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In this work we compute subleading oscillating terms in the Renyi entropy of Fermi gases and liquids cor-
responding to 2kF -like oscillations. Our theoretical tools are the one dimensional formulation of Fermi liquid
entanglement familiar from discussions of the logarithmic violation of the area law and quantum Monte Carlo
calculations. The main result is a formula for the oscillating term for any region geometry and a spherical Fermi
surface in any dimension. Specializing to two dimensions, we compare this term to numerical calculations
of Renyi entropies using the correlation function method and find excellent agreement. We also compare with
quantum Monte Carlo data on interacting Fermi liquids where we also find agreement up to moderate interaction
strengths.

I. INTRODUCTION

Fermi liquids are an extremely common form of quantum
matter that appear in a wide range of physical systems includ-
ing alkali metals, overdoped cuprate superconductors, and
high density quark matter (before color superconductivity sets
in). Cousins of the Fermi liquid have been observed in the half
filled Landau level [1] and at a phenomenological level in lay-
ered organic salts [2]. The ubiquitous Fermi liquid has also
played an important role in the recent exchange of ideas be-
tween quantum many-body physics and quantum information
science. This exchange has resulted in a deeper appreciation
of the important role of entanglement, especially long-range
entanglement, in the physics of quantum matter like Fermi
liquids. Long-range entanglement is important because it dis-
tinguishes interesting gapless phases like Fermi liquids and
interesting gapped topological phases like fractional quantum
Hall liquids from other more conventional phases like symme-
try broken states that support long-range classical correlation
but not long-range entanglement.

Much of the discussion about entanglement has turned on
a quantity known as the entanglement entropy. We consider
a large quantum system AB divided into two components A
and B (typically A and B are spatial regions, but other “en-
tanglement cuts” are possible). The entanglement entropy is
then the von Neumann entropy S(A) = −trA(ρA ln (ρA)) of
the state of A where ρA = trB(ρAB). When the state of the
whole system, ρAB , is pure, the von Neumann entropy S(A)
measures the amount of entanglement between A and B. We
are especially interested in the case when ρAB = |G〉〈G| with
|G〉 the ground state of a local Hamiltonian. It has also been
profitable to consider the Renyi entropy,

Sn(A) =
1

1− n
ln (tr(ρnA)), (1.1)

which is actually a family of entropies labeled by n and which
gives complete information about the spectrum of ρA, the “en-
tanglement spectrum”.

The basic rule governing the entanglement entropy in local
ground states is the area law (for a review see Ref. [3]). For a
system with short-ranged interactions in d spatial dimensions,
the area law states that the entanglement entropy of a region
A of linear size L grows like Ld−1, that is like the area |∂A|
of the boundary ∂A of A. Fermi liquids are extremely in-
teresting from an entanglement perspective because they pos-
sesses long-range entanglement that manifests as a violation
of the area law [4–12]. Indeed, entanglement entropy in a
Fermi liquid ground state scales like Ld−1 ln (L) hence show-
ing a logarithmic violation of the area law. Gapless systems
in one dimension, including Luttinger liquids and quantum
critical points, also show a logarithmic violation of the area
law [13, 14], while most other gapped and gapless systems in
d > 1 dimensions obey the area law. In fact, the logarithmic
violations of the area law in d = 1 gapless theories and Fermi
liquids are intimately related as we review below [6].

Another important development in the study of many-body
entanglement has been the appearance of numerical studies of
entanglement in a wide variety of systems. Entanglement in
one dimension has long been accessible using DMRG (for a
review see Ref. [15]), and free fermions and bosons are acces-
sible via the correlation matrix method [16]. More recently,
quantum Monte Carlo and tensor network calculations have
permitted computations of entanglement in simple quantum
magnets [17], more complex spin liquid states[18], topolog-
ical states [19], and Fermi liquids [20]. We are thus finally
in a position to begin a substantive comparison between the-
ory and (numerical) experiment for universal terms in the en-
tanglement entropy. We now have agreement between theory
and experiment in one dimension, for certain simple topologi-
cal phases in two dimensions, and for some symmetry broken
states [21]. Various other predictions have been validated at a
more qualitative level, including a prediction of L ln (L) en-
tropy in a spin liquid with spinon Fermi surface [6, 18] and an
observation of corner terms and terms associated with sym-
metry breaking in quantum magnets (although the agreement
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here is not yet precise) [22, 23]. Very recently the first cal-
culations of Renyi entropy in interacting Fermi liquids were
reported in Ref. [20], with agreement at a quantitative level
with previous theoretical predictions in Refs. [7, 24] up to in-
termediate interaction strength. Although it should be noted
that discrepancies between these calculations and the theoret-
ical predictions increase in the low density limit of the Fermi
liquid, this represents one of the first examples in more than
one dimension of precise quantitative agreement between the-
oretical and numerical computations of entanglement entropy
in an interacting gapless system.

Previous work has focused on the leading logarithmic term
in the Fermi liquid which was argued to depend only on the
geometry of the interacting Fermi surface and on the geom-
etry of A. However, as may be expected on general grounds
and as was evident in the data in Ref. [20] and elsewhere,
there are also subleading oscillating terms in the Renyi en-
tropy. Similar oscillations have been extensively studied in
one dimension [25–31]. Here we compute these subleading
oscillating terms in the Renyi entropy analytically for the free
Fermi gas in higher dimensions. We also argue that the period
of oscillation and exponent of the power law prefactor are un-
modified by interactions thus extending our results to Fermi
liquids. Most of our arguments are carried out in two dimen-
sions for concreteness, but we also record the general formu-
las in any dimension. We compare our results with extensive
numerical data on free fermions and weakly interacting Fermi
liquids in two dimensions and find agreement up to moderate
interaction strengths. Thus we establish in considerable detail
a quantitative agreement between theory and numerics regard-
ing entanglement in weakly interacting Fermi liquids, both for
the leading logarithmic violation as well as for the subleading
oscillating term.

