
a zero-energy ground state at K = π present at the angle
θ2,1 = 3π/2. In addition, there are (k + 2)/2 degenerate
ground states at momentum K = 0 with topological quantum
numbers (0, 1, 2, . . . , k/2). The zero energy ground state at
K = π is in topological symmetry sector k/4. Clearly, the
nature of this ‘dimerized’ gapped phase differs from the Hal-
dane gapped phase.

Between the ‘dimerized’ gapped phase and the Haldane
gapped phase, we find an extended critical region. Due to
the rather small extend of this critical region and the fact that
we could not study large enough systems (the dimension of
the Hilbert space increases with k), we have not been able to
determine which CFT describes this extended critical region.

It is interesting to note that the structure of the phase dia-
gram for even k bears closer resemblance to the phase diagram
of the SU(2) bilinear-biquadratic spin-1 chain, (see Figure 3)
than to the phase diagram for odd-k anyonic spin-1 chains. In
particular, both the phase diagrams of the ordinary SU(2) spin-
1 chain and the even-k anyonic spin-1 chain exhibit dimerized
phases in the area surrounding the angle θ2,1 = 3π/2. It ap-
pears that for increasing even k, the phase diagram of the any-
onic chain gravitates towards the phase diagram of the SU(2)
chain. Our results for the k = 8 anyonic chain are consistent
with this picture.

The phase diagram for the k = 6 anyonic spin-1 chain dis-
plays a unique feature; namely, its structure is symmetric in
the line through the points θ2,1 = 3π/4, 7π/4. The under-
lying reason is that the fusion rules of the su(2)k theory are
symmetric under the exchange j ↔ k/2 − j, where the la-
bels j take the values j = 0, 1/2, . . . , k/2. In the case of
k = 6, this symmetry exchanges anyon spins 1 ↔ 2. The
location of the symmetry points follow from our parametriza-
tion of the hamiltonian, as given in equation (9). We point out
that this symmetry only relates the sets of energy eigenvalues,
but not the possible degeneracy of the levels or their angular
momenta.

For example, the energy levels levels at the point θ2,1 = π -
where the system is described by the Z6 parafermion theory -
are identical to those at angle θ2,1 = π/2. At the latter point,
the system is described by the coset su(2)2 × su(2)4/su(2)6,
which for k = 6 corresponds to the Z6 parafermions. We note
that the momenta of the states are not identical.

Similarly, the energies of the levels in the dimerized gapped
phase are the same as the energies of the levels in the Haldane
phase, even though the nature of these gapped phases is very
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different. We will return to this issue below. Finally, we note
that the phase transition from the dimerized phase to the crit-
ical region in between the dimerized phase and the Haldane
phase is given by an N = 1 supersymmetric model. As far
as we can tell from our numerics, this is only true for the case
k = 6. For k = 8 and higher, we have not been able to deter-
mine the CFT describing this phase transition.

V. ANYONIC SU(2)k SPIN-1 CHAINS: k = 4

Having discussed the anyonic spin-1 models for odd k ≥ 5
and even k ≥ 6, we finally turn our attention to the remaining
case k = 4. We already pointed out in the introduction that
the phase diagram for k = 4 has a different structure than the
phase diagrams for other values of k. The underlying reason is
that the spin-1 particle is special in this case. The symmetry of
the fusion rules under the exchange j ↔ k/2− j implies that
j = 1 is mapped onto itself for k = 4. In addition, k = 4 is
the lowest k for which a general fusion rule 1× 1 = 0 + 1 + 2
applies. We refer to the discussion in section VII for more
details.

A. Hilbert space and Hamiltonian

The basis of the su(2)4 spin-1 chain is depicted in Fig. 1.
Each labeling {xi}i=0,...,L−1 ∈ {0, 1

2 , 1,
3
2 , 2} that satisfies

the fusion rules at the vertices corresponds to a different basis
state. In fact, the Hilbert space of the su(2)4 spin-1 chain splits
into two independent sectors: the fusion rules impose that the
local basis elements are either all integer valued or all half-
integer valued. We shall use the following terminology:

• Integer sector (IS): {xi}i=0,...,L−1 ∈ {0, 1, 2}.

• Half-integer sector (HIS): {xi}i=0,...,L−1 ∈ { 1
2 ,

3
2}.

We will only consider periodic boundary conditions for the
su(2)4 chain, i.e., xL = x0.

We find that the differences in behavior between the IS and
HIS su(2)4 spin-1 chains are rather subtle. We will first de-
scribe the behavior of the model in the IS sector, followed by
a discussion of the HIS sector.

As a first minor difference, we note that the number of states
in the HIS is given by 2L + δL,0, where L is the length of the
chain. In the IS sector, however, the number of states is 2L+1
when L > 0 is even and 2L−1 when L is odd. The additional
state in the even-L IS occurs at momentum K = π, while
the additional state in the odd-L HIS occurs at momentum
K = 0. Those are the only differences; the remaining 2L

(2L−1) states where L even (odd) have the same momenta in
the integer and half-integer sectors.

As we did for k ≥ 5, we represent the Hamiltonian of the
su(2)4 spin-1 chain in terms of the projectors onto the 1 and 2
channels with couplings J1 and J2, respectively. These cou-
plings are parametrized by an angle θ2,1 where J2 = cos θ2,1

and J1 = − sin θ2,1. Explicitly, the Hamiltonians read

H
(k=4)
IS =

∑

i

cos θ2,1P
(2)
i,IS − sin θ2,1P

(1)
i,IS (27)

H
(k=4)
HIS =

∑

i

cos θ2,1P
(2)
i,HIS − sin θ2,1P

(1)
i,HIS . (28)

The explicit form of the projectors are given in ap-
pendix C 3 a.

B. Phase diagram in the integer Hilbert space sector (IS)

The phase diagram of the IS su(2)4 spin-1 chain (Hamil-
tonian given in eq. (27)) is shown in the left most panel of
Fig. 10. The phase diagram consists of two extended gapped
phases which are separated by two extended gapless regions.
The two phase transitions between the gapped phase with a
Z3-sublattice structure and the two gapless regions are first
order. However, the phase transitions into the gapped phase
with a Z2-sublattice structure are continuous.

The critical behavior of the gapless regions is described by
the Z2 orbifold theory of the u(1)-compactified boson with
central charge c = 1. Interestingly, the compactification ra-
dius varies continuously as a function of θ2,1 in the gapless
regions. We found it difficult to determine the range of com-
pactification radii which are realized in the model. The reason
is that the finite size data makes it difficult to determine the
location of the transition between the gapped phase with the
Z2-sublattice structure and the critical regions. We will de-
vote a separate subsection V D to the issue of the location of
these phase boundaries, dealing with the IS and the HIS at the
same time.

1. Gapped phases (IS)

Gapped phase θ2,1 = π/2 – The gapped phase containing
the point θ2,1 = π/2 extends from θ2,1 = 0 to θ2,1 = 3π/4.
These phase boundaries are easy to locate because the tran-
sitions to the gapless regions are first order transitions, as we
will show in section V D.

This gapped phase has a Z3 sublattice symmetry, which re-
sults in a three-fold degenerate ground state for system sizes
that are a multiple of 3. These ground states occur at momenta
K = 0, 2π/3, 4π/3 and their exact form can be established
throughout the whole gapped phase.

At angle θ2,1 = π/2, the Hamiltonian can be solved ex-
actly. At this point, the Hamiltonian reduces to the equal sum
of two projectors, namely onto the spin-0 and spin-2 channels
(in addition, there is also a constant term −L). Throughout
the region 0 ≤ θ2,1 ≤ 3π/4, the Hamiltonian is a sum of two
projectors with positive coefficients (for a matrix representa-
tion of the Hamiltonian see appendix C 3). The three degen-
erate ground states are build from the basis state of the form
|11a1 11a2 11a3 . . . , 11aL/3〉 and its two translations, where
the ai represent the states |a〉3i = (|0〉 − |2〉)/

√
2 at position

3i. These three states can easily be combined to form three
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FIG. 10: (color online) Phase diagrams of the su(2)4 spin-1 chain in the integer sector and half-integer sector and different projector represen-
tations. The colored circles indicate special points in the c = 1 gapless phase that can be matched to the labelled conformal field theories.

momentum eigenstates. These ground states have energy −L
and are eigenstates of the two projectors with eigenvalue 0.
The latter explains that these ground states persist throughout
the whole gapped phase.

Gapped phase θ2,1 = 3π/2 – In the gapped phase sur-
rounding the point θ2,1 = 3π/2, the spectrum exhibits a
Z2 sublattice symmetry and a cosine-shaped quasi-particle
dispersion. For even-L system sizes, the ground state
is threefold degenerate, with the ground states occur-
ring at momenta K = 0, 0, π. Two of the three ground
states at angle θ2,1 = 3π/2 consist of states of the form
|1b1 1b2 1b3 . . . , 1bL/2〉 and its translation by one site, where
|b〉2i = (|0〉 + |2〉)/

√
2 at site 2i. These two state can

be combined to form the two ground states at momenta
K = 0, π. The state |111 . . . 1〉 is the third ground state and
has momentum K = 0. For odd system sizes, this state is the
only ground state of the system.

2. Gapless phases (IS)

The critical behavior of the su(2)4 spin-1 chain is particu-
larly interesting. We find that the critical behavior depends
continuously on the angle describing the interaction. At par-
ticular values of the angle θ2,1, the behavior matches particu-
lar CFTs with central charge c = 1. In particular, these CFTs
are the Z2 orbifolds of a boson compactified on a circle of
radius R =

√
2p. For p integer, these are rational conformal

field theories41,42, described in detail in the appendix E 5. In
this section, we will limit the discussion to the most prominent
features of these theories. In section V D, we will point out
the particular orbifold theories that are realized in the su(2)4
spin-1 chain.

To identify the critical theories describing the critical be-
havior as a function of the angle, we employ the standard
technique of first shifting the spectrum such that the ground
state has zero energy, followed by a rescaling of the energy to
elucidate the conformal nature of the spectrum.

