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We calculate the spectrum of the amplitude mode, the analog of the Higgs mode in high energy physics,
for thed-density wave (DDW) state proposed to describe the pseudogap phase of the highTc cuprates. Even
though the state breaks translational symmetry by a latticespacing and is described by a particle-hole singlet
order parameter at the wave vectorq = Q = (π, π), remarkably, we find that the amplitude mode spectrum
can have peaks at bothq = (0, 0) andq = Q = (π, π); we shall lattice spacing to unity. In general, the
spectrum is non-universal, and, depending on the microscopic parameters, can have one or two peaks in the
Brillouin zone, signifying existence of two kinds of magnetic excitations. Our theory sheds important light
on how multiple inelastic neutron peaks at different wave vectors can, in principle, arise even with an order
parameter that condenses atQ = (π, π).

PACS numbers: 74.20.-z, 74.25.Dw, 71.45.-d

I. INTRODUCTION

Ever since the discovery of pseudogap in high temperature
superconductors, it has been a profound mystery.1 To this day,
its origin is vigorously debated. In one view, pseudogap is
a remnant of thed-wave superconducting gap that defines a
crossover temperatureT ∗ in the phase diagram. The other
view argues for a broken symmetry atT ∗. The precise nature
of the broken symmetry is debated, however.2–7 The central
defining property of the pseudo gap is a strongly momentum
dependent gap ofdx2−y2 character. At least at the level of
Hartree-Fock mean field theory, and perhaps even on more
general grounds, it is difficult to see how translationally in-
variant order parameters2,8 can produce a gap in theparticle-
hole channel. By contrast in theparticle-particle channel, i.e.
in a superconductor, the gap is tied to the Fermi surface, notto
the lattice, and there is no necessity for a broken translational
symmetry to produce a momentum dependent gap. Here, we
shall assume that much of the phenomenology associated with
the pseudogap can be described in a unified manner by the sin-
gle assumption of a spin singletdx2−y2 density wave (DDW)3

and deduce some observable consequences that should help its
detection.

The purpose of the present paper is to calculate the spec-
trum of the amplitude mode, the analog of the recently discov-
ered Higgs mode in high energy physics, for the DDW state.
As we shall see, this turns out to be very unusual and was
missed in a very early paper12 on this subject because of the
simplicity of the formalism, which did not take into account
all possible fluctuations even in the context of an order pa-
rameter formalism. Nonetheless, it was shown explicitly that
a damped amplitude mode atq = (π, π) should be observable
in inelastic neutron scattering measurements. Since then it
was discovered that DDW model need to be extended in order
to solve the specific heat puzzle: to date no specific heat singu-
larity is observed at the pseudogap transition. This extension
was described in Ref. 13. With this extension no specific heat
singularity arises at the psudogap/DDW transition. While the
Hartree-Fock theory captures the broad overall picture of the
phase diagram,14 by its very nature it cannot properly address

the fluctuation spectrum. Given the recent advances in experi-
ments, it is therefore important to explore the consequences of
the special fluctuation spectrum of the extended DDW model,
which goes well beyond the Hartree-Fock theory. This is pre-
cisely what we would like to accomplish in the present paper.

Within the extended DDW model, we shall find that al-
though the DDW order parameter condenses at the wave vec-
tor q = Q = (π, π), remarkably, the amplitude or Higgs mode
spectrum can be peaked at bothq = (0, 0) and q = Q =
(π, π). These results provide important clues regarding the
recent experiments on the cuprates9,10, which quite unexpect-
edly find multiple magnetic excitation modes at different wave
vectors, the precise origin of which has been mysterious. As
to the elastic signature of singlet DDW, two neutron scatter-
ing measurements provide some evidence for it11. We believe
that the identification of the DDW state can be considerably
strengthened by careful experimentation of the predictions of
the inelastic amplitude spectrum that we offer.

The plan of the paper is as follows: in Sec. II we set out the
model and in Sec. III we calculate the fluctuation spectrum
in detail. The results are discussed in Sec. IV followed by
discussion in Sec. V.