This paper is organized as follows. We first review the one
dimensional aspects of Fermi liquid entanglement before de-
riving the form of the oscillating term in higher dimensions.
We give an alternate proof for our formula when the region
geometry is a long strip and further elucidate the structure of
the entanglement spectrum in this case. Finally, we compare
our theoretical predictions to numerical data for free and in-
teracting Fermi liquids and find excellent agreement.

II. ENTANGLEMENT AND THE FERMI SURFACE

We now describe the theoretical framework for our calcula-
tions. Let R be the spatial region of interest in a Fermi liquid
at zero temperature and let Γ denote the interacting Fermi sea.
Once again, the Renyi entropy of region R is defined as

Sn(R) =
1

1− n
ln (tr(ρnR)). (2.1)

It is well known that the leading behavior of the Renyi entropy
is Sn ∼ Ld−1 lnL where d is the spatial dimension and L is
the linear size of R [4–8]. Furthermore, the Widom formula,

Sn ∼
(

1 +
1

n

)
1

24

∫
∂R

1

(2π)d−1

∫
∂Γ

|nx ·nk| ln (L), (2.2)

provides a precise characterization of the prefactor of the loga-
rithmic term in terms of the geometry of the interacting Fermi
surface ∂Γ [5–7]. nx and nk are unit normals and the precise
choice of length in the logarithm only modifies non-universal
area law terms going like Ld−1.

This formula can be obtained by describing the Fermi
surface as an infinite collection of one dimensional modes
[6]. Each such one dimensional mode is a gapless chiral
fermion which contributes to the entanglement entropy like
ln (`)

6 where ` is some effective length (see below). Adding
up these contributions for each point on the real space bound-
ary ∂R and each mode on the Fermi surface ∂Γ leads to the
Widom formula above. Even the dependence on the Renyi pa-
rameter n is predicted by the theory since the Renyi entropy
of a single interval in a CFT is n+1

2n
ln (`)

6 [32]. Note also that
each mode experiences many different effective lengths cor-
responding to different one dimensional cuts through the real
space region, but to logarithmic accuracy we may replace all
such lengths with any particular representative of the linear
dimension L.

A. Oscillations in d = 1

It is also known that the Renyi entropy has a subleading
oscillating term in one dimensional Luttinger liquids. This
term is analogous to Friedel oscillations and hence occurs at
momentum 2kF [33]. For free fermions this term has the form

Sd=1
n ∼ fn

cos (2kF `)

(2kF `)βn
(2.3)

with βn = 2/n and

fn =
2

1− n

(
Γ((1 + n−1)/2)

Γ((1− n−1)/2)

)2

(2.4)

(Γ(z) is here the gamma function) [33]. Below we will use
our one dimensional formulation of higher dimensional Fermi
liquid entanglement to demonstrate the existence of similar
oscillating terms in the entanglement entropy in higher dimen-
sions.

First, however, we give a quick derivation of the 1d result
using conformal field theory. The 1d electron operator may
be decomposed as c(x) = cL(x)e−ikF x + cR(x)eikF x where
cL/R are the left-moving and right-moving halves of a free
relativistic fermion. They are the slowing varying fields en-
tering the low energy description which we can use to com-
pute universal terms in the entanglement entropy. The typical
way we proceed is to introduce twist fields or otherwise study
the system on an n-sheeted surface to compute tr(ρn). Here
we simply note that an important feature of this setup is that
translation symmetry is broken for n 6= 1. Furthermore, the
singular branch points can in general produce localized rele-
vant perturbations bound to them. These perturbations pro-
duce corrections to the leading CFT scaling of Renyi entropy
(there are also bulk irrelevant operators that contribute) since
they change the free energy in the branched background. This
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perspective has been discussed in general in Ref. [34]; here
we obtain identical results for the restricted case of interest to
us.

For example, the action is perturbed to S = SCFT +
gφ(z1) + gφ(z2) where z1,2 are two branch points. The path
integral is

Z = e−F =

∫
D(fields)e−S[fields]

= ZCFT (1− g〈(φ(z1) + φ(z2))〉+

g2

2
〈(φ(z1) + φ(z2))2〉+ ...). (2.5)

Note that we have not been careful about the n dependence in
this schematic expression. Since 〈φ〉 = 0 the first correction
to the free energy (upon re-exponentiating the series and with
the usual story about disconnected diagrams) is of order g2

and is essentially a correlator of the form 〈φ(z1)φ(z2)〉. To
be specific, this is the part which depends on the separation
of the branch points. We now go through this calculation in
more detail for two branch points.