By means of this procedure, we identified several of the
c = 1 orbifold theories. These theories ‘share’ several opera-
tors that appear in the spectrum throughout the critical region.
These operators are the ground state with h0 = h̄0 = 0, two
twist fields σ1,2 with scaling dimension hσ + h̄σ = 1/8, two
twist fields τ1,2 with scaling dimension hτ + h̄τ = 9/8, a field
Θ with scaling dimension 2, and finally, two fields Φ1,2 with
scaling dimension p/2. For p = 1, the fields just described
exhaust the full list, but in general, there are p − 1 additional
fields φλ with scaling dimension λ2

4p . These fields, as well
as the associated momenta and topological symmetry sectors
are given in table II. We checked that the assignments of
the topological symmetry sectors are compatible with the fu-
sion rules of the orbifold CFTs (for details, see appendix E 5).
For various values of p, the orbifold theories are also known
under specific names, such as the Kosterlitz-Thouless theory
(p = 1), the theory of two decoupled Ising models (p = 2), the
Z4 parafermion CFT (p = 3), the 4-state Potts model (p = 4),
and the superconformal minimal model with c = 1 (p = 6).

We identified several of the c = 1 Z2 orbifold theories,
including the ones with p = 1, 2, 3, 4, 5, 6. In the left side
of Figure 11, we show the energy spectra associated with the
p = 1 and p = 3 orbifold theories in the Z2 critical region.
In the right side of Figure 11, we display the energy spectra
associated with the p = 2 and p = 6 orbifold theories in the
Z4 critical region.

In table III, we list the locations of some of the critical
points as extracted from the numerical data. The procedure we
followed to obtain these locations will be described in more
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p 1 2 3 4 6 9 10 Y IS IS HIS HIS
KT (Ising)2 pCFT Potts sCFT Top. Z2 Z4 Z2 Z4

h+ h̄ K K K K

0 0 0 0 0 0 0 0 y0 0 0 0 0
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

y1/2 0 π
2

0 π
2

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

y1/2 π 3π
2

π 3π
2

9
8

9
8

9
8

9
8

9
8

9
8

9
8

9
8

y1/2 0 π
2

0 π
2

9
8

9
8

9
8

9
8

9
8

9
8

9
8

9
8

y1/2 π 3π
2

π 3π
2

2 2 2 2 2 2 2 2 y0 0 0 0 0
1
2p

- 1
4

1
6

1
8

1
12

1
18

1
20

y1 π π 0 π
4
2p

- - 2
3

1
2

1
3

2
9

1
5

y1 0 0 0 0
9
2p

- - - 9
8

3
4

1
2

9
20

y0 π π 0 π
16
2p

- - - - 4
3

8
9

4
5

y1 0 0 0 0
25
2p

- - - - 25
12

25
18

5
4

y1 π π 0 π
36
2p

- - - - - 2 9
5

y0 0 0 0 0
p
2

1
2

1 3
2

2 3 9/2 5 y0,y1 0 0 0 π
p
2

1
2

1 3
2

2 3 9/2 5 y0,y1 0, π π π 0,π

TABLE II: The scaling dimensions (h + h̄) of the operators of the Z2 orbifold of the compactified boson on a circle of radius R =
√

2p for
some integer p. The following abbreviations are used: sCFT = the (minimal) superconformal CFT with central charge c = 1, Potts = 4-state
Potts CFT, pCFT = Z4 parafermion CFT, (Ising)2 = square of the Ising CFT, KT = Kosterlitz-Thouless theory, equivalent to the compactified
boson theory u(1)8. We also list the numerically observed topological quantum numbers (Y -symmetry: y0 = y2 = 2, y1/2 = y3/2 = 0,
y1 = −1) and momentum quantum numbers K at which the fields appear in the various critical regions. The symmetry sectors of the fields
with scaling dimensions p/2 depend on p. This is a consequence of the fact that the field with scaling dimension (p − 1)2/2p at radius p
corresponds to the field with dimension p/2 at radius p− 1.

p theory Z4 Z2

1 Kosterlitz-Thouless 0.755π∗ −0.01π
2 Ising2 0.77π −0.04π
3 parafermion 0.80π −0.08π
4 4-state Potts 0.83π −0.13π
5 0.88π −0.17π
6 superCFT 0.92π −0.20π
7 0.96π −0.23π∗

8 0.98π −0.24π∗

TABLE III: The approximate locations of some of the critical theo-
ries of the su(2)4 spin-1 chain (27) in the integer sector (IS) are listed
for both the Z2 and the Z4 critical regions. The angles without as-
terisk are obtained directly from exact diagonalization for L = 20,
i.e. we matched the momentum resolved spectrum to the CFT. The
angles with an asterisk were obtained by using the relations between
the angles θ2 and θ4, as explained in the text. We only list those val-
ues of p for which we could match the CFT description beyond any
doubt.

detail in section V D. The location θ ≈ −0.20π of case p = 6
- the superconformal theories - is very close to the location
of the superconformal point for the su(2)k spin-1 chains with
k ≥ 5, namely θ2,1 ≈ −0.19π.

The location of the superconformal point in the Z4 criti-
cal region is θ2,1 ≈ 0.92π. In general, the relation between
critical angle in the Z2 critical region (which we will for now
denote by θ2, similarly, θ4 denotes the angle in the Z4 critical

region) is

θ4 = π − tan−1(1 + tan θ2) θ2 = − tan−1(1 + tan θ4) .
(29)

The spectra in Figure 11 illustrate the different sublattice
symmetry for the two gapless regions. In these spectra, we
also indicate the topological symmetry sectors of some of the
low-lying states. In the case of su(2)4, the topological symme-
try operator Y has three distinct eigenvalues, which are given
by y0 = y2 = 2, y1/2 = y3/2 = 0 and y1 = −1. We will thus
use the labels y = 0, 1/2, 1 for these sectors.

The presence of the different critical models with the same
central charge c = 1 indicates the presence of a marginal op-
erator that drives the ‘transition’ between the different critical
theories and that gives rise to continuously varying critical ex-
ponents. Indeed, all the orbifold models share a marginal op-
erator Θ with scaling dimension 2 whose topological symme-
try coincides with that of the ground state. It is this operator
which is responsible for the critical region with continuously
changing exponents. It proved difficult to locate the phase
transition between the critical regions and the gapped phase
around θ2,1 = 3π/2. One reason might be that the transi-
tion to the gapped phase is also driven by a marginal operator,
which allows for large finite size effects that thwarts the local-
ization of these critical points.
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FIG. 11: (color online) The su(2)4 chain – integer sector: Energy spectra at various in the gapless phases of the phase diagram in Fig. 10a).
The energy spectra have been rescaled to match the conformal field theory prediction given in Eq. (22). Green squares indicate the location
of the primary fields, red circles the descendant fields. The topological symmetry sector is indicated by the violet index. Data shown are for
system size L = 20.

C. Phase diagram in the half-integer Hilbert space sector
(HIS)

The behavior of the su(2)4 spin-1 chain in the half-integer
sector mimics very closely that of the integer sector. The
phase diagram is presented in the rightmost panel in Fig 10.
The phase boundaries are located at the same positions, but the
details of the observed phases differ slightly. In the following
discussion of the HIS su(2)4 spin-1 chain, we will emphasize
the differences between the two sectors.

1. Gapped phases (HIS)

As was already noted above, there are some differences in
the dimensions of the Hilbert spaces in the IS and the HIS,
respectively. As a consequence, the IS and HIS models have
different sublattice structures in the gapped phases. Namely,
in the half-integer sector, the ground state occurs at momen-

tum K = 0, and it is non-degenerate. All other features of
the gapped phases in the half-integer sector are very similar to
those observed in the integer sector.

Gapped phase θ2,1 = π/2 – In gapped phase that surrounds
the angle θ2,1, the ground state is non-degenerate and occurs
at momentum K = 0 (there is no sublattice structure). The
model can be solved at angle θ2,1 = π/2: the ground state
can be expressed as follows,

|GS〉 =
∑

xi=1/2,3/2

(−1)#(3/2,3/2)|x0, x2, . . . , xL−1〉 .

Here, #(3/2, 3/2) denotes the number of times the sequence
(xi, xi+1) = (3/2, 3/2) occurs in the state |x0, x2, . . . , xL−1〉
(note that periodic boundary conditions impose xL = x0).
As was the case for the ground state(s) at θ2,1 = π/2 in the
IS, this state is in fact the ground state throughout the whole
gapped phase, i.e. for angle 0 ≤ θ2,1 ≤ 3π/4.

Gapped phase θ2,1 = 3π/2 – In the gapped phase that
surrounds the angle θ2,1 = 3π/2, the ground state is non-
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degenerate and occurs at momentum K = 0 (there is no sub-
lattice symmetry). At θ2,1 = 3π/2, the ground state is given
by

|GS〉 =
∑

xi=1/2,3/2

(−1)#(1/2,3/2)|x0, x2, . . . , xL−1〉 .

All basis states contribute to the ground state. The
sign of a term is given by the number of times the se-
quence (xi, xi+1) = (1/2, 3/2) occurs in the basis state
|x0, x2, . . . , xL−1〉 (periodic boundary conditions are as-
sumed).

2. Gapless phases (HIS)

As in the integer sector, the phase diagram in the half-
integer sector has two extended regions where the model is
critical. The criticality is again described by Z2 orbifold
models. We identified the orbifold models with parameters
p = 2, . . . , 9. Some of the critical angles are given in table IV.

p theory Z4 Z2

2 Ising2 0.852π −0.148π
3 parafermion 0.795π −0.078π
4 4-state Potts 0.774π −0.046π
5 0.766π −0.030π
6 superCFT 0.761π −0.020π
7 0.758π∗ −0.015π
8 0.756π∗ −0.011π

TABLE IV: The approximate locations of some of the critical theo-
ries of the su(2)4 spin-1 chain in the half integer sector (eq (28)) for
both the Z2 and the Z4 critical regions. The angles without aster-
isk are obtained directly from exact diagonalization for L = 20 by
matching the momentum resolved spectrum to the CFT. The angles
with an asterisk were obtained by using the relations between the an-
gles θ2 and θ4, as given in eq. (29). We only list those values of p for
which we were able to match the CFT description beyond any doubt.

The difference between the two gapless regions in the half-
integer sector lies in the momentum quantum numbers, as in-
dicated in Table II. The topological symmetry sectors in the
HIS coincide with those found in the IS (see Table II). While
this is to be expected for topological quantum numbers, it nev-
ertheless shows that our results are consistent.

A major distinction between the IS and the HIS phase di-
agram of the su(2)4 spin-1 chain is the order of the orbifold
theories. By comparing the leftmost and the rightmost panels
of Fig. 10, it can be seen that in the integer sector, the orbifold
theories appear in ascending p order when moving away from
the first order transition points, while in the half-integer sec-
tor, the orbifold theories appear in descending p order when
moving away from gapped phase I. We exploit this result in
locating the position of the critical endpoint of one of the the
gapped phases (see following subsection).

