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We study a model of interacting bosons that occupy the first excited p-band states of a two-
dimensional optical lattice. In contrast to the much studied single band Bose-Hubbard Hamiltonian,
this more complex model allows for non-trivial superfluid phases associated with condensation
at non-zero momentum and staggered order of the orbital angular momentum in addition to
the superfluid-Mott insulator transition. More specifically, we observe staggered orbital angular
momentum order in the Mott phase at commensurate filling and superfluidity at all densities. We
also observe a transition between the staggered angular momentum superfluid phase and a striped
superfluid, with an alternation of the phase of the superfluid along one direction. The transition
between these two phases was observed in a recent experiment, which is then qualitatively well
described by our model.

PACS numbers: 05.30.Jp, 03.75.Hh, 75.10.Jm 03.75.Mn

I. INTRODUCTION

Superfluidity has attracted much attention since its
discovery in bosonic 4He and, later, in fermionic
3He1. This phenomenon was studied in a wide range
of systems ranging from excitons in quantum wells2

to neutron stars3. Interest intensified following the
experimental realization of confined ultracold atomic
systems, in particular atomic Bose-Einstein condensates
(BEC)4–7. Many new possibilities become available
when these systems are loaded in the lowest band of
optical lattices where they are governed by the (bosonic
or fermionic) Hubbard model with highly tunable
parameters8. After their initial use to explore quantum
phase transition between superfluid (SF) and Mott
insulator (MI) phases9 ultracold atomic gases have been
used to study mixtures of particles10,11 and, since then,
more exotic pairing phenomena, including Fulde-Ferrell-
Larkin-Ovchinnikov12,13 or breached paired phases14,15

in unbalanced fermionic systems, or to introduce
the concept of counter-superfluidity in MI of boson
mixtures16. Work on spinor condensates concentrated on
the interplay between superfluid behavior and itinerant
magnetism, especially through the study of spin-1
bosons17,18.

More recently, it was proposed to load the atoms in
higher bands of the optical lattice in order to study
further exotic forms of superfluidity19. In a three
dimensional cubic lattice, there are three such states that
are degenerate and correspond to the different states of
orbital angular momentum l = 1 (L2 = l(l + 1) = 2 in
units of ~2), whereas the unique ground state corresponds
to l = 0. Due to the anisotropy used to produce two
dimensional square lattices, one of the orbitals has a
larger energy than the other two. This reduces the model

to only two species (the px and py states) in the low
energy limit. On cubic or square lattices, the hopping
parameters from a site to its neighbors are anisotropic
and take two very different values depending on the
hopping direction, parallel or perpendicular to the orbital
axis. Isacsson and Girvin19 studied the limit where the
hopping in the transverse directions is totally suppressed.
This led them to suggest that in two dimensions their
model may develop a peculiar columnar phase ordering
where the phases of particles in the px(y) states are
coherent along the x(y) direction and uncorrelated in the
transverse direction.

Bosons in high orbital bands are not in the
true ground state. This feature gives rise to the
possibility of new states of matter beyond the “no-
node” theorem20 that is obeyed by the conventional
BECs of single component bosons. This theorem
states that the many-body ground state wavefunctions
of bosons under very general conditions are positive-
definite. It implies that time-reversal symmetry
cannot be spontaneously broken. If the system
has rotational symmetry, this theorem constrains the
condensate wavefunctions to be rotationally invariant.
In other words, conventional BECs are s-wave-
like whose symmetry property is similar to s-wave
superconductivity. Recently, unconventional symmetries
have been introduced to the single-boson condensates
in high orbital bands in optical lattices21,22, denoted
as “unconventional BECs” (UBECs). Their condensate
wave functions belong to nontrivial representations of
the lattice point group. In other words, they are non-
s-wave in analogy to unconventional pairing symmetries
of superconductivity. Liu and Wu22 studied analytically
the UBECs in the p-orbital band with non zero
transverse hopping exhibiting a px ± ipy type symmetry,
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and thus breaking time-reversal symmetry spontanously
with a complex-valued condensate wavefunction. They
predicted for densities, ρ, larger than two particles per
site, the existence of a superfluid phase where the system
condenses at non zero quasi-momentum and which is
accompanied by a staggered order of the orbital angular
momentum (SAM). Recently, the model was studied
using an effective action approach23 and a similar SF
phase with SAM order was predicted even for ρ = 1 as
well as an antiferromagnetic Mott phase. Its physics was
also examined in one dimension24. In solid state physics,
phase-sensitive detections provide definitive evidence for
unconventional symmetries of the Cooper pair wave
functions, such as the well known d-wave symmetry in
high Tc cuprates

25,26. In a corner junction experiment25,
the d-wave symmetry generates an additional π-flux in
addition to fluxes from external magnetic fields, which
modifies the observed Josephson currents in the junction.
For the non-s-wave UBECs, phase-sensitive detection on
condensate symmetries has also been proposed through
Raman transition27.