Consider a finite interval of length ` in the free fermion
CFT. To produce an n-branched surface with branch points at
z1 and z2 with z1 − z2 = `, we can consider the conformal
transformation given by

w =

(
z − z1

z − z2

)1/n

(2.6)

where w is a coordinate on a plane while z is the branched co-
ordinate. Indeed, we see that winding z around z1 or z2 winds
w by a phase of 2π/n, and hence we must wind z by 2πn
to wind w by 2π. We now wish to compute correlations of
operators inserted at z1 and z2 (the induced defect operators)
to find corrections to the entropy. Given a primary field φ of
dimension ∆ we wish to find

〈φ(z)φ(z′)〉 =

∣∣∣∣dwdz
∣∣∣∣∆ ∣∣∣∣dwdz

∣∣∣∣∆ 〈φ(w)φ(w′)〉 (2.7)

where the equality follows from conformal invariance under
the transformation in Eq. 2.6.

This equation is valid for all z and z′ but we specifically
want z = z1 + ε and z′ = z2 + ε with ε a UV regulator.
Assuming `� ε we obtain the following formulas:

dw

dz
=

1

n

( ε
`

)1/n 1

ε
, (2.8)

dw′

dz′
=

1

n

(
`

ε

)1/n −1

ε
, (2.9)

and

〈φ(w)φ(w′)〉 =
1

|w − w′|2∆
=
( ε
`

)2∆/n

. (2.10)

Putting everything together we find

〈φ(z1)φ(z2)〉 =
1

(nε)2∆

( ε
`

)2∆/n

(2.11)

which explicitly shows a correction of the form `−2∆/n. Fi-
nally, to make contact with the Fermi gas result we must iden-
tify the relevant operator, but this operator is just the 2kF den-
sity operator given by e2ikF xc†L(x)cR(x) coming from the ex-
pansion of c†(x)c(x). This operator has dimension ∆ = 1
and has an oscillating phase that is explicitly displayed. Thus
the oscillating term in the entanglement entropy is indeed
interpretable as a kind of 2kF density response, albeit in a
branched space (which accounts for the strange scaling di-
mension). Obtaining the prefactor for a given model requires
more work since the field theory gives a cutoff dependent an-
swer for the prefactor (which is anyway non-universal), but
see Ref. [33] for a calculation for free fermions.

B. Oscillations in d > 1

We now return to the extension to higher dimensions. For
concreteness, we set d = 2 and take R to a disk of radius L
and Γ to be a disk of radius kF . The extension of our results
to arbitrary region shape (the analog of the Widom formula)
is completely straightforward and will be recorded later. First,
we must be more careful about the effective length ` since
we are studying subleading terms. The appropriate choice is
` = `(x, k) = 2L| cos θ|, where θ is the angle between nx and
nk, which is nothing but the chordal distance across the circle
(parallel to nk) at angle θ [7, 8]. This choice is the effective
one dimensional distance experienced by a mode propagating
in the nk direction starting at angle θ on the circle and re-
produces the correct thermal entropy to entanglement entropy
crossover function [7, 8].

The subleading oscillating term is then given by

fn
1

2π

1

4

∫
∂R

∫
∂Γ

|nx · nk|
cos (2kF `(x, k))

(2kF `(x, k))βn
. (2.12)

Plugging in our various expressions we find

Sn ∼ fn
4kFL

8

1

(4kFL)2/n

×
∫ π/2

−π/2
dθ(cos θ)1−2/n cos (4kFL cos θ). (2.13)

The final integral may be simplified when 4kFL is large since
the integrand is rapidly oscillating. Focusing on the part of the
integral near θ = 0 we may write∫

dθeiu cos θ ∼
∫
dθeiu(1−θ2/2) ∼

√
2π

u
eiu+iφ (2.14)

where φ = ±π/4 is an unimportant phase. Note that this
leading estimate is completely independent of n as regards
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the integral over θ. Using this formula in our main expression
gives, for 4kFL large, the result

Sn ∼
√

2πfn
8

(4kFL)1/2−2/n cos (4kFL+ φ′) (2.15)

where φ′ is another phase. Thus we have a prediction for the
prefactor, power lay decay, and period of oscillation of the
oscillating term in the Renyi entropy for a free Fermi gas.

To complete this section we record the result for spheri-
cal Fermi surface and spherical real space region in general
dimension d. The derivation is exactly as above in that we
integrate the one dimensional result over the entire Fermi sur-
face being careful the choose the correct effective length. This
length is still simply ` = `(x, k) = 2L| cos θ|, where θ is the
angle between nx and nk (now in d dimensions). The general
formula is then

δSn = fn
1

(2π)d−1

1

4

∫
∂R

∫
∂Γ

|nx · nk|
cos (2kF `(x, k))

(2kF `(x, k))βn

(2.16)
with ∂R and ∂Γ now d − 1 dimensional spheres of radii L
and kF respectively. Later we will generalize this result to
arbitrary spatial region geometry.

III. INTERACTIONS

In this section we discuss the role interactions in our re-
sults, but we will only consider d = 2 for simplicity. The
interacting fixed point theory is Landau’s Fermi liquid theory
which is characterized by an infinite set of forward scatter-
ing interactions labelled by Landau parameters. Because the
only interactions that survive in the low energy limit are for-
ward scattering terms, the low energy theory has a large emer-
gent symmetry group conventionally denoted U(1)∞. What
is meant by this expression is that forward scattering interac-
tions preserve the number of quasiparticles at each point on
the Fermi surface. In other words, in the scattering process
(ki1, k

i
2) → (kf1 , k

f
2 ) we always have (ki1, k

i
2) = (kf1 , k

f
2 ) or

(ki1, k
i
2) = (kf2 , k

f
1 ).