D. The location of the phase boundaries

To locate the boundaries of the gapped and critical regions
of the su(2)4 spin-1 chain, we consider the ground state energy
as a function of the interaction angle θ. The analysis is most
easily carried out by using an alternative parametrization of
the Hamiltonian. Two spin-1 anyons can fuse into either a
spin-0, a spin-1 or a spin-2 anyon; therefore we can write the
Hamiltonian in terms of projectors onto the spin-2 and spin-0
channels, instead of the spin-2 and spin-1 channels as we did
in eq.((27)). By making use of the relation I = P (0) +P (1) +
P (2), we find that the Hamiltonian

H
(k=4)
J2−J0 =

∑

i

cos θ2,0P
(2)
i − sin θ2,0P

(0)
i (30)

is related to the Hamiltonian of equation (27)

H
(k=4)
J2−J1 =

∑

i

cos θ2,1P
(2)
i − sin θ2,1P

(1)
i (31)

via

tan θ2,1 = − tan θ2,0

1 + tan θ2,0
, (32)

up to an unimportant shift in energy.
The ground state energy as a function of the angle θ2,0 is

given in figure 13 for a chain of size L = 18. The kinks in
the ground state energy indicate that there are two first order
phase transitions. These first order phase transitions mark the
boundaries of the gapped phase located at −π/2 < θ2,0 < 0
in the new angle variable θ2,0 (0 < θ2,1 < 3π/4 in terms of
the original variable θ2,1, see phase diagram in Figure 10).

To identify the location of the continuous transition be-
tween the other gapped phase and the neighboring gapless
phases, we plot the first and second derivatives of the ground
state energy per site. From these derivatives, it can be con-
cluded that these transitions are roughly located at θ2,0 = π/2
and θ2,0 = π. In terms of the original variable θ2,1, these
locations correspond to θ2,1 = −π/4 and θ2,1 = π. This
conclusion is corroborated by figure 14, in which we plot the
ground state energy in the gapped phase surrounding the angle
θ2,1 = 3π/2, i.e. θ2,0 = 3π/4 for system sizes ranging from
L = 8 to L = 20.

In order to locate the phase boundaries, we also consid-
ered the structure of the orbifold CFTs describing the gapless
phases (we refer to Appendix E 5 for more details on the orb-
ifold CFTs). We know that throughout the critical region, two
fields with scaling dimension h + h̄ = 1/8 and two fields
with scaling dimension h + h̄ = 9/8 must appear. In addi-
tion, there are several fields with scaling dimensions λ2/(2p)
(λ = 1, . . . , p − 1) for some value of p. Depending on the
sector (IS or HIS), and depending on the critical region, these
fields appear at different momenta, as detailed in table II. This
table also includes our numerical results for the topological
symmetry sectors of the various fields.

The structure of the critical theories describing the critical
region allows us to numerically determine the value of p as
a function of the angle θ2,0. Moreover, in doing so, we will
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FIG. 12: (color online) The su(2)4 chain – half-integer sector: Energy spectra at various points in the gapless phases of the phase diagram
displayed in Fig. 10c). The energy spectra have been rescaled to match the conformal field theory prediction given in Eq. (22). Green squares
indicate the location of the primary fields, red circles the descendant fields. The topological symmetry sector is indicated by the violet index.
Data shown are for system size L = 20.
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FIG. 13: (color online) The ground-state energy per site (upper
panel) and its first and second derivative (middle and lower panel,
respectively) of the IS su(2)4 chain. Data shown is shown for system
size L = 18.

gain insight into the locations of the phase boundaries. We
proceed as follows: We first shift the spectrum such that the
ground state has energy zero, and we rescale the spectrum
such that the two degenerate lowest fields with topological
eigenvalue y = 0 have energy 1/8. Since these fields are
always among the low-lying fields, finite size effects are in-
significant. After shifting and rescaling the energy, we focus
on the two states corresponding to the fields with scaling di-
mensions 1/(2p) and 4/(2p). By equating the numerical en-
ergies to the p-dependent predictions from the conformal field
theory, we obtain a numerical estimate of p as a function of
the interaction angle. We note one has to be watchful of level
crossings when using this procedure.

π/2 3π/4 π
coupling parameter   θ2,0

-0.715 -0.715

-0.71 -0.71

-0.705 -0.705

-0.7 -0.7

-0.695 -0.695

-0.69 -0.69
L = 20
L = 18
L = 16
L = 14
L = 12
L = 10
L = 8

FIG. 14: (color online) The ground-state energy per site of the IS
su(2)4 chai for system sizes L = 8, . . . , 20, in steps of two.

In Figs. 15 and 16, we display the numerically obtained val-
ues for p as a function of the angle for system size L = 20.
In these Figures, we also show the energy of the state corre-
sponding to the field with scaling dimension 9/8. The range
of angles θ2,0 over which the field with scaling dimension 9/8
is constant is shaded in Fig. 15: the shaded region includes all
angles for which the energy associated with the field multi-
plied by eight takes values between 8.9 and 9.1. It is imme-
diately apparent that the two independent numerical estimates
of p agree very well in the range 0 < θ2,0 < π/2. This applies
to both integer and half-integer sector. In addition, the energy
of the state corresponding to the field with scaling dimension
9/8 agrees very well with the prediction over this range. Thus
our numerical data is consistent with the picture that the Z2

critical region extends over the range 0 ≤ θ2,0 ≤ π/2, giving
way at θ2,0 = π/2 to the gapped phase with a Z2 sub-lattice
structure.

We do not include similar Figures for the Z4 critical region,
but note that they show very similar behavior. This leads to the
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FIG. 15: Numerical estimate (system size L = 20) of parameter p
from the eigenenergies that are associated with operators with scaling
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phase with twist operators at k = 0 and k = π. The parameter p is
about 1 at θ2,0 = 0, and grows to about 9 at θ2,0 = π/2. For angles
θ2,0 > π/2, the estimates of p obtained from the two operators start
to deviate. The black dots correspond the scaling dimension of the
fields with dimensions h = 1/8 and h = 9/8 multiplied by eight,
as obtained from exact diagonalization. The shaded region indicates
the range of θ2,0 for which the latter dimension lies between 8.9 <
8h < 9.1.
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FIG. 16: Numerical estimate (system size L = 20) of parameter p
from the eigenenergies that are associated with operators with scal-
ing dimensions 1/2p (red squares) and 4/2p (blue dots) in the HIS
gapless phase. The black dots correspond to the scaling dimension
of the fields with dimensions h = 1/8 and h = 9/8 multiplied by
eight, as obtained from exact diagonalization. The shaded region in-
dicates the range of θ2,0 for which the latter dimension lies between
8.9 < 8h < 9.1.

location of the boundaries of this critical region being θ2,0 =
π and θ2,0 = 3π/2, the latter being the location of the first
order transition.

We also studied the various values of p which are realized
in the su(2)4 spin-1 model. The region close to the first order
transitions is most suitable for identifying the various orbifold
models because of drastic changes in the spectrum in this re-
gion. Since the Z2 orbifold CFTs appear in opposite order

in the integer and half-integer sectors, respectively, both the
low- and the high-p orbifold CFTs are observed near the first
order phase transitions at θ2,0 = 0. In the IS, we identified
the p = 1 orbifold CFT (see Figure 11), which suggests that
the gapless phases in the IS su(2)4 chain include the orbifold
CFTs starting at the lowest integer value p = 1. In contrast,
in the HIS, we were able to match the spectrum for the p = 2
CFT, but we did not find evidence that the p = 1 model exists
in the phase diagram. Moreover, we found that the values of
p in the HIS increase quite rapidly when decreasing θ2,0 to
zero. We were able to identify the orbifold CFTS up to p = 9.
The reason is that the abundance of low-lying (primary) fields
in the high-p orbifold theories requires large system sizes to
identify these CFTs with sufficient accuracy.

Further insight into the critical phases can be gained by
considering the topological sectors of the various operators
in the spectra for the integer values of p (see Table II). All
orbifold CFTs (i.e., all p) include a marginal operator with
conformal dimension h = 2. This marginal operator has mo-
mentum K = 0 and topological quantum number y0, i.e., it
has the same quantum numbers as the ground state. It is this
marginal operator which causes the continuously varying crit-
ical behavior within the gapless phase. With increasing p, the
number of fields whose scaling dimensions are smaller than
two increases. However, these fields are not relevant because
their topological and/or momentum quantum numbers differ
from those of the ground state. The lowest-p orbifold CFT for
which there exists an additional marginal operator with the
same quantum numbers as the ground state is p = 9. For gen-
eral p, this operator has scaling dimension h + h̄ = 36/(2p)
(see Table II). The existence of an additional relevant oper-
ator for p > 9 (as 36/2p surpasses two for p > 9) suggests
that the range of p values which are realized in our model is
p = 1, 2, . . . , 9. Moreover, if the marginal operator which
first appears for p = 9 is indeed the operator which is driving
the phase transition, it is not surprising that the location of the
continuous phase transition is hard to determine.

In conclusion, we provide evidence that the orbifold CFTs
with p = 2, 3, . . . , 9 are realized in both IS and HIS of the
su(2)4 spin-1 anyon chain, while the p = 1 orbifold CFT ap-
pears only in the IS. We note that the su(2)4 anyonic spin-1
chain has some similarities with the one-dimensional quan-
tum Ashkin-Teller model43. The one-dimensional quantum
Ashkin-Teller model, which is an anisotropic version of the
two-dimensional Ashkin-Teller model44, also has a line of
critical points on its self-dual line, realizing the orbifold CFTs
with p = 1, 2, 3, 4, in addition to two gapped phases, one of
which has a Z2 sub-lattice structure.

VI. ANYONIC SU(2)k SPIN-1/2 CHAINS

In this section, we discuss the results of our study of the
su(2)k spin-1/2 anyonic spin chains for k = 2, 4, 5. The case
k = 3 is the original ‘Golden Chain’ model, which marked the
beginning of the study of anyonic quantum spin chains16. In
the latter publication, it was established numerically that for
both antiferromagnetic as well as ferromagnetic interactions,
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the system is critical, and that the system can be described by
the tri-critical Ising model and the Z3 parafermion cft (three-
state Potts model criticality), respectively16.