II. THE EXTENDED DDW MODEL

The singlet DDW, as originally envisioned, consists of cir-
culating currents,15 alternating between clockwise and anti-
clockwise directions in the neighboring plaquettes of an un-
derlying square lattice in two-dimensional (2D) CuO2 planes.
The particle-hole spin-singlet DDW order parameter is

〈c†k,αck+Q,β〉 = i∆Qfkδαβ , (1)

wherec, c† are electron annihilation and creation operators,
andα, β are the spin indices;∆Q is the magnitude of the or-
der parameter and the form factorfk = (cos kx − cos ky); we
set the lattice constant to unity throughout. Viewed from this
perspective, the ordered state can be constructed as a juxtapo-
sition of two kinds of current conserving vertices, as shownin



2

(4) (5) (6) 

(2) (3) (1) 

FIG. 1. The six possible current vertices in the6-vertex model. The
vertices (5) and (6) are the AF vertices which lead to the DDW phase
with local orbital moments, while the rest of the vertices lead to
longer range current fluctuations.

vertices 5 and 6 of Fig. 1, The ordered state breaks time re-
versal, rotation byπ/2, parity, and translational symmetry by
one lattice spacing, but the product of any two of these sym-
metries is preserved. The statistical mechanics belongs tothe
Ising universality class,15 and in Hartree-Fock theory the order
disappears when the magnitude of the bond currents vanishes
with increase of temperature.

However, the model was extended13 to include fluctuations
that can reverse an arrow if it is possible to do so in a cur-
rent conserving manner. This can be done by enlarging the
configuration space by adding four additional vertices shown
as 1, 2, 3, and 4 in Fig. 1.13 The vertices corresponding to
sources and sinks should have a large negative chemical po-
tential. The model then belongs to the universality class ofthe
classical six-vertex model.13 Including the sources or sinks
will convert the problem to the eight-vertex model and the
concomitant spacific heat singularity at the pseudogap transi-
tion, which is not observed. The statistical mechanics of2D
classical six-vertex is a solved problem; the phase diagramis
shown in Fig. 2. But the dynamics is, to our knowledge, unex-
plored. It is indeed the collective dynamics of the model when
described in the context of the electronic model appropriate to
high temperature superconductors that we wish to study here.

Given that the order parameter condenses at the wave vector
Q = (π, π), one would have naively expected that the ampli-
tude collective mode, the analog of theU(1) Anderson-Higgs
mode, but in the particle-hole channel, would be peaked at the
same wave vector. An important result of our paper is that
the spectra of the amplitude fluctuations of the DDW state are
not confined to only the ordering wave vectorQ, but can have
finite-frequency peaks at bothq = (0, 0) ≡ 0 andq = Q, as
well as considerable spectral weight over a substantial region
of the momentum space.

In passing we note that the quantum six-vertex model de-
scribed elsewhere16 can be cast in terms of a continuum action
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FIG. 2. The phase diagram of the six-vertex model from Ref. 13;
a, b andc are the three independent vertex weights discussed there
The regions I and II are orbital ferromagnets (OF). The region III is
the power-law phase and the region IV is the orbital antiferromagnet
with DDW order. The arrow marks a path (tetragonal symmetry as-
sumed) from the low temperature to the high temperature phase with
the pseudogap transition atT ∗.

of an-vector(n = 2) model with cubic anisotropy. The pre-
cise relation of the parameters in this continuum model to the
parameters in the quantum six-vertex model is complex, but
this mapping is not without merit. Of course at finite tempera-
ture it is an effective “Ginzburg-Landau” model that comple-
ments the picture in terms of the vertex model. The isotropic
n = 2 vector model with cubic anisotropy has been exten-
sively studied.17 Here we do not pursue this route, but pursue
the more microscopic vertex model, which is more convenient
to describe the electronic excitations.

III. COLLECTIVE MODE ANALYSIS OF THE DDW
STATE

A. DDW Hamiltonian:

To calculate the DDW collective mode spectrum we start
with the electronic Hamiltonian which has the form,

H =
∑

k,σ

(ek − µ)c†k,σck,σ + g−1
∑

q

∆̂†
q∆̂q, (2)

where

∆̂q =
g

2

∑

k

fk+(q−Q)/2c
†
kck+q, (3)



3

Here we adopt a commonly used dispersionek based on local
density approximation18, which is

ek = −2t(coskx + cos ky) + 4t′ cos kx cos ky
− 2t′′(cos 2kx + cos 2ky).