Since the low energy theory still has a sharp Fermi surface
and since the number of quasiparticles at each point on the
Fermi surface is conserved at low energies, the low energy
theory is almost free. In particular, the non-zero quasiparti-
cle residue implies that the system has a large number of ex-
tended states which are physically similar to free fermionic
plane waves (non-zero overlap) and which are exact eigen-
states of the interacting Hamiltonian (quasiparticle decay rate
vanishes at the Fermi surface). This is the basic intuition be-
hind the claim that even Fermi liquids will have L ln (L) en-
tanglement entropy given by the Widom formula evaluated for
the true interacting Fermi surface.

Now turning to the sub-leading oscillations, we expect that
when interactions are turned the emergent U(1)∞ symmetry
will protect the exponent of the power law, but the numerical
prefactor may be modified [7, 8]. For example, in one dimen-
sion the prefactor depends on the Luttinger parameter [33],

but while the power law decay is also modified in one dimen-
sion, in higher dimensions the power law should remain un-
changed since quasiparticles remain sharp. The momentum
of the oscillation will remain at the interacting 2kF , that is,
while interactions may change the non-interacting Fermi sur-
face, the correct momentum is always 2kF for the physical
Fermi surface.

Physically these expectations are based on the following ar-
gument. As argued in Section II, the subleading oscillating
terms come from insertions of relevant operators bound to the
branch points (in d = 1) or branch lines (in d = 2). Indeed,
in the one dimensional case we identified the important op-
erator as the 2kF density operator. Thus for the purposes of
computing subleading oscillating terms in a Fermi liquid we
must study correlators of 2kF density operators in a branched
space. Since Fermi liquids have 2kF oscillations at the in-
teracting 2kF with the same power law decay as in a Fermi
gas but with a non-universal prefactor, our claims above are
justified.

There is a simple exactly solvable model in which these
claims can be checked. We study Landau’s Hamiltonian for
the Fermi liquid which takes the form

HFL =
∑
k

(εk − µ)nk +
1

2

∑
kk′

fkk′nknk′ . (3.1)

The U(1)∞ symmetry refers to the fact that [HFL, nk] = 0
for all k and hence HFL has an infinite number of conserved
quantities. Indeed, the ground state of this interacting Hamil-
tonian is a free fermion wavefunction with a Fermi sea Γ ob-
tained by solving the self consistent equations

ε̃k ≤ 0, k ∈ Γ (3.2)

and

ε̃(k) = εk − µ+
∑
k′∈Γ

fkk′ . (3.3)

For example, if we work in a rotationally invariant system and
impose Luttinger’s theorem (by adjusting the chemical poten-
tial) then the interacting Fermi surface always coincides with
the free surface which is in turn determined solely by the den-
sity.

More generally, although the Fermi surface can change
as interactions are tuned (e.g. in a lattice model with non-
spherical Fermi surface), the entanglement entropy always
obeys the Widom formula evaluated on the physical interact-
ing Fermi surface. Similarly, all subleading corrections to the
entropy in the toy model in Eq. 3.1 are those of a Fermi gas
with Fermi surface ∂Γ. However, we emphasize that this is
not necessarily the correct answer for a physical Fermi liquid
since the pure forward scattering model in Eq. 3.1 requires
long-range interactions and hence is not in the same univer-
sality class as a short-ranged Fermi liquid. This is reflected
physically in the fact that while Eq. 3.1 has an exact U(1)∞

symmetry, the same symmetry in a short-ranged Fermi liquid
is only emergent at low energies.

Our argument for universality has also recently been explic-
itly validated in Ref. [35]. That work examined a model of a
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Fermi liquid in which the quasiparticle residue could be con-
tinuously tuned to zero at a quantum critical point, but where
density and current correlation functions were those of a free
Fermi gas. In the language of Fermi liquid theory, the Lan-
dau parameters have been tuned to zero, but the quasiparticle
residue is non-trivial. Nevertheless, the system is a non-trivial
interacting Fermi liquid and Ref. [35] showed that the Widom
formula for the leading logarithmic violation is still exactly
obeyed. Furthermore, the oscillating terms we considered
here are also present, unmodified, in the particular realization
of an interacting Fermi liquid in Ref. [35]. This suggests that
the prefactor of the oscillating term can be expected to be near
the free result provided the Landau parameters are small even
if the quasiparticle residue is tiny.

IV. OSCILLATIONS FOR GENERAL SPATIAL REGIONS
IN d > 1

Now we turn to the general formula for the subleading os-
cillating term in the Renyi entropy of a free Fermi gas for
a convex but otherwise arbitrary region shape. Let us first
discuss the case of d = 2. Again, R is the real space re-
gion of linear size L and Γ is the spherical Fermi sea. We
can also generalize to more complex Fermi seas in a straight-
forward way. Let x and k denote points on ∂R and ∂Γ re-
spectively, and define the effective length `(x, k) to be the
length of the line segment given by the intersection of the line
{x + nks|s ∈ (−∞,∞)} and R. The convexity of R guar-
antees that this intersection is a single line segment. It can
also be checked that this definition reduces to our prescription
for ` for a spherical region R given above. The subleading
correction to the Renyi entropy is then

Sn ∼
fn
2π

1

4

∫
∂R

∫
∂Γ

|nx · nk|
cos (2kF `(x, k))

(2kF `(x, k))2/n
. (4.1)

In general dimension d, the definition of the effective length
is exactly as above. Convexity of R still guarantees that the
effective length is well defined and corresponds to a single
interval, that is a straight connected one dimensional subset of
R. The general expression is then

δSn = fn
1

(2π)d−1

1

4

∫
∂R

∫
∂Γ

|nx · nk|
cos (2kF `(x, k))

(2kF `(x, k))βn

(4.2)
with ∂R and ∂Γ now d − 1 dimensional spaces (∂Γ is still a
sphere).