Such an exotic SF phase was observed in a recent
experiment by Wirth, Ölschläger, and Hemmerich28–30 in
a two dimensional checkerboard lattice composed of s and
p-orbitals sites and had been investigated theoretically
by Cai et al.31. The nearest neighbors of s-sites being p-
sites, an atom cannot go directly from a p-site to another
as was the case in Liu and Wu’s model21,22. However,
the s-sites do not introduce phase differences and thus
only play the rôle of a neutral relay between p-sites.
Introducing a small anisotropy between the x and y
axes, a transition between the condensed state at non
zero momentum and a striped phase where there is a
phase alternation between different stripes was observed.
BECs with unconventional condensate symmetries have
also been observed in the solid state exciton-polariton
lattice systems32.

In this work, we will study the model originally
proposed by Liu and Wu22 with quantum Monte Carlo
simulations. To reproduce qualitatively the different
phases observed in Hemmerich’s group experiment, we
will add to the original model an anisotropy term in the
form of an energy difference between px and py orbitals.
We will use a simplified model that does not include
the s-sites present in the experiment, and hence is not
able to reproduce the experimental results quantitatively.
A complete model, including all p and s-bands, was
presented very recently by Ölschläger et al.30 but is
beyond the reach of our simulation tools. Finally, in
addition to studying the superfluid phase, we will also
focus on the insulating phases that arise in such systems
for strong enough interactions and integer densities. In
section II of this article, we will introduce and discuss
the model, in section III we will show that it can be
mapped on a bosonic spin-1/2 model and establish the
correspondence between the phases observed. In section
IV, we will present the results of our simulations and
conclude in section V.

FIG. 1: Hopping parameters on the square lattice for px and
py orbitals. Because px,(y) orbitals are parity odd, the overlap
of orbitals changes sign depending on the direction. Along
the parallel direction (x for px orbitals, y for py orbitals),
the overlap is negative, which gives a positive +t‖ hopping
parameter. On the other hand, along the perpendicular
direction, there is a conventional negative hopping parameter
−t⊥.

II. THE P -ORBITAL MODEL

We will study the model introduced in21,22 for the two-
dimensional square lattice and two-species (“spin- 12”)
case. The system is then governed by the Hamiltonian,

H = +t‖
∑

r

(

p†x,rpx,r+x̂ + p†y,rpy,r+ŷ + h.c.
)

−t⊥
∑

r

(

p†x,rpx,r+ŷ + p†y,rpy,r+x̂ + h.c.
)

+
U

2

∑

r

(

n2
r
−

L2
z,r

3

)

+∆
∑

r

(nx,r − ny,r) ,(1)

where px(y),r is the destruction operator of a particle
located on site r = (rx, ry) of an L × L square lattice
in the px(py) state; x̂ and ŷ are the primitive vectors of
the square lattice. The number operators are nx(y),r =

p†x(y),rpx(y),r and nr = nx,r + ny,r; and Lz is the on site

orbital angular momentum operator defined as

Lz,r = −i(p†x,rpy,r − p†y,rpx,r), (2)

We remark that L2
z,r is not diagonal in this basis and

contains terms that transform two particles of one species
into two particles of the other species.
Since the overlap of p-orbitals on neighboring sites is

different in the directions parallel or perpendicular to
their spatial orientation, there are two different hopping
parameters. t⊥ is typically smaller than t‖ (Fig. 1).
Moreover, due to the phase difference between the two
parts of the p-orbitals, the two hopping terms have
different signs (Eq. (1)), being positive in the parallel
direction (+t‖) whereas the perpendicular hopping term
maintains the conventional negative sign (−t⊥). We will
concentrate on the case where t⊥ = t‖ = t, but also
retain the sign difference which is qualitatively the most
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important characteristic of this model. The parameter
t sets the energy scale. The interaction part of the
Hamiltonian (Eq. (1)) includes a conventional on-site
repulsion (the n2