(4)

For subsequent notational simplicity, we define the functions,
εk = 1

2 (ek + ek+Q), andǫk = 1
2 (ek − ek+Q). The band pa-

rameters are chosen to bet = 0.15 eV, t′ = 0.3t, and
t′′ = 0.5t′. The difference with the conventional LDA band
structure is a rough renormalization oft (from0.38 eV to0.15
eV), which is supported by experiments involving angle re-
solved photoemission spectroscopy19. Note that in Eq. 3, as
elsewhere, we shall drop the spin-indexσ, as it will play no
important role.

B. Six vertex modes of the DDW state

For an analysis of the collective modes of the DDW state
at a generalq, we have generalized the gap parameter in
Eq. 3. In this form,∆̂†

q = ∆̂−q, for an arbitraryq, which
implies that the gap parameter is purely real in the real space.
This constraint is necessary to ensure that no gapless phase
mode is generated in the collective mode spectrum of the
twofold commensurate DDW state which breaks only discrete
symmetries12. From Eq. 3 it follows that atq = Q, ∆̂Q rep-
resents the conventional DDW gap parameter shown in Fig. 1
in its vertex representation, whileq = 0 leads to a gap pa-
rameter∆̂0 which represents uniform current flow along the
+x and+y directions. Choosingq = Q = Q + Q̄, where
Q̄ = (π,−π), we find currents flowing along the+x and−y
directions. These, together with reversal of currents, give the
remaining vertices in Fig. 1. Finally, atq = Q̄, ∆̂q allows a
gap parameter that breaks local current conservation with sites
having a current source at one vertex and a current sink in the
neighboring vertex. However, in this paper we will choose
the fugacity of these current-conservation violating vertices,
which are controlled by the coupling constantg in front of the
form factors, to vanish13. Thus the operator̂∆q represents the
full set of current vertices of the six-vertex model. We find
that only the DDW gap parameter̂∆Q develops a mean-field
expectation value in the saddle-point solution, though we will
find fluctuations from all the other vertices as well.

Anticipating a twofold commensurate DDW order with
the order parameter given by Eq. (1), we first fold the full
2D Brillouin zone (BZ) to the reduced BZ (RBZ). The re-
duced zone is defined in terms of the rotated coordinates,
(kx + ky)/

√
2 = k′x, (kx − ky)/

√
2 = k′y, so that in the

RBZ k′x, k
′
y ∈ [−π/

√
2, π/

√
2]. Note that the Dirac points in

the spectrum occur at(k′x, k
′
y) = (π/

√
2, 0) and(k′x, k

′
y) =

(0, π/
√
2). The vectorQ is at(

√
2π, 0), while Q̄ = (π,−π)

in the original basis is now at(0,
√
2π).

To facilitate our discussion, we introduce the spinor nota-
tion Ψ̂†

k = (c†k, c
†
k+Q). Defining a BZ periodic functionuk

which is 1 inside the RBZ and zero outside,∆̂q may be writ-

ten as (σi, i = 1, 2, 3 are the conventional Pauli matrices)

∆̂q =
g

2

∑

k

ukfk+(q−Q)/2Ψ
†
k[uk+qσ3Ψk+q+iuk+q+Qσ2Ψk+q+Q]

(5)
The above expression for̂∆q is defined forq in the full BZ. In
the RBZ this corresponds to four different gap parameters. It
is convenient to split̂∆q as

∆̂q =
g

2

∑

k

ukuk+qfk−Q/2+q/2Ψ
†
kσ3Ψk+q,

∆̂q+Q =
g

2

∑

k

ukuk+qfk+q/2Ψ
†
kσ2Ψk+q,

∆̂q+Q =
g

2

∑

k

ukuk+qfk−Q̄/2+q/2Ψ
†
kσ3Ψk+q,

∆̂q+Q+Q =
g

2

∑

k

ukuk+qfk+q/2+Q/2Ψ
†
kσ2Ψk+q, (6)

whereQ = (Q + Q̄) and we have dropped the imaginary
i in ∆̂q+Q and∆̂q+Q+Q After this transformation, the vec-
tor q only takes values which are the differences of the wave-
vectors in the RBZ. The explicit forms for these structure fac-
tors aref (0)

0,k = 2 cos kx√
2
sin

ky√
2
, f (0)

Q,k = −2 sin kx√
2
sin

ky√
2
,

f
(1)
0,k = 2 sin kx√

2
cos

ky√
2
, and f

(1)
Q,k = −2 cos kx√

2
cos

ky√
2
).