In addition, it was shown that the model can be mapped
onto an exactly solvable model, namely a particular ‘restricted
solid-on-solid’ (RSOS) model16. This mapping is applicable
to arbitrary k, and thus the critical behavior of the spin-1/2
anyonic chains is described by the k-critical Ising model for
AFM interactions and Zk-parafermions for FM interactions16.

Finally, it was conjectured in Ref. (16) that the critical-
ity of these spin-1/2 anyonic chains is not merely due to a
fine tuning of parameters, but is in fact protected by a non-
local, topological symmetry of the model. This implies that
the model remains gapless if a perturbation which preserves
both the spatial and the topological symmetry is added to the

model. This property is essential for the nucleation of a new
topological liquid as a result of interactions between anyons17.

In this section, we consider the topological symmetry prop-
erties of the su(2)k spin-1/2 chains and explain why the crit-
icality is topologically protected for all finite k. Explicit
Hamiltonians are given in appendix C 2.

The numerically obtained spectra for both AFM and FM in-
teractions are given in Figures 17, 18 and 19 for k = 2, k = 4
and k = 5. The spectra were obtained by exact diagonal-
ization of the Hamiltonian, followed by shifting and rescaling
of the spectrum in order to match the conformal field theory
predictions.

The numerical results confirm that the spin-1/2 su(2)k
chains are described by the k-critical Ising model for AFM
interactions and the Zk-parafermion CFT for FM interactions.
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Details of these CFTs are given in appendices E 1 and E 4.
In the remainder of this section, we discuss the assignment

of topological symmetry sectors to the states in the energy
spectra, as indicated in Figures 17, 18 and 19. The topologi-
cal symmetry sectors were obtained by acting with the opera-
tor Y on the eigenstates. Because Y commutes with both the
Hamiltonian and the momentum operator, and because most
states are non-degenerate, it follows that the eigenstates of the
Hamiltonian (in the momentum representation) are also eigen-
states of the topological operator Y .

We begin the analysis with a general observation. A topo-
logical symmetry sector is assigned to each state in the spec-
trum. Moreover, each state is associated with a field in the
conformal field theory describing the critical behavior of the
chain. These conformal fields satisfy certain fusion rules,
which, generally, are different from the fusion rules of the
anyons themselves (typically, the number of conformal fields
differs from the number of types of anyons). As a result, the
topological symmetry sectors must be associated with the con-
formal fields in a manner that both the su(2)k fusion rules of
the anyons and fusion rules of the conformal fields are satis-
fied. For the case of the su(2)k spin-1/2 anyonic chain, this
constraint is obeyed for the following reason: the relevant
critical theories are so-called coset theories, which contain a
su(2)k theory and other theories such as u(1). This implies
that the fields in the critical theory inherit su(2)k topological
symmetry labels; thus, the topological symmetry sectors can
be assigned in a consistent manner.

A. The ferromagnetic case

The ferromagnetic su(2)k spin-1/2 anyon chain is de-
scribed by the coset theory su(2)k/u(1)2k (details can be
found in appendix E 4). The fields in this conformal field
theory carry two labels, a su(2)k label l, and an u(1) la-
bel m, where l = 0, 1, . . . , k, m = 0, 1, . . . 2k − 1 and
l + m = 0 mod 2. Under fusion of two fields with labels
(l1,m1) and (l2,m2), the labels m1 and m2 are added mod-
ulo 2k, while the labels l1 and l2 satisfy the fusion rules of
su(2)k. Thus, the fields (l,m) can be assigned a topological
label l, and this assignment automatically obeys the correct
fusion rules.

The momentum quantum numbers of the fields cannot be
predicted from the conformal field theory itself. Different re-
alizations of a particular CFT may vary in the assignment of
momenta to conformal fields. For example, the su(2)2 spin-
1/2 chain is described by the Ising CFT for both AFM and FM
interactions, but the states corresponding to the σ, or j = 1/2
field occur at different momenta, as illustrated in Figure 17.

We first consider the case of k even. The Hilbert space
is given by labelings of the the fusion chain as displayed in
Figure 1, where, in the case of the spin-1/2 anyon chain, the
‘incoming’ labels are spin-1/2 anyons. As a consequence,
the labels xi alternate between integer and half-integer values.
Thus, there are two decoupled ‘sectors’: In one sector, the la-
bels of the odd sites correspond to integer-spin anyons, while
in the other sector, the odd sites correspond to half-integer-

spin anyons. Because of this, each field in the conformal field
theory will appear twice in the spectrum, once at momentum
K and once at momentum K + π.

m :
0 1 2 3 4 5 6 7

l: 0 0 x 3
2

x 2 x 3
2

x
1 x 1

8
x 9

8
x 9

8
x 1

8

2 2
3

x 1
6

x 2
3

x 1
6

x
3 x 9

8
x 1

8
x 1

8
x 9

8

4 2 x 3
2

x 0 x 3
2

x

TABLE V: Scaling dimensions in the Z4 parafermion model.

As was already discussed above, for the case of even k, the
topological sector y of a field labeled by (l,m) is determined
by l, namely y = l/2. Our numerical results show that the
momenta of the fields are either given by K(m) = mπ

k , or
by K(m) = π + mπ

k , as can be seen in the right hand side
panel of Figure 18. To establish that the FM spin-1/2 chain
is stable under perturbations preserve both spatial and topo-
logical symmetry, we need to show that there are no relevant
operators with the same momentum and topological quantum
numbers as the ground state.

In the case of odd k, anyon spins j are automorph to anyon
spins k/2 − j (see Appendix A), and therefore the labels of
the conformal fields are given by (l,m) where both l and m
are even. The topological sectors are given by l/2, and the
momenta of the fields are given by K(m) = mπ

k .
From the above discussed relations between field labels

(l,m) and the quantum numbers (topological sectors and mo-
menta), it becomes apparent that each momentum and each
topological sector appears at most once. This implies that the
critical behavior is indeed stable to perturbations which pre-
serve both spatial and topological symmetry.

B. The anti-ferromagnetic case

In this section, we show that the criticality of the anti-
ferromagnetic su(2)k spin-1/2 chain is stable under pertur-
bations that do not break the symmetries of the model. The
model is described by the k-critical Ising model, which
can be formulated in terms of a coset-model su(2)1 ×
su(2)k−1/su(2)k (some details of this coset model can be
found in appendix E 1). The conformal fields in this CFT are
labeled by (r, s), where the r label (1 ≤ r ≤ k) is associated
with su(2)k−1, while s (1 ≤ s ≤ k + 1) is associated with
su(2)k. There is also a label associated with su(2)1, however,
this label is fixed by the constraint t = r + s mod 2.

The topological sectors are given by (s − 1)/2. Since s is
the conformal label associated with the denominator su(2)k of
the coset, the fusion rules of the coset CFT are consistent with
the fusion rules associated with the topological sectors.

In the case of even k, all fields appear twice in the spectrum,
(once at momentum K and once at K + π) as a result of the
‘doubling’ of the Hilbert space. Our numerical calculations
yield the following. The topological sector of each field is
determined by s, namely y = (s− 1)/2. The momentum of a
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TABLE VI: Scaling dimensions for the tetra-critical Ising model.

field labeled by (r, s) is given by either K = (r+ s mod 2)π
or by K = (r + s + 1 mod 2)π; the system size determines
which one of the two possibilities occurs ( we verified this
behavior for k = 2, 4).

For odd k, the association of field labels (r, s) with topo-
logical and momentum sectors coincides with that for even
k. However, only odd values of s appear, due to the above
mentioned automorphism of anyon spins. These results were
verified for k = 3 in Ref. (16), and for k = 5 in this study
(see figure 19).

To confirm that the criticality of the AFM spin-1/2 chains
is stable under perturbations which preserve the spatial and
topological symmetries of the model, we have to analyze the
scaling dimensions of the fields which have the same topolog-
ical quantum number as the ground state. The ground state
has label s = 1 (i.e., topological sector y = 0). The scal-
ing dimensions of the fields with label s = 1 are given by
2h = (r2(k + 2) − 2(k + 1)r + k)/(2(k + 1)), which for
r ≥ 1 increases monotonically. The most relevant field in the
same momentum sector as the ground state thus carries the la-
bels (r, s) = (3, 1), and has scaling dimension 2h = 2 + 4

k+1 ,
which is irrelevant for k finite, and becomes marginal in the
limit k → ∞. Again, we conclude that the AFM spin-1/2
chains are stable with respect to perturbations which preserve
both topological and translational symmetry.

When breaking the spatial symmetry of the model by

dimerizing the system, the most relevant field has labels
(r, s) = (2, 1) and thus a scaling dimension 2h = (k +
4)/(2(k + 1)) that is relevant for all k. Therefore, a pertur-
bation which breaks translational symmetry may open up a
gap.

VII. DISCUSSION

The anyonic analogs of the SU(2) Heisenberg spin-1 model
have a rich structure, as can be seen from the phase diagrams
of the ordinary bilinear-biquadratic spin-1 model, the generic
even k ≥ 6 anyonic model, the generic odd k ≥ 5 anyonic
model, and the special case k = 4 (displayed side by side in
Fig. 20).

The distinct nature of the phase diagram for k = 4 origi-
nates in the symmetry of the fusion rules of the su(2)k theory
under the exchange j ↔ k

2 − j which, for k = 4, maps j = 1
onto itself. It is also the lowest value of k for which a generic
fusion rule 1 × 1 = 0 + 1 + 2 applies (compare with k = 3
where 1 × 1 = 0 + 1), thus making it possible to define an
anyonic spin-1 model. Moreover, the central charge of the
defining su(2)4 algebra is an integer (c = 2), and the quan-
tum dimensions of the su(2)4 anyons are all integers or square
roots of integers (we discuss the various anyon models in more
detail in Appendix A). We note that fusion models with such
quantum dimensions typically do not permit ‘universal quan-
tum computation’, a property which requires a ‘fine tuning’ of
the braid properties45,46. Models analogous to the case k = 4
have been studied from the integrability point of view47,48.

Upon increasing the level k, the su(2)k anyon model in-
creasingly resembles the ordinary SU(2) spin algebra. In
terms of the quantum group language, the limit k → ∞ cor-
responds to q → 1, where q = eπi/(k+2). For q = 1, the
quantum group reduces to the ordinary SU(2) algebra. One
would therefore intuitively expect that the phase diagram of
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the generic k case has the same structure as the phase diagram
of the SU(2) bilinear-biquadratic spin-1 chain. The numerics
presented in the paper shows that this is indeed the case for
both even and odd k, with one notable exception: for even
k, we find a gapped dimerized phase that is separated from
the Haldane gapped phase by an extended critical region; in
contrast, for odd k, we observe only an extended critical re-
gion but no dimerized phase. The fact that the anyonic spin-1
models behave differently for even and odd k is very interest-
ing in its own right. To the best of our knowledge, this is the
first time that such an ‘even-odd’ effect in the level k has been
observed.