r
term) and a term that maximizes the

on-site angular momentum (the L2
z,r term). This is

essentially the physics of second Hund’s rule applied to
the bosonic orbital system: complex orbitals are spatially
more extended to save repulsive interactions. The last
term in the Hamiltonian, Eq. (1) corresponds to a
tunable difference in energy, ∆, between the px and py
orbitals, due to a corresponding anisotropy in the lattice.
In the non interacting limit, the energy dispersion for

px particles22 takes the form ǫx(k) = 2t(cos(kx)−cos(ky))
where k = (kx, ky), kx(y) = 2πKx(y)/L, and Kx(y) is
an integer. For py particles ǫy(k) = −ǫx(k). Since the
energy minima appear at k = (π, 0) for the px particles
and at k = (0, π) for the py particles, it is expected for
the system to condense at non zero momentum.
In the interacting case, the interaction energy is

minimized by maximising L2
z,r on a given site, that is by

putting all the particles in the same state corresponding
to either Lz = +1 or Lz = −1: |Lz = +1〉 ∝ |px〉+ i|py〉
and |Lz = −1〉 ∝ |px〉−i|py〉. With these on-site states, it
is then possible to minimize the hopping energy by using
a configuration22 that gives a phase difference along the
longitudinal hopping and a phase match for transverse
hopping. Such a configuration is represented in Fig. 2; it
exhibits a checkerboard pattern of Lz = ±1 sites. This is
the staggered angular momentum order mentioned in the
introduction, and it is clear that it is compatible with a
phase ordering that corresponds to the condensation at
non zero momentum for both px and py particles.
Finally the ∆ term in Eq. (1) should suppress this kind

of order since it requires having the same number of px
and py particles by increasing the density of py particles.
If the system remains superfluid when it is composed
mostly of py particles, the phase will alternate between
sites along the y direction and will be coherent in the x
direction, thus forming stripes along the x axis. We will
call this phase a striped superfluid (see Fig. 3).

III. MAPPING ON A SPIN 1/2 MODEL

The positive parallel hopping term in Eq. 1 generates
a sign problem for Quantum Monte Carlo simulations.
(In this work we use the Stochastic Green Function
algorithm33,34). However, the Hamiltonian can be
mapped onto a spin−1/2 model free of this problem35,36.
We define the spin 1/2 bosonic operators

b↑,r = i(−1)xpx,r b↓,r = (−1)ypy,r (3)

This transformation gives a direct equivalence between
densities of ↑ (↓) and px(py) particles. Then the
corresponding spin 1/2 operators are defined37 : Sz,r =

(n↑,r−n↓,r)/2, S+,r = b†↑,rb↓,r, and S−,r = b†↓,rb↑,r. With
these definitions, the model is rewritten, up to some

FIG. 2: Staggered orbital angular momentum order. A
configuration having states proportional to |Lz = ±1〉 on
each site maximizes L2

z, minimizing the interaction energy.
Concentrating on the px orbital, there is a phase alternation
along the x direction and a phase coherence along the y
direction, which minimizes the kinetic energy and corresponds
to the condensation with wave vector k = (π, 0). The same
phenomenon is observed for the py orbitals, with reversed
axes and k = (0, π). This gives an alternation of sites
with Lz = ±1 and thus a staggered order for the angular
momentum along z.

FIG. 3: Stripe phase. Due to the different signs of the
hopping parameters, when the system is composed of just
one species (py in this figure) it will have phase alternation
along the parallel (y) direction and phase coherence along the
transverse (x) direction to minimize the kinetic energy. This
forms stripes aligned with the transverse direction and striped
superfluid phases can be observed.

constants, as

H1/2 = −t
∑

r

∑

α̂=x̂,ŷ

∑

σ=↑,↓

(

b†σ,rbσ,r+α̂ + h.c.
)

(4)

+
∑

r

(

U
nr(nr − 1)