A. Strip geometry in d = 2

We have already applied this formula to case when R is a
disk. It is also enlightening to consider a long strip region.
Thus suppose the region R is a long strip of length L and
width W with L � W , and let θ be the angle between the
Fermi surface normal and real space normal. The effective
distance is found to be ` = W/| cos θ| so long as ` � L
which we take to be essentially infinite. Alternatively, we can

consider a strip that wraps completely around the cycle of a
torus of length L in which case translation invariance in the L
direction is manifestly preserved. Within our approximation
we find

Sn ∼
fnkFL

2π

∫ π/2

−π/2
dθ cos θ

(
cos θ

2kFW

)2/n

cos

(
2kFW

cos θ

)
.

(4.3)
Assuming 2kFW � 1 we may perform the θ integral as
above by focusing on the region near θ = 0. The result is

Sn ∼
fnkFL

2π

(
1

2kFW

)2/n√
2π

2kFW
cos (2kFW ). (4.4)

Part of the reason why the strip case is interesting is that
we may obtain the above result in another way. We can
also say a great deal about the entanglement spectrum of the
strip. The results are, however, restricted to free theories
only. Thus consider again a free Fermi gas with spherical
Fermi surface and examine the fermion two-point function
G(r − s) = 〈c†(r)c(s)〉. This function may be obtained from
a Fourier transform of the occupation number nk as

G =

∫
d2k

(2π)2
nke

ik·(r−s) (4.5)

where nk = θ(kF − |k|). Our interest in this function is
that, by virtue of Wick’s theorem, it completely determines
the reduced density matrix of a region R provided we restrict
r, s ∈ R. This is the standard correlation matrix method (see
the appendix).

Let K̂ be the entanglement Hamiltonian (ρ = e−K̂) for the
infinite strip (length L, see above). We know that K̂ has the
form

K̂ =
∑
r,s∈R

K(r, s)c†(r)c(s) (4.6)

because of Wick’s theorem. Furthermore, the “matrix” K is
related toG viaG = 1

eK+1
(proven by diagonalizing the “ma-

trix” G with r, s restricted to R). Translation invariance in the
L direction enables us to write

K = K(rW , sW , rL, sL) = K(rW , sW , rL − sL, 0) (4.7)

where the subscript indicates the L or W directions. Upon
Fourier transforming over rL − sL this becomes,

K̂ =
∑

0≤rW ,sW≤W,k

K1d(rW , sW , k)c†(rW , k)c(sW , k).

(4.8)
The new matrix K1d is related to the partial Fourier trans-

form G. Consider the mixed position/momentum basis func-
tion

G1d(rW − sW , k) =
∑
rL

G(rW − sW , rL)e−ikrL

=

∫ √k2F−k2
−
√
k2F−k2

dq

2π
θ(kF −

√
q2 + k2)eiq(rW−sW ) (4.9)
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which is nothing but the two-point function of a one di-
mensional Fermi gas with Fermi momentum k1d

F (k) =√
k2
F − k2. Because both K and G are partially diagonalized

by the Fourier transformation in the 2 direction we immedi-
ately have that

G1d(k) =
1

eK1d(k) + 1
. (4.10)

Thus K1d is the single particle entanglement Hamiltonian for
a one dimensional Fermi gas of Fermi momentum k1d

F =√
k2
F − k2 on an interval of length W . The full entanglement

spectrum of the two dimensional strip is also now known in
terms of the one dimensional spectrum e.g. we have a com-
plete one dimensional spectrum for an interval of length W
for each value of k ∈ [−kF , kF ]. Of course, this result is
trivially generalizable to strips in general d using translation
invariant along the d− 1 long directions of the strip.

Using this information we can immediately check the lead-
ing L log (W ) term in the entropy. The entropy from each
value of k is ln (W )/3 and hence the total entropy is (to lead-
ing order)

S = L

∫ kF

−kF

dk

2π

log (W )

3
=
kFL

3π
ln (W ). (4.11)

A quick calculation with the Widom formula gives

S =
1

12

1

2π
(2πL)(2kF )

∫ π/2

−π/2
dθ cos θ ln (W )

=
kFL

3π
ln (W ). (4.12)

Returning now to the oscillating term, we can use Eq. 2.3
to estimate the oscillating term for the strip in a different
way. Each one dimensional spectrum identified above will
contribute an oscillating term but with a variable k1d

F . The
oscillating term is thus

Sn ∼ fnL
∫ kF

−kF

dk

2π

cos (2
√
k2
F − k2W )

(2
√
k2
F − k2W )βn

. (4.13)

As we have now repeatedly observed, if kFW is large then the
integrand is rapidly oscillating and the integral is dominated
by values of k near zero. Performing the effective Gaussian
integral over k we find

Sn ∼
fnL

2π

√
πkF
W

cos (2kFW )

(2kFW )2/n
(4.14)

or

Sn ∼
fnkFL

2π

√
2π

2kFW

cos (2kFW )

(2kFW )2/n
(4.15)

which is identical to our previous result. Note how the two
methods obtain the same final form by integrating over either
an effective length or an effective Fermi momentum.