Considering these form factors in real space we note that these
4 operators (with positive and negative signs) now correspond
to the 8 current orderings of the eight-vertex model. As dis-
cussed above, we will choose theg associated with the non-
current conserving vertices to vanish, thus leaving us witha
six-vertex model. The phase transition of the six-vertex model
does not have a singular specific heat at its transition, whereas
the eight vertex model does; this is in accord with experiments
in high temperature superconductors.

C. Effective action for the six vertex fluctuations

For compactness of notation we will writê∆(a)
b,q =

∆̂q+b+aQ, wherea = 0, 1 and b = 0, Q. With this nota-
tion, the hermiticity condition on̂∆q translates into the condi-

tion ∆̂
†(a)
b,q = ∆̂

(a)
b,−q. Furthermore it is convenient to write

∆̂
(a)
b,q =

∑

k Ψ
†
k+qρ

(a)
b,k+q/2Ψk, whereρ

(a)
b,k+q/2 are 2 × 2

matrix-valued structure factors. The Hamiltonian in the spinor
notation is

H =
∑

k

Ψ†
k((−µ+εk)σ0+ǫkσ3)Ψk+g−1

∑

q,a,b

[

∆̂
(a)†
b,q ∆̂

(a)
b,q

]

,

(7)
where in the sums overa and b, a = 1 and b = Q
are dropped because these vertices do not conserve currents.
To compute the collective response of the ground state of
H , we write the partition function forH as a path inte-
gral over an imaginary time action20. In this formalism, the
four-fermion term

∑

q,a,b ∆̂
(a)†
b,q ∆̂

(a)
b,q in Eq. 7 can be decou-

pled using Hubbard-Stratonovich-transformation by introduc-
ing auxiliary real fields∆(a)

b,q,ω (i.e. satisfying the constraint
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∆
(a)
b,−q,−ω = ∆

∗(a)
b,q,ω , corresponding to their operator counter-

parts) as

exp
[

g−1
∑

q,ω,a,b

∆̂
(a)†
b,q ∆̂

(a)
b,q

]

=

∫

D∆
(a)
b,q,ω exp

[

g−1
∑

q,ω,a,b

(

2∆̂
(a)†
b,q,ω∆

(a)
b,q,ω −∆

∗(a)
b,q,ω∆

(a)
b,q,ω

)]

.

(8)

This leads to the effective action,

S =
∑

k,ω

Ψ†
k,ω((−iω − µ+ εk)σ0 + ǫkσ3)Ψk,ω

− 2 g−1
∑

q,ω,a,b

∆̂
(a)†
b,q,ω∆

(a)
b,q,ω + g−1

∑

q,ω,a,b

∆
∗(a)
b,q,ω∆

(a)
b,q,ω .

(9)

Expressing thê∆ operators in Eq. (9) in terms of the fermion
spinorsΨ’s and then performing the Grassmannian path inte-
gral over the quadratic terms leads to the effective action,

S = g−1
∑

q,ω,a,b

∆
∗(a)
b,q,ω∆

(a)
b,q,ω

− Tr [ln(M0,k1,ω1
δk1,k2

δω1,ω2
+ δMk1,k2

ω1,ω2
)], (10)

where

M0,k,ω = (−iω − µ+ εk)σ0 + ǫkσ3 −
∑

a,b

ρ
(a)
b,k∆

(a)
b,0 , (11)

δMk1,k2

ω1,ω2
= −uk1

uk2

∑

a,b

ρ
(a)
b,(k1+k2)/2

∆
(a)
b,k1−k2,ω1−ω2

. (12)

D. Saddle point treatment of the six vertex fluctuations

The mean-field equation for the DDW state is obtained by
extremizing the actionS by differentiating Eq. 10 with respect
to ∆k,ω and setting the derivatives to zero. This leads to the
equation,