2
−

2U

3
S2
x,r + 2∆Sz,r

)

where Sx,r = (S+,r + S−,r)/2 and plays a rôle similar to
the Lz,r operator in the original model. This model is
free of the sign problem as all the hopping terms and the
on-site non diagonal term are negative.
Up to the external field term along the z-direction,

this is the model that was studied in35,36 with U0 = U
and U2 = −U/3 for the values of the parameters used
in these articles. For ∆ = 0, it was shown that the
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system is always ferromagnetic at low temperature. On
a given site, the absolute value of the projection of the
spin along the x axis is maximized due to the negative
S2
x,r term. The hopping of the particles then creates an

effective ferromagnetic coupling between spins located
on different sites. This ferromagnetic order is of the
Ising class because of the anisotropy introduced by the
S2
x,r term. It is measured by calculating the spin-spin

correlation function along the x axis, related to the
correlation of angular momenta Cz(R) in the original
model (R = (Rx, Ry)),

Cz(R) = 〈Lz,rLz,r+R〉 = 4(−1)Rx+Ry 〈Sx,rSx,r+R〉 (5)

That is, the observed ferromagnetism in the spin−1/2
model corresponds to the staggered angular momentum
predicted in the p-band model.
Although it always adopts ferromagnetic behavior at

∆ = 0, the system can be in different incompressible
Mott phases, at integer densities and large enough
interaction U , or in a superfluid phase, for non
integer densities and for integer densities at low enough
interaction U . A constant value, at long distance, of

the one particle Green functions Gσ(R) = 〈bσ,r b
†
σ,r+R

〉
shows that the particles have condensed and that the
system is superfluid. In terms of p-band particles, the

Green functions Gx(y)(R) = 〈px(y),rp
†
x(y),r+R

〉 have the

following expressions,

Gx(R) = (−1)Rx G↑(R), Gy(R) = (−1)Ry G↓(R) (6)

That is, a superfluid/BEC phase for spin 1/2 particles
translates directly into the BEC at non zero momentum
phase for the p-band particles, because of the real space
phase factors (−1)Rx and (−1)Ry .
The same correspondence holds for the Fourier

transforms of these functions, namely the spin 1/2
magnetic structure factor at k = (0, 0) becoming an
angular momentum structure factor at k = (π, π). We
will call this quantity SSAM in the following, where

SSAM =
1

L2

∑

R

(−1)Rx+RyCz(R) (7)

The density of condensed spin 1/2 particles at k =
(0, 0) becomes the density of condensed px and py
particles at k = (π, 0) and k = (0, π), respectively, which
will be denoted ρcx and ρcy in the following, where

ρcx(y) =
1

L2

∑

R

(−1)Rx(y)Gx(y)(R) (8)

Finally, in the spin−1/2 model, it is possible
to measure the superfluid density ρs through the
fluctuations of total winding numbers38

ρs =
〈W 2

x +W 2
y 〉

4βt
(9)

At zero temperature, the superfluid density ρs and the
condensed densities ρcx and ρcy are generally non-zero
simultaneously so we will use ρs to determine if we are
in the condensed phase for both models.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
t/U

0

0.5

1

1.5

µ/
U

∆/t = 0.5
∆/t = 2.0
∆/t = 3.5
∆/t = 5.0

t=1, 8x8, βt=10 

Mott ρ=1

Mott ρ=2

Superfluid

FIG. 4: (Color online) Phase diagram for ∆/t = 0.5, 2.0, 3.5,
and 5.0. We observe two Mott phases and a superfluid phase.
The extents of the Mott phases are not varying a lot with ∆,
especially for the ρ = 1 Mott phase and large values of ∆.

IV. SIMULATION RESULTS

Quantum Monte Carlo simulations using the SGF
algorithm33,34 allow us to study the spin−1/2 model
at finite temperature for L × L lattices up to L = 10
and inverse temperature up to βt = 80. The difficulty
of the simulations is caused by the S2

x interaction term
which changes the spin projection of the particles. The
simulations are performed at low temperatures in order
to obtain the behavior of the ground states. We will
concentrate on ∆ 6= 0.

A. Phase diagrams

We expect Mott phases to appear for large enough
interactions and integer densities ρ. To determine the
extent of these phases in the (t/U, µ/U) plane for a
given value of ∆ we calculate the energy E(N) at low
temperature for N = ρL2, N + 1 and N − 1 particles.
We then determine the boundaries of the Mott lobe as
µ+ = E(N+1)−E(N) and µ− = E(N)−E(N−1), and
µ+ is larger than µ− by a finite value, the charge gap. As
expected, we find Mott phases occur for integer densities
ρ = 1 and ρ = 2. (We did not go beyond ρ = 2). We
observe that the boundaries of the different phases are
not changed much when ∆ is varied (Fig. 4). Since the
energy is a local quantity which is not very sensitive to
system size, the boundaries of the Mott lobes are little
changed with system size as seen in Fig. 5. We will
detail below the nature of these three phases for different
densities.
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FIG. 5: (Color online) Phase diagram for ∆/t = 3.5 and
different sizes. The finite size effects are negligible.