In the following, we discuss some of the differences be-
tween the cases of odd k versus even k. It is instructive to
consider the model for the lowest (generic) value of even k,
i.e., k = 6. From the symmetry of the fusion rules under
the exchange j ↔ k

2 − j it follows that j = 1 and j = 2
are exchanged. This implies a ‘symmetry’ in the phase di-
agram of the k = 6 model under exchange of the projec-
tors P (1) and P (2). The parametrization chosen in this paper,
H =

∑
i cos θ2,1P

(2)
i − sin θ2,1P

(1), renders the phase dia-
gram symmetric in the line through the points θ2,1 = 3π/4
and θ2,1 = 7π/4. It is important to realize that this ‘symme-
try’ only applies the values of the energies which appear in
the spectra, but not to the momenta and the degeneracies of
the energy levels. In particular, the gapped dimerized phase
is the ‘mirror phase’ of the gapped Haldane phase. We also
note that the same mechanism resulted in a symmetric phase
diagram for k = 4, if plotted in terms of the projectors P (0)

and P (2).
For even k = 6, there is an extended critical region between

these two gapped phases; however, we were not able to deter-
mine its precise critical behavior. For k = 8, the extend of this
critical region is smaller, and it is therefore not inconceivable
that for very large even k, this critical region will shrink to
a single critical point separating the two gapped phases, as is
the case for the SU(2) spin-1 bilinear-biquadratic model.

As indicated by the above terminology, the gapped phase
around the angle θ2,1 = 0 is the anyonic analogue of the Hal-
dane gapped phase2. The ground states at θ2,1 = 0 can be
obtained exactly, and they are the anyonic analogues of the
AKLT state21. In section III E 4, we studied this ‘AKLT’ point

of our anyonic models with open boundary conditions. We
obtained edge states similar to the ones observed in the SU(2)
case. In the case of periodic boundary conditions, we find
a k + 1-fold degenerate ground state (one for each topolog-
ical sector), occurring at momentum K = 0. Although the
Haldane phases of the SU(2) and anyonic models share many
properties, they differ in their degeneracy for periodic bound-
ary conditions. Therefore, it is interesting to investigate in
which way the underlying quantum group symmetry changes
the classification of gapped phases in one-dimensional spin
systems4.

The dimerized gapped phase of the anyon model exhibits
exactly the same values of the energy levels as the gapped Hal-
dane phase, as pointed out above. Nevertheless, this gapped
phase is of a different nature. At θ2,1 = 3π/2, there is a
(unique) zero energy state at momentum K = π, i.e., the
phase is dimerized - like the corresponding phase in the SU(2)
spin-1 model. In addition, there is a set of degenerate zero en-
ergy ground states at momentum K = 0, where the number
of states depends on k.

Almost two decades ago, Koo and Saleur40 considered
a spin-1 type loop model that was based on the ‘fused
Potts model’. The underlying algebra of their model is the
Birman-Murakami-Wenzl (BMW) algebra, which replaces
the Temperley-Lieb49 algebra that appears in the study of the
Potts model in its loop representation. For details on the
BMW algebra, we refer to50. The Koo-Saleur model contains
a continuous parameter Q, which is closely related to the dis-
crete level k in the anyon models we consider (see below).
More specifically, the model Koo and Saleur consider is

HKS =
∑

i

(Q−1)(sinω− cosω)P
(0)
i − (Q−2) cosωP (1) .

(33)
The projectors P (0) and P (1) project two neighboring spin-1
loops onto the spin-0 and spin-1 channels, respectively (see50

for explicit expressions of these projectors in terms of the
BMW algebra). The number of Potts states Q is related to
the quantum dimension of the spin-1/2 anyons d1/2 (or the
parameter d appearing in the Temperley-Lieb algebra) via
Q = d2

1/2 = 4 cos(π/(k + 2))2, and thus Q = 1, 2, 3, 4 cor-
responds to k = 1, 2, 4,∞. In particular, the case Q = 4
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corresponds to the ordinary SU(2) spin-1 chain. We note that
the anyonic chains can only be defined for integer k ≥ 4,
and recall that we parametrized the anyonic spin-1 model as
H =

∑
i cos(θ2,1)P

(2)
i − sin(θ2,1)P (1). By making use of

the relation 1 = P (0) + P (1) + P (2), one finds the following
relation between the parameters of the models

cos θ2,1 = −(Q− 1)(sinω − cosω)

sin θ2,1 = − cosω + (Q− 1) sinω . (34)

Despite the similarities between the model of Koo and
Saleur and our anyonic model, they behave rather differently.
The phase boundaries between the various phases observed
in the Koo-Saleur model depend smoothly on the continuous
parameter Q, while the phase diagrams of the anyonic spin-
1 models depend on whether k is even or odd. In addition,
the Koo-Saleur model displays non-unitary critical behavior,
while the critical behavior of the anyon models is described
by unitary CFTs. The explanation for this difference in be-
havior should be sought in the representations used in the two
models. In the Koo-Saleur model, a representation which es-
sentially behaves like a SU(2) representation is used (which
permits to define the model as a function of the continuous
parameter). In the anyonic version, the truncated su(2)k rep-
resentations play a central role. For a related discussion in the
general context of loop models, we refer to51,52.

These observations suggest that a deeper investigation into
the differences and similarities of the two models is warranted,
especially because the Koo-Saleur model exhibits various in-
tegrable points40. One of the integrable points identified in
40 corresponds to the supersymmetric critical point forming
the boundary of the Haldane phase. The location of this in-
tegrable point, in terms of the parameters used in this paper,
is tan θ2,1 = − 1

2
d1+1
d1

, where d1 = 1 + 2 cos (2π/(k + 2))

(see53). For k ≥ 4, this location depends only weakly on
k, namely, for k = 4, one obtains θ2,1 = − arctan(3/4) ≈
−0.2048π, while in the limit k → ∞, one obtains θ2,1 =
− arctan(2/3) ≈ −0.1872π. The location of the critical end
point of the Haldane phase we obtained in this paper are con-
sistent with the location of this integrable point.

To solve the anyonic spin-1 chain at this integrable point,
one approach is to map the model to a fused RSOS model, as
studied in23,54 (see also 55,56). This subject will be described
in a separate publication53.
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Appendix A: su(2)k anyons

In this appendix, we briefly review of the properties of
su(2)k anyons - the building blocks of the anyonic chains con-
sidered in this paper - for arbitrary level k ≥ 2. We explicitly
discuss the levels k = 2, . . . , 7. For a general discussion of
anyon models, see e.g. Refs. 14,15,20.

The anyons of the su(2)k theories are closely related to
ordinary SU(2) spin degrees of freedom; thus we label the
anyons by their ‘generalized angular momenta’, or simply
‘spin’ value j = 0, 1

2 , 1, ....,
k
2 . We note that in the su(2)k the-

ory, there is a maximum allowed value of the ‘spin’, namely
k/2, a feature not present for ordinary SU(2) spins.

Ordinary spins can be combined using tensor products. In
general, combining two spins gives rise to several different
spins. An analogous phenomenon occurs if we combine two
anyons of the su(2)k theory. In the following, we will assume
that k is fixed, but arbitrary; i.e., the anyons combined belong
to the same theory. The rules for combining two anyons - also
denoted as ‘fusion rules’ - are closely related to the SU(2)
tensor products, namely

j × j′ =

min(j+j′,k−j−j′)∑

j′′=|j−j′|
j′′ . (A1)

The only difference to the case of ordinary SU(2) spins is the
cutoff in the upper limit of the sum in Eq. (A1). The cutoff is
the result of the finite number of types of anyons in the su(2)k
theories. The fusion rules in Eq. (A1) are associative.

The fusion rules can be represented in terms of the fusion
matrices Nj which, in the case of su(2)k anyons, have entries
(the so-called fusion coefficients) N j′′

j,j′ = 1 if and only if the
fusion of labels j and j′ gives rise to the label j′′, and zero
otherwise. In general, fusion coefficients bigger than one are
possible, but they do not appear in the context of this paper.

Fusion is commutative and associative, i.e., fusing several
anyons in different order gives rise to the same result. This
implies that the fusion matrices Nj commute and that they
can be diagonalized simultaneously. Diagonalizing the fusion
matrices yields the quantum dimensions dj ,

Nj d = dj d , (A2)

where d is a vector whose components are the quantum di-
mensions dj . The total quantum dimension D is defined as

D =

√∑

j

d2
j . (A3)

For su(2)k anyons, the quantum dimensions are given by

d0 = 1 ,

d1/2 = 2 cos

(
π

k + 2

)
,

dj = d1/2dj−1/2 − dj−1, j ≥ 1 . (A4)

Explicitly, one obtains

dj = sin

(
(2j + 1)π

k + 2

)
/sin

(
π

k + 2

)
, (A5)
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where we note that the dimensions dj depend on the level k,
which we have suppressed in the notation.

The matrix which diagonalizes the fusion rules is called the
modular S-matrix. Its entries for the su(2)k theories are given
by

Sj,j′(k) =

√
2

k + 2
sin

(
(2j + 1)(2j′ + 1)π

k + 2

)
. (A6)

For odd k, there exists an automorphism relating anyons
with spin j to anyons with spin k

2 − j. The automorphism
thus relates integer and half-integer spins, reducing the study
of odd-k anyon systems to only integer (or only half-integer)
anyon spins (it also means that there are only k/2 distinct
anyon types for odd k). In this manuscript, we consider
anyons with integer spin when studying odd-k systems.

The Hilbert space of a multi-anyon system is non-local, and
it can be represented by a a trivalent graph with each line
segment representing an anyonic degree of freedom. Such a
graph is called a fusion diagram. The labeling of the segments
has to be such that the fusion rules are obeyed at all the ver-
tices. In Figure 21, we display the fusion diagram that defines
the Hilbert space of the models studied in this paper.