1

g
=

∑

k

f2
k

Ek
[nF (εk + Ek − µ)− nF (εk − Ek − µ)]. (13)

for the order parameter∆Q; Ek =
√

ǫ2k + f2
k∆

2
Q andnF (E)

is the Fermi-function. The chemical potentialµ is determined
from the hole-dopingx. There are no static saddle point so-
lutions corresponding to〈∆̂q〉 and 〈∆̂q+Q〉 for the range of
parameters considered. However, interestingly, the collective
mode spectrum for the DDW state will contain a component
also nearq ∼ 0, which can be interpreted as orbital ferromag-
netic fluctuations of the bond currents.

To compute the response to a perturbationζ that cou-
ples linearly to∆ through a term in the actionSext =
∫

dqdωζq,ω∆q,−ω (where we have suppressed the indices
a, b) one needs to extremize the action in the presence of such
a perturbation so thatδ(S + Sext)/δ∆ = 0. This leads to an

equationδ∆ = −(δ2S/δ2∆)−1ζ. Thus the response kernelV
is given by the inverse ofδ2S/δ∆2. Restoring all the indices,
the second derivative of the actionS in Eq. 10 is obtained by
considering the second order terms in∆q,ω in Eq. 10 as

δS(2) =
1

2

∑

k1,ω1

Tr [uk1
uk1+q{

∑

a,b

ρ
(a)
b,k1+q/2∆

(a)∗
b,q,ω1−ω2

}M−1
0,k1+q,ω1+ω

{
∑

a,b

ρ
(a)
b,k1+q/2∆

(a)
b,q,ω1−ω2

}M−1
0,k1,ω1

]

+ g−1
∑

ω,a,b

∆
∗(a)
b,q,ω∆

(a)
b,q,ω. (14)

Performing the Matsubara summations and analytically con-
tinuing to real frequency leads to

δS(2) =
∑

a,b,a′,b′

∆
(a)∗
b,q,ωU

(a,a′)
bb′ (q, ω)∆

(a′)
b′,q,ω, (15)

whereU (a,a′)
bb′ (q, ω) = δ2S/δ∆

(a)∗
b,q,ωδ∆

(a′)
b′,q,ω are given by

U
(a,a′)
bb′ (q, ω) =

∑

k1,m,n

Λm,n(k1, k1 + q;ω),

Tr (ρ(a)b,k1+q/2Am,k1
ρ
(a′)
b′,k1+q/2An,k1+q) + g−1δa,a′δb,b′ ,

(16)

and

Λm,n(k1, k1 + q;ω) =

− nF (mEk1
+ εk1

− µ)− nF (nEk1+q + εk1+q − µ)

2 (ω −mEk1
+ nEk1+q − εk1

+ εk1+q + iδ)
,

(17)

with Am,k = 1
2Ek

(Ek +mǫkσ3−mfk∆Qσ2). For the rest of
the paper we will focus on the spectra at the specialq points
q = Q andq = 0, where theU coefficients take the form

U
(a,a)
Q,Q (0, ω) =

∑

k:Ek>|µ−εk|

ω2f2
k − 4∆2

Qf
4
k − 4ǫ2k(f

2
k − f

(a)2
Q,k )

Ek(ω2 − 4E2
k)

,

(18)

and

U
(a,a)
0,0 (0, ω) =

∑

k:Ek>|µ−εk|
f2
k

ω2 − 4ǫ2k − 4∆2
Q(f

2
k − f

(a)2
0,k )

Ek(ω2 − 4E2
k)

,

(19)

respectively atT = 0. In this limit, we find that all terms,
whereb 6= b′ or a 6= a′, vanish because of the different sym-
metries of the form factors underkx → −kx andky → −ky.