B. ρ = 1 case
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ρ
x

ρ
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ρ
s

S
SAM

ρ
cx

ρ
cy

∆/t=0.5, ρ=1, 
L=8, βt=40

FIG. 6: (Color online) Cut in the phase diagram at ρ = 1
and ∆ = 0.5. The system goes from a Bose condensed phase
at low interaction to a Mott phase as ρs goes to zero with
increasing interaction U . There is an intermediate SAM-Bose
condensed phase.

In Fig. 6, we present the dependence of the particles,
superfluid, and condensate densities and the angular
momentum structure factor on the interaction U at fixed
density ρ = 1 and ∆ = 0.5. We observe, as expected
for non zero ∆, that ρy is larger than ρx. As U
is increased, ρx, ρy and SSAM show a non monotonic
behavior. There is a correlation between ρx and SSAM

which can be understood by noting that SSAM order
requires a superposition of px and py particles that
is possible only when ρx is not zero. However, the
superfluid density decreases monotonically with U and
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ρ
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SAM
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0.2

0.4

0.6

0.8
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U/t=40, ρ=1.0, L=8, βt=40

U/t=10, ρ=1.0, L=8, βt=40

FIG. 7: (Color online) Cuts in the phase diagram at ρ =
1 as a function of ∆/t. At U/t = 10 (top), the system is
always in the superfluid phase (ρs 6= 0) and we observe a
staggered angular momentum order when ∆ < 1. For ∆ >
1, the superfluid is composed of only one dominant species.
The same happens in the Mott phase for large interaction
U/t = 40 (bottom) with a smaller value (∆ ≃ 0.15) for the
disappearance of the SAM order.

the system is driven into an incompressible Mott phase
where double occupancy is suppressed at large U . In
this Mott phase the model can then be mapped onto
an effective anisotropic spin 1/2 Heisenberg model. For
∆ = 0, the larger coupling of the Heisenberg model is
along the x axis and is equal to Jx = −9t2/U which
leads to ferromagnetic order. This is SAM order in terms
of p-band bosons16,39. The ∆ term acts as an external
magnetic field along the z axis and tends to destroy the
ferromagnetic/SAM order. In Fig. 6, the Mott phase is
composed only of py particles (ρy ≃ 1) as ∆ is large
enough to overcome the ordering of effective spins along
the x-axis. There is, then, no SAM order in the Mott
phase in this case. However, the Mott phase shows a
SAM order for small enough values of ∆ (see Fig. 7,
bottom). In the Mott phase, there is then a competition
between the weak effective coupling of the moments and
the anisotropy term. As U become large, the effective
coupling decreases as 1/U and the system always ends up
in a Mott phase composed only of py particles. However,
for low enough values of ∆, there exists a SAM Mott
region.
Returning to the low interaction regime, there are two

different superfluid phases observed in Fig. 6. At low
interaction U , the system is well described as a collection
of free particles and, since the ∆ term lowers the energy
of py states, the particles condense in this state. Lz

is then on average zero on each site and no SAM is
observed. The py bosons form a condensate and the
phase is a striped superfluid because ρcy is nonzero. For
intermediate interaction, we observe a SAM superfluid
where ρcx, ρcy and SSAM are non zero at the same
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time. For such moderate U , the interaction is not large
enough to block particles in a Mott phase. To lower the
interaction energy, the system adopts states that have
the largest possible absolute value of Lz,r on a site and
the hopping terms lock the relative phases into an SAM
order. One should notice however, that when there is
only one particle on a site, the value of L2

z,r is fixed
to one whatever the state of the particle and that the
minimization of the interaction energy takes place only
when there are fluctuations of the number of particles.
As in the Mott case, the SAM order will disappear if the
system is composed of only py particles due to a large
value of ∆ (see Fig. 7, top).
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Striped SFSAM-SF

M
ot

t-
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M

Mott

L=8, βt=40, ρ=1

FIG. 8: (Color online) Phase diagram for ρ = 1 as a function
of U/t and ∆/t. There are four different phases: a Mott phase,
a Mott phase with staggered orbital momentum (SAM) order,
a superfluid phase with SAM order and a striped superfluid.