V. COMPARISON BETWEEN THEORY AND NUMERICS
IN d = 2

We will now compare our theoretical predictions with nu-
merical data for the Renyi entropy of the free Fermi gas for
two subsystem geometries, strips and circles, in d = 2. The
total system is a torus with periodic boundary conditions. All
numerical data was produced using the correlation function
technique extended to continuum Hamiltonians [16, 36, 37].
We emphasize that all the systems we consider are contin-
uum models with rotational invariant, there is no spatial lat-
tice. The numerical procedure relies on the discretization of
momentum space which is then converged with respect to grid
density. Fits to the data were performed using a standard non-
linear least squares (NLLS) package excluding data from very
small regions [16, 36–38]. Computational details for comput-
ing Renyi entropies can be found in Appendix A.

Our fitting strategy is two-fold, first we fit the Renyi en-
tropy to our scaling form and allow all parameters to vary,
then we perform a second fit with fixed values for the theo-
retical parameters our analysis provides. Fit procedure one
is a challenging test for the theory and for the numerics be-
cause of the sensitivity of the fit for a finite range of data. For
small region size, L, it may be difficult to differentiate be-
tween L and a L log(L) scaling laws. We expect for these
terms, L and L log(L), to match the theoretical values as we
reach very large region size. By performing this first fitting
procedure we show that the system sizes we have investigated
are sufficiently large to reach the asymptotic scaling regime.
The second fitting procedure allows us to test how well the
theory can describe the numerical data, and provide estimates
for the unknown parameters. The parameters from fit proce-
dure one are denoted as afit

i , for fit procedure two they will be
denoted ãfit

i , and analytical values of the parameters will be
denoted, atheory

i .

A. Circular geometry

For the circular geometry, we work in units where kF = 2
so that the density of a spin polarized gas is n = k2

F /(4π) =
1/π. This implies that the average number of particles in the
real space circle is 〈N〉 = πL2n = L2. In the figure we show
Renyi entropies of a free Fermi gas computed numerically for
disks with up to L = 15. The numerical data is fit to the
following functional form

Sn(L) = a1L ln (L) + a2L+ a3
cos (a4L+ a5)

La6
, (5.1)

Four of these parameters have values predicted by theory:

a1 =
n+ 1

3n
(5.2)

(from the Widom fomula),

|a3| = |fn|
√

2π

81/2+2/n
(5.3)
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FIG. 1. Renyi entropies S1 through S5 divided by length, L, for
the circular geometry. Solid lines are data and dashed lines are with
theoretical values for the parameters in equation 5.1 found on the left
side of table I and ãfit

2 and ãfit
5 from Table II.

a6 =
2

n
− 1

2
(5.4)

and a4 = 4kF . The parameters a2 and a5 are not predicted by
our theory and are determined by fitting the numerical data.
This form of the scaling law includes our new prediction for
the subleading oscillations as well as the leading order term
from the Widom conjecture and the area law term.

In Table I we provide the parameters determined by our
analysis as well as those from fit procedure one. We note
the excellent agreement between {atheory

i } and {afit
i }. There is

some trade-off between afit
1 and afit

2 for the finite fitting range.
When fitting procedure two is performed, and all known pa-
rameters are fixed at their theoretical values, ãfit

2 is decreased.
The results for the second fitting procedure are found in table
II and plotted in figure 1. Again, the quality of the agreement
is remarkable, the numerical data and fit are indistinguishable
at all but the smallest of L.

To illustrate more clearly the agreement between theory
and numerics we remove the leading scaling term and plot
the remainder in figure 2. For this region geometry the oscil-
lation frequency for the numerics and theory agrees exactly.
The magnitude of the oscillations is also in agreement though
less so for small region size and the higher order Renyi en-
tropies. The agreement between theory and numerics may be
improved by more accurate calculation of the integral in equa-
tion 2.14.

Additional subleading terms contribute to a systematic de-
viation from the leading scaling law and oscillations which
is most obvious for S2 in figure 2. The prefactor for these
additional terms are an order of magnitude smaller than the
oscillating terms. As we will show, these corrections do not
exist for the strip geometry and are likely due to the geometry
of the spatial region.

FIG. 2. We remove the leading scaling term by subtracting the fit
L and L logL terms from the data for the circular region and plot
against our theoretical predictions. The frequency of the oscillations
for numerics and theory is in excellent agreement. The magnitude
of the oscillations is slightly underestimated for small regions, and is
increasingly underestimated as the Renyi parameter α is increased.
For large α Renyi entropy a second oscillation frequency is apparent.
There also exists a smaller subleading scaling correction which can
be seen most clearly in the slight downward curvature of ∆S2.

B. Strip geometry

For the strip geometry we work with the same density as
in the circular case. Here we parameterize our fitting function
as,

Sn(W ) = a1 ln (W ) + a2 + a3
cos (a4W + a5)

W a6
. (5.5)

Our analysis predicts

a1 =
n+ 1

3n

kFL

2π
(5.6)

(from the Widom fomula),

a3 =
|fn|L

√
kF

2
√
π(2kF )2/n

(5.7)

a6 =
2

n
+

1

2
(5.8)

and a4 = 2kF .
The results for fitting procedure one for this geometry are

provided in Table III. Because some of these parameters are
explicitly dependent on the length of the system, we present
results for a1, a2, and a4 with the length scale removed. For
the strip geometry the agreement between theory and numer-
ics is equally impressive. As was the case for the circular ge-
ometry, we note the complimentary behavior of the two lead-
ing terms, log(L) and a constant in this case when performing
fitting procedure two. Results for fitting procedure two can be
found in table IV and are plotted in figure 3.
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n atheory
1 atheory