Each distinct labeling of the fusion diagram defines a basis
state |ψ〉 = |x0, x2, ..., xL−1〉. We define the basis states |ψ〉
to be orthogonal, i.e., the inner product of two basis states is
one if the labels of the two states are identical, and zero other-
wise. The number of basis states in a chain of spin-j anyons of
length L grows asymptotically as dLj , where dj is the quantum
dimension of the anyon of type j. It is important to note that
dj generally is not an integer, as would be the case for ordinary
SU(2) spins. This means that it is not possible to associate a
local Hilbert space with each anyon, and that the total Hilbert
space is not a simple tensor product of local Hilbert spaces. It
also implies that there are no ‘internal sz quantum numbers’
in anyonic Hilbert spaces. The reason behind all these fea-
tures is that the fusion rules enforce non-local constraints on
the possible labelings of the fusion digrams.

In order to define Hamiltonians acting on anyonic Hilbert
spaces, the anyonic analog to the 6j-symbols for ordinary spin
degrees of freedom has to be considered. The anyonic version
of the 6j-symbols is the so-called F -transformation, which
relates the two different ways three anyon spins, j1, j2, j3,
can fuse into a fourth anyon spin j4. The F -matrix can be
defined as a result of the associativity of the fusion rules:

j
j�

j1

j2 j3

j4

j3

j4j1

j2
=
�

j�

�
F j1,j2,j3

j4

�j�

j

. (A7)

In the case of su(2)k, the F -matrices are uniquely determined
by a consistency relation, namely the pentagon equation, and
by imposing unitarity. A useful expression (for general k) can
be found in57, and is given in the appendix B.

A further basis transformation of interest is the so-called
S-transformation which relates the ‘flux’ of anyon spin j
through a loop of anyon spin l to the case without anyon loop

x1 x2 x3x0 . . .

j j j j j

FIG. 21: Basis (fusion diagram) of a chain of spin-j anyons (j = 1/2
in the case of the su(2)k spin-1/2 chain, discussed in section VI and
j = 1 in the case of the su(2)k spin-1 chain, discussed in section III).

by

i i

l =
Si,l

Si,0

. (A8)

The matrix elements of this transformation are the elements
of the modular S-matrix14,15.

In the following, we give matrix representations of some of
the above discussed properties of a model of su(2)k anyons.
Upper indices in round brackets denote the level k.
Level k = 2: Ising anyons – This class of anyons comprises
the spin-0 anyon, the Ising anyon (spin-1/2) with non-Abelian
braiding properties, and the fermion (spin-1). The non-trivial
fusion rules are given by

1

2
× 1

2
= 0 + 1 ,

1

2
× 1 =

1

2
, 1× 1 = 0 . (A9)

The corresponding quantum dimensions are given by

d
(2)
0 = d

(2)
1 = 1 , d

(2)
1
2

=
√

2, (A10)

and the S-matrix takes the explicit form (the entries are or-
dered according to ascending value of the anyon spins)

S(2) =
1

2




1
√

2 1√
2 0 −

√
2

1 −
√

2 1


 . (A11)

Level k = 3: Fibonacci anyons – This class of non-Abelian
anyons exhibits only two distinct particles, with spins 0 and
1 (the Fibonacci anyon) respectively (the spins 1

2 and 3
2 are

automorph to spins 1 and 0, respectively). Thus, there is only
one non-trivial fusion rule,

1× 1 = 0 + 1 (A12)

and the quantum dimensions are given by

d
(3)
0 = 1 , d

(3)
1 = (1 +

√
5)/2 . (A13)

Using the notation φ = (1 +
√

5)/2, the S-matrix reads

S(3) =
1√

2 + φ

(
1 φ
φ −1

)
. (A14)
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Level k = 4 – The k = 4 anyon model contains five anyon
spins, namely j = 0, 1

2 , 1,
3
2 , 2. The fusion rules are given by

× 1
2 1 3

2 2
1
2 0 + 1 1

2 + 3
2 1 + 2 3

2
1 0 + 1 + 2 1

2 + 3
2 1

3
2 0 + 1 1

2
2 0

(A15)

The (non-trivial) quantum dimensions can be obtained from
Eq. (A4),

d
(4)
0 = d

(4)
2 = 1 , d

(4)
1
2

= d
(4)
3
2

=
√

3 , d
(4)
1 = 2 . (A16)

Finally, the S-matrix takes the form

S(4) =
1

2
√

3




1
√

3 2
√

3 1√
3
√

3 0 −
√

3 −
√

3
2 0 −2 0 2√
3 −
√

3 0
√

3 −
√

3

1 −
√

3 2 −
√

3 1




(A17)

Level k = 5 – This class of non-Abelian anyons gives rise to
three distinct anyon particles with spins 0, 1 and 2 (which are
automorph to the spins 5

2 , 3
2 and 1

2 , respectively). The non-
trivial fusion rules are given by

1× 1 = 0 + 1 + 2 , 1× 2 = 1 + 2 , 2× 2 = 0 + 1 .
(A18)

The quantum dimensions take the following values,

d
(5)
0 = 1 ,

d
(5)
1 = (d

(5)
2 )2 − 1 = 1 + 2 cos(2π/7) ,

d
(5)
2 = 2 cos(π/7) . (A19)

The S-matrix of the su(2)5 theory is given by

S =
1

D(5)




1 d
(5)
1 d

(5)
2

d
(5)
1 −d(5)

2 1

d
(5)
2 1 −d(5)

1


 (A20)

where D(5) denotes the total quantum dimension D(5) =√
1 + (d

(5)
1 )2 + (d

(5)
2 )2 of the su(2)5 theory (restricted to the

integer ‘spins’).
Level k = 6 – The anyon model with k = 6 has seven anyons
labeled by j = 0, 1

2 , 1,
3
2 , 2,

5
2 , 3. The fusion rules read

× 1
2 1 3

2 2 5
2 3

1
2 0 + 1 1

2 + 3
2 1 + 2 3

2 + 5
2 2 + 3 5

2
1 0 + 1 + 2 1

2 + 3
2 + 5

2 1 + 2 + 3 3
2 + 5

2 2
3
2 0 + 1 + 2 + 3 1

2 + 3
2 + 5

2 1 + 2 3
2

2 0 + 1 + 2 1
2 + 3

2 1
5
2 0 + 1 1

2
3 0

(A21)

The quantum dimensions can be obtained from Eq. (A4),

d
(6)
0 = d

(6)
3 = 1 d

(6)
1
2

= d
(4)
5
2

=

√
2 +
√

2 ,

d
(6)
1 = d

(6)
2 = 1 +

√
2 d

(6)
3
2

=
√

2

√
2 +
√

2 . (A22)

The entries of the S-matrix are given by Si,j =√
2
k+2 sin( (2i+1)(2j+1)π

(k+2) ), for i, j = 0, 1/2, 1, . . . , k/2, with
k = 6.

Level k = 7 – Finally, we provide some details of the k = 7
model, which contains four distinct anyons with spins 0, 1, 2
and 3. The fusion rules are

× 1 2 3
1 0 + 1 + 2 1 + 2 + 3 2 + 3
2 0 + 1 + 2 + 3 1 + 2
3 0 + 1

(A23)

and the quantum dimensions are given by

d
(7)
0 = 1 , d

(7)
1 = 1 + 2 cos(2π/9) ,

d
(7)
2 = 1 + 2 cos(π/9) , d

(7)
3 = 2 cos(π/9) . (A24)

The entries of the S-matrix are given by Si,j =√
4
k+2 sin( (2i+1)(2j+1)π

(k+2) ), for i, j = 0, 1, . . . , (k−1)/2, with
k = 7.

Appendix B: F -matrices of the su(2)k theories

In this section, we give an explicit expression for the
F -symbols, following Ref.57 We begin with some prelim-
inary notation. The q-numbers are defined as bnc =
∑n
i=1 q

n+1
2 −i = q

n
2 −q−n

2

q
1
2−q− 1

2
. The q-factorials are defined

as bnc! = bncbn − 1c · · · b1c, for integer n > 0, and
b0c! = 1. The labels of the anyons a, b, . . . take the values
0, 1/2, 1, . . .. The quantum dimensions are dj = b2j + 1c =

sin
(

(2j+1)π
k+2

)
/ sin

(
π
k+2

)
= dk/2−j . Moreover, we define

∆(a, b, c) =

√
ba+ b− cc!ba− b+ cc!b−a+ b+ cc!

ba+ b+ c+ 1c!
(B1)

where a ≤ b+c, b ≤ a+c, c ≤ a+b and a+b+c = 0 mod 1.
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Using the above introduced notation, the F -symbols can be written as follows57

(
F abcd

)e
f

= (−1)a+b+c+d∆(a, b, e)∆(c, d, e)∆(b, c, f)∆(a, d, f)
√
b2e+ 1c

√
b2f + 1c

∑′

n

(−1)nbn+ 1c!
ba+ b+ c+ d− nc!ba+ c+ e+ f − nc!bb+ d+ e+ f − nc!

× 1

bn− a− b− ec!bn− c− d− ec!bn− b− c− fc!bn− a− d− fc! ,

(B2)

where the sum over n runs over (non-negative) integers such that

max(a+ b+ e, c+ d+ e, b+ c+ f, a+ d+ f) ≤ n ≤ min(a+ b+ c+ d, a+ c+ e+ f, b+ d+ e+ f) ,

which guarantees that the arguments of the q-factorials are non-negative integers.

xi−1 xi+1xi

jj

=
�

x�
i

�
F xi−1,j,j

xi+1

�x�
i

xi

x�
i

xi+1xi−1

jj

FIG. 22: Basis transformation used to obtain the fusion product of
two neighboring spin-j anyons.

Appendix C: Microscopic models

1. Basis and Hamiltonian

We consider a chain of spin-j anyons, using the basis dis-
played in Fig. 21. We fix the spin-j anyon to be either
a spin-1/2 anyon, or a spin-1 anyon; however, the Hamil-
tonian defined below can be generalized to any value j ∈
{0, 1/2, ..., k/2}. Throughout most of this paper, we apply
periodic boundary conditions, i. e., xL = x0, where L de-
notes the number of anyonic quasiparticles in the chain.