Finally, using different cuts in the phase diagram at
fixed ∆ or U , similar to Figs. 6 and 7, we map the
phase diagram presented in Fig. 8 for ρ = 1. We observe
that for the range of values we studied, the SAM order
completely disappears for ∆ > 1 and the system is in a
Mott phase for U > 25.

C. ρ = 2 case

We performed the same analysis for the ρ = 2 case and
found similar results (see Figs. 9, 10, and 11). However,
the SAM is much more robust, as it persists up to ∆ = 4.
This can be understood by recalling that the L2

zr term
scales as the square of the density and that, for ρ > 1,
the interaction energy term favors the development of
local moments with |Lz,r| > 1. Thus the associated SAM
coupling of the angular momentum should grow rapidly
with the density and the stripe phase is therefore more
difficult to observe.
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FIG. 9: (Color online) Cut in the phase diagram at ρ = 2 as a
function of U/t, the quantities and the observed behavior are
similar to the ρ = 1 case (see Fig. 6) but the SSAM order is
more robust as it is still non zero in the Mott phase, despite
the much larger value of ∆ (∆/t = 3 in this case compared
to ∆/t = 0.5 in Fig. 6).
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FIG. 10: (Color online) Cut in the phase diagram at ρ = 2 as
a function of ∆/t. The quantities and the observed behavior
are similar to the ρ = 1 case (see Fig. 7) with a more robust
SAM order persisting up to ∆/t ≃ 3.

D. Non integer densities

At non integer densities, the system is of course always
superfluid. As at commensurate fillings ρ = 1 and ρ = 2,
we observe a transition between the SAM superfluid
phase and the stripe superfluid as ∆ is increased. The
limiting value of ∆ grows with increasing density, a trend
already evident in comparing results for the two integer
fillings (Fig. 12). The value of ∆ at which the SAM
disappears corresponds to the system being populated
almost entirely by py particles. We observe the SAM
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FIG. 11: (Color online) Phase diagram for ρ = 2 as a function
of U/t and ∆/t. The SAM phases are more robust than in
the ρ = 1 case (Fig. 8) but the same four phases are observed.
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FIG. 12: (Color online) Cuts as functions of ∆ for U = 20 and
different integer and non integer densities. For these regimes,
the system is always superfluid, even for integer densities. We
observe that, as the density is increased, the structure factor
SSAM becomes larger and larger and persists for larger values
of ∆. The SAM order is found for all densities, provided ∆ is
small enough.

order for any density, which complements the results
from21 that concentrated mostly on the ρ ≥ 2 cases.

V. CONCLUSION

We studied a model for p-band superfluidity21,22 using
exact quantum Monte Carlo simulations. We found
that the phase diagram of the model is composed of
a striped superfluid, a superfluid with simultaneous

staggered angular momentum order (SAM), a SAM Mott
and a Mott phase. Our QMC simulations indicate
that the SAM superfluid phase can be observed for any
density, although it becomes more robust as the density
is increased. The presence of the SAM order in the ρ = 1
Mott can be understood with an analysis in terms of an
effective Heisenberg model. The larger density cases were
extensively studied analytically in21,22.
Despite its differences with the experiment of

Hemmerich and co-workers (namely the absence of the
s-wave sites), the simple model studied here gives a good
qualitative description of the results. It reproduces the
two observed superfluid phases, the SAM and stripe
superfluids, with the same condensations at non zero
momenta. It also reproduces the transition between these
two exotic superfluids driven by the energy difference ∆
between the two species. Moreover, our results suggest
that in a system with stronger repulsive interaction, a
similar phase transition between a SAM and a non-SAM
phase could be observed in a Mott insulating phase.
Here, we focused exclusively on the isotropic case,

t⊥ = t‖, although an experimental realization would have
anisotropies, t⊥ 6= t‖. We have done some preliminary
simulations (not shown here) for t⊥ and t‖ values that
are not very different. These indicate that the physics
remains qualitatively the same. The case of extreme
anisotropy, t⊥/t‖ ≪ 1 and even t⊥ = 0 does differ19

and merits special attention.
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28 G. Wirth, M. Ölschläger, and A. Hemmerich, Nature
Physics 7, 147 (2011).
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