3 atheory
4 atheory

6

1 0.667
2 0.500 0.0253 8 1/2
3 0.444 0.0566 8 1/6
4 0.416̄ 0.0765 8 0
5 0.400 0.0869 8 -1/10

n afit
1 afit

2 afit
3 afit

4 afit
5 afit

6

1 0.650 1.799
2 0.493 1.395 0.0185 8.02 0.552 0.40
3 0.440 1.251 0.0533 8.02 0.559 0.17
4 0.413 1.176 0.0772 8.02 0.583 0.03
5 0.396 1.131 0.0912 8.01 0.600 -0.06

TABLE I. Comparison between (left) theory and (right) numerical data for the circular geometry. The parameterization is given by equation
5.1. The fit is performed with all parameters free to illustrate how well theory predicts the parameters. As the size of the system is increased
the linear term, a2, decreases and a1 increases. For small system sizes L and L log(L) have a large overlap.

n ãfit
2 /L ãfit

5

1 1.77
2 1.38 0.632
3 1.24 0.690
4 1.17 0.707
5 1.13 0.715

TABLE II. Fit parameters, ã, for the circular geometry, equation 5.1,
with all known theoretical values fixed. We denote these with a tilde
to differentiate them from the fit values of table I which were obtain
allowing all parameters to vary. With just these two degrees of free-
dom we are able to obtain excellent agreement between the numeric
and theoretical Renyi entropies.

FIG. 3. Renyi entropies S1 through S5 for the strip geometry. Solid
lines are data and dashed lines are with theoretical values for the
parameters in equation 5.5 found on the left side of table III and ãfit

2

and ãfit
5 from Table IV.

As was the case for the circular geometry, we present in fig-
ure 4 the Renyi entropy S2 through S5 with the leading terms
removed. In this case the oscillation frequency and magnitude
are in excellent agreement. We also note the lack of additional
subleading corrections.

C. Interactions

Finally, we briefly discuss how our arguments from Sec-
tion III compare with interacting data from Ref. [20]. In

FIG. 4. We remove the leading scaling term by subtracting the
fit constant and logL terms from the data for the cylindrical strip
and plot against our theoretical predictions. The magnitude and fre-
quency of the oscillations is almost identical for numerics and theory.

that work Renyi entropies were computed for various inter-
acting Fermi liquids as a function of interaction strength for
both short-range interactions and Coulomb interaction using
the swap operator in quantum Monte Carlo [17]. The sub-
leading oscillations in S2 for the spin polarized electron gas
and the free electron gas, shown in figure 5, agree well even
for moderate interaction strength. This agreement may be im-
proved further by computing larger region sizes in QMC for
comparison. Though the range of the data is somewhat lim-
ited, this provides numerical evidence for our earlier theoreti-
cal claim that the period and power law prefactor of the decay
is unchanged by weak interactions. Additionally, as we de-
scribed above, Ref. [35] has shown that for a certain solvable
model of an interacting Fermi liquid, the proposed universal-
ity of Renyi entropies is indeed exactly true.

However, let us also emphasize that preliminary data taken
from Ref. [20] and plotted in figures 5 and 6, show that the
oscillating terms may deviate from the free results in the limit
of strong interactions and large Renyi parameter. Indeed, Ref.
[20] already observed that even the L ln (L) term has a small
but systematic growth with rs =

√
Area/Neπ, the Wigner-

Seitz radius, once rs � 1 which is not predicted by the theory.
The Wigner-Seitz radius is approximately proportional to the
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n atheory
1 /L atheory

3 /L atheory
4 atheory

6

1 0.212
2 0.159 0.0228 4 3/2
3 0.141 0.0405 4 7/6
4 0.133 0.0487 4 1
5 0.127 0.0516 4 9/10

n afit
1 /L afit

2 /L afit
3 /L afit

4 afit
5 afit

6

1 0.220 0.530
2 0.157 0.434 0.0204 4.07 2.00 1.45
3 0.139 0.393 0.0390 4.05 2.10 1.19
4 0.130 0.371 0.0481 4.04 2.15 1.03
5 0.124 0.358 0.0527 4.04 2.18 0.95

TABLE III. Comparison between (left) theory and (right) numerical data for the strip geometry. We divide the length of the system out out of
a1, a2, and a3. The parameterization is given by equation 5.5.

n ãfit
2 ãfit

5

1 0.542
2 0.432 2.052
3 0.389 2.162
4 0.367 2.218
5 0.353 2.244

TABLE IV. Fit parameters, ã, for the strip geometry, equation 5.5,
with all known theoretical values fixed. We denote these with a tilde
to differentiate them from the fit values of table III which were ob-
tain allowing all parameters to vary. As was the case with the circular
geometry, we obtain excellent agreement between numeric and the-
oretical Renyi entropy scaling laws.

ratio of potential to kinetic energy for the system and increases
as inter-particle correlations increase. The origin of this de-
pendence is not yet understood. For the oscillating terms, it
seems that the wavevector is indeed consistent with our argu-
ments above, but the prefactor may be modified. Thus while
our arguments for interacting Fermi liquids have been vindi-
cated by numerical data for moderate interaction strengths, the
situation at strong coupling is more complex. Thus we defer
a detailed analysis of that case to future work.