We consider interactions between nearest neighboring spin-
j anyons. In the case of j = 1/2 (the ‘su(2)k spin-1/2 chain’),
two neighboring spin-1/2 anyons may fuse into a spin-0 or a
spin-1 anyon. In contrast, for the case of j = 1 (the ‘su(2)k
spin-1 chain’), two neighboring spin-1 anyons may fuse into
a spin-0, a spin-1, or a spin-2 anyon (for k ≥ 4). In order
to obtain the fusion product of two nearest-neighbor spin-j
anyons in the basis shown in Fig. 21, an F -transformation has
to be performed, as illustrated in Fig. 22. Consequently, the
projector onto a particular fusion channel l is composed of two
F -transformations. This projector, denoted by P (l)

i , penalizes
the fusion of anyons at positions i and i + 1 into an l-anyon,
and it is defined as follows,

P
(l)
i |x0, ..., xi−1, xi, xi+1, ..., xL−1〉 =
∑

x′i

(F xi−1,j,j
xi+1

)lxi
(F xi−1,j,j
xi+1

)lx′i |x0, ...xi−1, x
′
i, xi+1, ..., xL−1〉

(C1)

We note that this definition utilizes that F = F−1 for su(2)k.
The explicit form of the local projectors for the systems stud-
ied in this paper is given in appendix B. The Hamiltonians

discussed in the following section are composed of the sum of
the local projection operators P (l)

i onto the fusion product l of
two nearest neighbor spin-j anyons

2. Hamiltonian of the su(2)k spin-1/2 chain

The Hamiltonian of the su(2)k spin-1/2 chain is given by

H = J
∑

i

P
(0)
i , (C2)

where the projector P (0)
i is defined in Eq. (C1) (note that

l = 0 and j = 1
2 ), and the coupling constant takes the values

J = ±1. In analogy to the ‘ordinary’ Heisenberg spin-1/2
chain, we denote the case J = −1 in Hamiltonian (C2) as
antiferromagnetic (AFM) coupling while J = 1 is ferromag-
netic (FM) coupling.

In the following, we present matrix representations of the
Hamiltonians of the spin-1/2 anyon chains for k = 2, 3, 4, 5.
The matrix formulation for the su(2)3 spin-1/2 chain was
first introduced in16 (see also58). Local basis elements are
labeled by xi, where xi ∈ {0, 1/2, 1, . . . , k/2}. The or-
der of anyon spins in the matrix representation is ascending.
We also introduce the operators nji acting on local state |xi〉:
nji |xi〉 = e|xi〉 where the eigenvalue e = 1 if the local basis
element xi = j, and e = 0 otherwise.

From the definition of the summands of the Hamiltonian
(eq.C1), it is apparent that the matrix representation of the
projector P 0

i depends on the basis elements xi−1, xi and xi+1.
In particular, non-trivial contributions to P 0

i exist only for cer-
tain values of xi−1 and xi+1, and thus each contribution to the
projector will be proportional to nji−1n

j′

i+1, for some values of
j and j′. By specifying both j and j′, the possible values of xi
are fixed by the fusion rules. If there is only one value xi can
take (for given j and j′), we omit the identity operator that is
applied to basis element |xi〉. If there is more than one pos-
sible value of xi, we specify the matrix assigning the correct
energies.

In the case of even-k spin-1/2 chains, the fusion rules
Eq. (A9) impose that the values of the local basis elements
xi alternate between integer and half-integer values. For the
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odd-k spin chains (both spin-1/2 and spin-1 chains), we only
consider the integer anyon spin subspace (recall the automor-
phism that applies to odd k anyons, see appendix A). For the

even-k spin-1 chains, the Hilbert space splits into two disjoint
sectors, the integer sector (all xi take integer values), and the
half-integer sector (all xi assume half-integer values).

a. su(2)2 spin-1/2 chain

The Hamiltonian eq. (C2) takes a rather simple form in the case of su(2)2, namely

H(k=2) = J
∑

i

n0
i−1n

0
i+1 + n1

i−1n
1
i+1 + +

1

2
n

1/2
i−1n

1/2
i+1

(
1 −1
−1 1

)

i

. (C3)

b. su(2)3 spin-1/2 chain

The Hamiltonian for the k = 3 spin-1/2 chain is given by

H(k=3) = J
∑

i

n0
i−1n

0
i+1 +

1

d2
n1
i−1n

1
i+1

(
1 −

√
d

−
√
d d

)

i

, (C4)

where d = d1 = (1 +
√

5)/2.

c. su(2)4 spin-1/2 chain

In the case k = 4, the local basis elements alternate between integer spin, xi ∈ {0, 1, 2} and half integer spin, xi+1 ∈
{1/2, 3/2}. The Hamiltonian takes the following form

H(k=4) = J
∑

i

n0
i−1n

0
i+1 +n2

i−1n
2
i+1 +

1

2
n1
i−1n

1
i+1

(
1 −1
−1 1

)

i

+
1

3
n

1/2
i−1n

1/2
i+1

(
1 −

√
2

−
√

2 2

)

i

+
1

3
n

3/2
i−1n

3/2
i+1

(
2 −

√
2

−
√

2 1

)

i

(C5)

d. su(2)5 spin-1/2 chain

Using the notation d1 = 1 + 2 cos(2π/7) and d2 = 2 cos(π/7), the Hamiltonian reads

H(k=5) = J
∑

i

n0
i−1n

0
i+1 +

1

d1d2
n1
i−1n

1
i+1

(
d1 −

√
d1d2

−
√
d1d2 d2

)

i

+
1

d2
2

n2
i−1n

2
i+1

(
1 −

√
d1

−
√
d1 d1

)

i

(C6)

3. Hamiltonian of the su(2)k spin-1 chain

We define the Hamiltonian of the su(2)k spin-1 chain as follows,

H = J1

∑

i

P
(1)
i + J2

∑

i

P
(2)
i . (C7)

The projectors P (1)
i and P (2)

i are defined in Eq. (C1), where l = 1 and l = 2, respectively. This Hamiltonian is the su(2)k
anyonic equivalent of the bilinear-biquadratic spin-1 chain. Throughout the paper, we parametrize the Hamiltonian by the angle
θ as follows: J1 = − sin(θ2,1), J2 = cos(θ2,1).

The Hamiltonian Eq. (C7) is defined for levels k ≥ 4, in which case the fusion of two spin-1 anyons may result in a spin-0, a
spin-1 or a spin-2 anyon (for level k = 3, spins 1

2 and 1 are automorph, i. e., the spin-1 chain is equivalent to the spin-1/2 chain;
moreover, the fusion rules imply 1× 1 = 0 + 1. For k = 2, the fusion of two spin-1 particles is trivial, 1× 1 = 0).



32

a. The su(2)4 spin-1 chain

We shall now present a matrix representation of the Hamiltonian of the su(2)4 spin-1 chain, using the same notation as in the
previous subsection. In the integer sector (IS), the projectors onto the different channels can be written as follows,

P
(0)
i,IS = n0

i−1n
0
i+1 + n2

i−1n
2
i+1 +

1

4
n1
i−1n

1
i+1




1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1



i

(C8)

P
(1)
i,IS = n0

i−1n
1
i+1 + n1

i−1n
0
i+1 + n1

i−1n
2
i+1 + n2

i−1n
1
i+1 +

1

2
n1
i−1n

1
i+1




1 0 −1
0 0 0
−1 0 1



i

(C9)

P
(2)
i,IS = n0

i−1n
2
i+1 + n2

i−1n
0
i+1 +

1

4
n1
i−1n

1
i+1




1
√

2 1√
2 2

√
2

1
√

2 1



i

(C10)

In the half-integer sector (HIS), we can write the projectors as follows,

P
(0)
i,HIS =

1

2
(n

1/2
i−1n

1/2
i+1 + n

3/2
i−1n

3/2
i+1)

(
1 −1
−1 1

)

i

(C11)

P
(1)
i,HIS =

1

2
(n

1/2
i−1n

1/2
i+1 + n

3/2
i−1n

3/2
i+1)

(
1 1
1 1

)

i

+
1

2
(n

1/2
i−1n

3/2
i+1 + n

3/2
i−1n

1/2
i+1)

(
1 −1
−1 1

)

i

(C12)

P
(2)
i,HIS =

1

2
(n

1/2
i−1n

3/2
i+1 + n

3/2
i−1n

1/2
i+1)

(
1 1
1 1

)

i

(C13)

b. The su(2)5 spin-1 chain

Using notation d1 = 1 + 2 cos(2π/7) and d2 = 2 cos(π/7), the projectors are given by

P
(1)
i = n0

i−1n
1
i+1 + n1

i−1n
0
i+1 +

1

d4
1

n1
i−1n

1
i+1




d3
1 −d3/2

1 −d2
1d

3/2
2

−d3/2
1 1

√
d1d

3/2
2

−d2
1d

3/2
2

√
d1d

3/2
2 d1d

3
2



i

+
d2

d2
1

(n1
i−1n

2
i+1 + n2

i−1n
1
i+1)

(
d2 −

√
d2

−
√
d2 1

)

i

+
1

d1d2
n2
i−1n

2
i+1

(
d2

√
d1d2√

d1d2 d1

)

i

(C14)

P
(2)
i = n0

i−1n
2
i+1 + n2

i−1n
0
i+1 +

1

d4
1

n1
i−1n

1
i+1



d2

1d2 d
3/2
1 d2

2 d1d
3/2
2

d
3/2
1 d2

2 d1d
3
2

√
d1d

5/2
2

d1d
3/2
2

√
d1d

5/2
2 d2

2



i

+
d2

d2
1

(n1
i−1n

2
i+1 + n2

i−1n
1
i+1)

(
1
√
d2√

d2 d2

)

i

(C15)

c. The su(2)6 spin-1 chain

In the following, we use the notation d1/2 = 2 cos(π/8), d1 = 1 + 2 cos(π/4) = 1 +
√

2 and d3/2 = 2
√

2 cos(π/8). In the
integer sector (IS), the projectors onto the different channels can be written as follows,

P
(1)
i,IS = n0

i−1n
1
i+1 + n1

i−1n
0
i+1 + n2

i−1n
3
i+1 + n3

i−1n
2
i+1 +

1

2
(n1
i−1n

2
i+1 + n2

i−1n
1
i+1)

(
1 −1
−1 1

)

i

+
1

d1/2d1d3/2
n1
i−1n

1
i+1




d1/2d3/2 −√d1/2d3/2 −d1

√
d1/2d3/2

−√d1/2d3/2 1 d1

−d1

√
d1/2d3/2 d1 d2

1



i
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+
1

d1/2d1d3/2
n2
i−1n

2
i+1




d2
1 d1 −d1

√
d1/2d3/2

d1 1 −√d1/2d3/2

−d1

√
d1/2d3/2 −

√
d1/2d3/2 d1/2d3/2



i

(C16)
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In the half-integer sector (HIS), the projectors onto the different channels can be written as follows,

P
(1)
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d. The su(2)7 spin-1 chain

In the following, we use the notation d1 = 1 + 2 cos(2π/9), d2 = 1 + 2 cos(π/9) and d3 = 2 cos(π/9). The projector P (1)
i

takes the form
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The projector P (2)
i is given by
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Appendix D: Exact form of the AKLT states

In this section, we present the explicit form of the zero en-
ergy ground states of the periodic anyonic spin-1 chains for k
odd at the anyonic equivalent of the AKLT point. In the main
text, we discussed the case k = 5.

At the AKLT point, the Hamiltonian contains only the pro-
jector onto the anyon spin-2 channel, i.e., the fusion of neigh-
boring spin-1 anyons into a spin-2 anyon is penalized. First,
we note that the fusion of anyons of types 1 and (k−1)/2 (the
latter being the largest integer‘spin’ for an anyon in the su(2)k
theory) results in 1 × (k − 1)/2 = (k − 3)/2 + (k − 1)/2.
In addition, we have that 1 × (k − 3)/2 = (k − 5)/2 +
(k − 3)/2 + (k − 1)/2. Thus, a local basis for which
xi−1 = xi+1 = (k − 1)/2 implies that xi = (k − 3)/2 or
xi = (k−1)/2. It follows that after the local basis transforma-
tion, x̃i can only take two possible values, namely x̃i = 0, 1
(consider 2 × (k − 1)/2 = (k − 5)/2 + (k − 3)/2, and let
x̃i = 2, xi−1 = (k − 1)/2, then xi+1 could only take values
(k − 5)/2 and (k − 3)/2 but not (k − 1)/2). This, in turn,
means that a choice of local variables xi−1 and xi+1 does not
give rise to non-zero contributions at the AKLT point as fu-
sion of neighboring spin-1 anyons in the chain cannot result
in x̃i = 2. We thus obtain a zero-energy ground state of the
form |v0〉 = |(k − 1)/2, (k − 1)/2, . . . , (k − 1)/2〉.

To construct the other ground states, we make use of the
topological symmetry operators Yl. These operators mutually
commute, and they commute with the Hamiltonian. The state
v0 is not an eigenstate of the operators Yl (with l > 0), and
hence alternative zero-energy ground states of the Hamilto-
nian are given by |vl〉 = Yl |v0〉. These ground states |vl〉
(l > 0) can be obtained explicitly. The local basis states take
values xi = p− l or xi = p− l+1, where p = (k−1)/2. The
states |vl〉 are a sum over all possible labelings of the fusion
tree with these two values of xi. We introduce the follow-
ing notation: #l denotes the number of local basis states for
whichxi = l, and #(l,m) denotes the number of local basis
states for which xi = l and xi+1 = m, where we use periodic
boundary conditions, xL = x0. For l > 0, we obtain

|vl〉 =
∑

xi∈{p−l,p−l+1}
fl({xi}) |x0, x1, . . . , xL−1〉 . (D1)

The coefficients fl({xi}) (0 < l < p) are given by

fl({xi}) =

(
dl+1

dld1

)L/2
(−1)#p−l+1

(√
dl−1

dl+1

)#(p−l+1,p−l+1)

×
(√

dp−ldp−l+1
dp
dl+1

)#(p−l+1,p−l)
.

For l = p, this results in

fp({xi}) =

(
dp
dp−1

)L/2
(− dp−1

dp
√
d1

)#1 .

We denoted the ground states by |vl〉 for the following rea-
son. In section II A, we explained that the operators Yl can be
thought of as fusing an anyon with ‘spin’ l into the chain, ef-
fectively changing the ‘overall fusion channel’, or flux thought
the chain. If we take a state |vj2〉, and act on it with the oper-
ator Yj1 , we find that Yj1 |vj2〉 =

∑
j3∈j1×j2 |vj3〉, where the

sum is over those j3 which appear in the fusion j1× j2. Thus,
the ground states of the AKLT anyonic spin chain form a ‘rep-
resentation’ of the fusion algebra of su(2)k. This implies that
eigenstates of the topological operators Yl can be constructed
because the modular S-matrix diagonalizes the fusion rules.
In particular orthogonal (not normalized) ground states at the
AKLT point are written as |ψAKLT,i〉 =

∑(k−1)/2
j=0 Si,j |vj〉,

where Si,j is the modular S matrix for su(2)k, and the sum is
over integer values.

Appendix E: Conformal field theories of interest

In this appendix, we summarize the most important aspects
of the conformal field theories relevant to this paper. In the
following, ‘primary fields’ refers to Virasoro primary fields.
Detailed discussions of conformal field theories can be found
in Ref. 59 and Ref 60.

1. Virasoro minimal models

The unitary minimal models60, which can also be described
in terms of the coset su(2)1×su(2)k−1

su(2)k
, have a central charge

c = 1 − 6
(k+1)(k+2) (k ≥ 2). The primary fields are labeled

by integers r and s, where 1 ≤ r ≤ k and 1 ≤ s ≤ k + 1.
Their conformal dimensions are given by

hr,s =
(r(k + 2)− (k + 1)s)2 − 1

4(k + 1)(k + 2)
. (E1)

Typically, the minimal models are labeled by a parameterm =
k + 1.

Apart from the so-called diagonal models, there exist mod-
ular invariants that give rise to conformal field theories with a
different field content34,35. More information on these modu-
lar invariants can be found in table VII.
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p, p′ (A,D) (r, s) mult. 2

p′ = 2(2n+ 1) (Dp′/2+1, Ap−1) r odd r = p′ − r
p = 2(2n+ 1) (Ap′−1, Dp/2+1) s odd s = p− s

TABLE VII: Modular invariants of the Virasoro minimal models. For
a given pair of indices, (p, p′) = (m + 1,m) and n integer, only
the fields with indices (r, s) as specified in the third column appear
(1 ≤ r < p′, 1 ≤ s < p). Some fields have multiplicity two, as
indicated in column four.

2. N = 1 superconformal minimal models

The N = 1 superconformal minimal models38 are de-
scribed by the coset

su(2)2 × su(2)k−2

su(2)k
,

and have central charge c = 3
2 − 12

k(k+2) . The primary fields
have conformal dimension

h(r,s) =
(r(k + 2)− sk)2 − 4

8k(k + 2)
+

1

32
(1− (−1)r−s) , (E2)

where 1 ≤ r ≤ k − 1 and 1 ≤ s ≤ k + 1. The fields with
r + s even, i.e. the fields in the Neveu-Schwarz sector, have a
super partner, whose conformal dimensions are given by

h′(r,s) = h(r,s) + 1/2 + δr+s,2 for r + s even . (E3)

3. S3 minimal models

The class of S3 symmetric minimal models36,37 are de-
scribed by the coset theory

su(2)4 × su(2)k−4

su(2)k
,

and have central charge

c = 2− 24

(k − 2)(k + 2)
. (E4)

There are two main sets of primary fields. The first set has
conformal weights

h(r,s) =
(r(k + 2)− s(k − 2))2 − 16

16(k − 2)(k + 2)
+

1− cos4(π(r − s)/4)

12
.

(E5)
The second set has scaling dimensions

h′(r,s) = h(r,s)+

1 + sin2(π(r − s)/4)

3
+ δr,1δs,1 + δr,1δs,2 + 2δr,2δs,1 ,

(E6)

where for both sets 1 ≤ r ≤ k − 3 and 1 ≤ s ≤ k + 1.
There are additional (Virasoro) primary fields, with scaling
dimensions differing by integers from the scaling dimensions
listed above. These additional primary fields are not relevant
to this work.

4. The Zk parafermion CFT.

The Zk parafermions32 can be described in terms of the
coset

su(2)k
u(1)2k

,

where u(1)2k denotes the c = 1 boson, compactified on a
circle of radius R =

√
2k. The central charge is given by

c = 2(k−1)
k+2 , and the conformal dimensions of the primary

fields are given by

h(l,m) =
l(l + 2)

4(k + 2)
− m2

4k
. (E7)

Here, the indices run over values l = 0, 1, . . . , k and m =
−l + 2,−l + 4, . . . , l.

5. The Z2 orbifold theories

We will briefly discuss the Z2 orbifold of the compactified
boson at squared radius R2 = 2p. For a detailed account,
we refer to42. The number of primary fields is given p + 7,
where p = 1, 2, . . .. For p = 1, the CFT is Abelian, and
it is equivalent to a the compactified boson theory with eight
primary fields. In general, the following fields are present.

• The identity field 1, with scaling dimension h1 = 0 and
quantum dimension d1 = 1.

• The field Θ, with dimension hΘ = 1 and quantum di-
mension dΘ = 1.

• Two ‘degenerate’ fields Φ1 and Φ2, with scaling dimen-
sion hΦ = p

4 and quantum dimension dΦ = 1.

• The twist fields σ1, σ2 and τ1, τ2, with scaling dimen-
sions hσ = 1

16 and hτ = 9
16 and quantum dimensions

dσ = dτ =
√
p.

• The fields φλ, with λ = 1, 2, . . . , p − 1, with scaling
dimensions hλ = λ2

4p and quantum dimensions dλ = 2.

a. The S-matrix

To verify that the assignment of the topological symmetry
sectors of states of the critical su(2)4 spin-1 anyonic chains
are compatible with the fusion rules of the orbifold CFTs de-
scribing the critical behavior, we need the fusion rules of the
orbifold CFTs. We will not give these fusions rules explic-
itly here, but specify the modular S-matrix. The fusion rules
can be obtained from the modular S-matrix by means of the
Verlinde formula61.

The modular S-matrix can be written in a compact way as
follows. In the basis (1,Θ,Φi, σi, τ i, φλ) for the rows and
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(1,Θ,Φj , σj , τ j , φµ) for the columns, where i, j = 1, 2 and
λ, µ = 1, 2, . . . , p− 1, the modular S-matrix is given by

S =
1√
8p




1 1 1
√
p

√
p 2

1 1 1 −√p −√p 2
1 1 (−1)p bi,j bi,j (−1)µ2√
p −√p bi,j ai,j −ai,j 0√
p −√p bi,j −ai,j ai,j 0

2 2 (−1)λ2 0 0 cλ,µ



.

(E8)
Here, the matrices a, b, c have the elements

ai,j =
√
p/2(1 + (2δi,j − 1))e−πip/2 ,

bi,j = (−1)p+δi,j
√
peπip/2 ,

cλ,µ = 4 cos(πλµ/p) .

We note that we used a simplified notation in the above defi-
nition: for the matrix elements that do not depend i or j, the
particular element does not depend on i and j.
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