VI. CONCLUSIONS

In this paper we have considered subleading oscillating
terms in the Renyi entropy of free Fermi gases and Fermi
liquids. We gave a simple analytic formula for the sublead-
ing oscillating term using the one-dimensional formulation of
Fermi liquid entanglement. This formula compares favorably
with numerical calculations of the Renyi entropy of free Fermi
gases in various geometries. We also considered the effects of
weak interactions and argued for a certain degree of univer-
sality in the subleading oscillating term. Our arguments were
checked by comparing to previous quantum Monte Carlo cal-
culations of Renyi entropies in Fermi liquids as well as by
comparing to exact results in a solvable model of a Fermi liq-
uid. Thus we have established excellent agreement between
theory and numerics for both the leading and subleading terms
in the Renyi entropy of weakly interacting Fermi liquids.

An interesting future direction, which we have only just
touched on here, is the exploration of the physics of the en-
tanglement spectrum which plays an important role in topo-
logical systems [39–43]. We know the full spectrum for a

FIG. 5. Data from Ref. [20] for S2 of the spin polarized electron
gas across rs = 1, 5, 10, 20, defined in the text, with leading scaling
term removed. The dashed line is from the numerical analysis of the
non-interacting system. The oscillation frequency for the interacting
case is the same as the non-interacting case, though the magnitude of
the oscillations may be modified.

FIG. 6. Data from Ref. [20] for Renyi parameters 2, 3, and 4 for
the spin polarized electron gas at rs = 20, in the strongly interacting
regime, with leading scaling term removed. The dashed lines are the
computed subleading oscillation for each Renyi parameter from the
preceeding numerical data. The error in the quantum Monte Carlo
data grows quickly with region size and Renyi parameter. As shown
in figure 5, the oscillation frequency appears unchanged by interac-
tions though the magnitude may be increased.
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strip, but more generally it would be desirable to have an un-
derstanding the spectrum of more general regions and in the
presence of interactions. Something like the bulk-edge cor-
respondence for topological phases should be valid for Fermi
liquids as well, but the precise form of this correspondence
remains uncertain. It would also be very interesting to ex-
tend our results to other kinds of quantum matter which sup-
port a Fermi surface but which may not be simple Fermi liq-
uids. Entanglement entropy in these models provide a con-
ceptually simple probe of the Fermi surface, even if it is not
associated with conventional electrons, and since both the os-
cillating term and the leading logarithmic term know about the
Fermi surface geometry, we can extract the universal prefactor
(analogous to the central charge) in front of the logarithmic
term in the Renyi entropy. Finally, although we considered

only spherical Fermi surfaces here, it is possible to extend our
results to more general Fermi surface shapes.
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Appendix A: Computational Details

We compute the Renyi entropies from the eigenvalues of
a spatially reduced density matrix using an extension of the
correlation function technique to continuum systems [16, 37].
For a free particle Hamiltonian,

Ĥ = −
∑
m,n

t̂m,nc
†
ncm (A1)

with n andm subsystem site indices, and ci and c†i the creation
and annihilation operators for state i, eigenvalues for the den-
sity matrix can be computed using the relationship between it
and the correlation function matrix. The correlation function
matrix,

Cij = 〈c†i cj〉, (A2)

is determined entirely by the one particle operators. We per-
form a unitary rotation in the space of one particle operators,

Sαβ =
∑
ij

φ†α(i)c†iφβ(j)cj〉, (A3)

where φ are the single particle orbitals of the free Fermi gas,
plane waves. This yields the overlap matrix integrated over
the spatial region for which we compute the Renyi entropies.
The eigenvalues of this matrix are equivalent to those of the
original C matrix. These integrals can be performed analyti-
cally for circular or strip geometries and have no dependence
on spatial grid.

For this Hamiltonian we can write the density matrix as
the exponential of a fictitious Hamiltonian, the entanglement
Hamiltonian, with energy levels ξk and single particle opera-
tors ak and a†k,

ρ = K exp

(
−
∑
k

a†kakξk

)
. (A4)

where K is a normalization constant set by Tr(ρ) = 1. The
new states, ak are related to the eigenvectors of the correla-
tion matrix by, ci =

∑
k φk(i)ak, and the eigenvalues of the

entanglement Hamiltonian are related to those of the correla-
tion matrix, ζi, by,

ξi = log

(
1− ζi
ζi

)
. (A5)

The von Neumann Entropy, S1, is then computed as,

S1 =
∑
i

ln (1 + exp (ξi)) +
−ξi

1 + exp (−ξi)
(A6)

and higher order Renyi entropies using a recursive formula,

m0 = 0

w0 = 1

i = 1

while i < Ntot
wi = wi−1(1 + exp (−ξi))
mi = mi−1 + exp (−nξi)(1 +mi−1)

i = i+ 1

Sn = 1
1−n log

(
mNtot+1

(wNtot )n

)
(A7)

as shown in [36].
When computing high order Renyi entropies or the en-

tropy of a large region, m and w can develop numerical in-
stabilities. The normalization factor, w, and the unnormal-
ized trace, m, contain terms that diverge as the system or
Renyi entropy order, n, grows large: w =

∏
i(1 − ζi)−1 and

m ∼
∏
i(1− ζi)−n.

While each term diverges individually, the ratio, rm,w =
mNtot+1

(wNtot )n → 0. This ratio can be written as a function of the
Renyi entropies which has a known scaling form, rm,w =
exp ((1− n)Sn). We can see that this ratio, rm,w, scales as
W 1−n for cylindrical geometry and L(1−n)L for the spher-
ical geometry, both of which go to zero as the system size
increases. This restricts the maximum size of the sub regions
we can compute.