The measurement of dissipation from any probe that cou-
ples to the fieldŝ∆q and ∆̂q+Q is related to the imaginary
part of the response, which would be of the form

ℑ[〈∆(a)
b,q,ω∆

(a′)
b′,−q,−ω〉] = ℑ[V (a,a′)

b,b′ (q, ω)], (20)
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with

V (q, ω) =
(

U
(a,a′)
b,b′ (q, ω)

)−1

, (21)

where(a, b) and(a′, b′) are treated as matrix indices. Thus the
peaks in the imaginary part of the spectrum nearq = 0 andQ
are given by the zeroes of the functions in Eq. 18 and Eq. 19.
The a = 0 (corresponding to the conventional DDW order
parameter) propagator nearQ, given by Eq. 18, can be easily
seen to vanish whenω ∼ 2∆Q because of the numerator. On
the other hand, lowω zeroes in the other propagators only
emerge whenµ is such that the denominator(ω2 − 4E2

k) can
vanish while satisfying the conditionEk > |µ − εk|. This
occurs in the presence of a non-zero next nearest neighbor
couplingt′, which breaks particle-hole symmetry in the band
structure.

IV. RESULTS

There is no mean field OF order coexisting with the twofold
commensurate DDW order in the regime of doping studied
here. In contrast, from Fig. 3 it is clear that in the under-
doped regime there is a noticeable finite-frequency peak at
q = 0 coexisting with a finite frequency peak atQ. The in-
tensity atq = 0 goes down with increasingx, but the ampli-
tudes strongly depend on the microscopic parameters, which
implies that the amplitude fluctuation spectra can have finite
frequency peaks at both wave vectorsq = 0 andq = Q, or
only a single peak. Such non-universality, commonly unrec-
ognized, indicates that different families of cuprates, oreven
samples at different hole doping within the same family of
cuprates, may have different fluctuation spectra. The non-
universality of the collective modes and the coexistence offi-
nite frequency peaks at multiple wave vectors are the central
aspects of our work. These results are direct consequences of
the vertex model framework of the fluctuations for the DDW
state and may have important consequences for the inelastic
neutron scattering experiments. We also note previous collec-
tive mode calculations in the framework oft − J-model, but
with important differences with our present results.21

In principle, one can also expect fluctuations associated
with the q = 0 nematic state, which, as shown in Ref. [22],
is comparable in energy to the DDW state. This nematic or-
der parameter∆nem =

∑

k fkc
†
kck is a close cousin of the

order parameter discussed here. Finally, because the orbital
magnetic moment contribution to inelastic neutron scattering
is expected to be enhanced at long wavelengths, the relatively
small peak atq = 0 can produce scattering peaks compara-
ble to that atQ. However, the detailed kinematics addressing
quantitatively the neutron scattering signatures of the ampli-
tude modes will be meaningful once the experiments provide
a more detailed picture.

!"#$ !%#$

!&#$ !'#$

!(#$ !)#$

FIG. 3. (Color online) Collective mode response of the commen-
surate DDW state as a function ofω/t for q = Q (solid curve) and
q = 0 (dashed curve) for the band parameters given in the text. In the
panels (a)-(c),∆Q = 0.3t, andx = 0.06 (a),x = 0.1 (b),x = 0.14
(c), x = 0.18 (d). The emergence of an inelasticq = 0 fluctua-
tion peak with underdoping is a signature of hidden underlying OF
fluctuations co-existing with the commensurate DDW fluctuations
centered atq = Q. The vertical axes correspond to arbitrary units,
but are the same for all panels.The panels (e) and (f) correspond to
x = 0.06 and∆Q = 0.4t and∆Q = 0.5t respectively and demon-
strates further the non-universal aspects as a function of parameters.

V. CONCLUSIONS

In summary, we calculate the spectrum of the amplitude
mode, the analog of theU(1) Higgs mode, for the com-
mensurate DDW state proposed earlier to explain the anoma-
lous phenomenology of the pseudogap phase of the high-Tc

cuprates. To properly take account of the fluctuations of the
DDW state we map the DDW fluctuation problem on to the
fluctuations of a vertex model, which is the most natural de-
scription of the DDW current fluctuations. Our central result
is that the amplitude or Higgs mode spectrum of the DDW
state can be peaked at both wave vectorsq = (0, 0) and
q = Q = (π, π), even though the ordered state condenses
only at the wave vectorQ.

The emergence of aq = 0 peak, even with a mean field
state that breaks the lattice translation symmetry (such asthe
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twofold commensurate DDW) indicatesq = 0 fluctuations
are hidden within the DDW state. We find that these fluctu-
ations reflect anorbital ferromagnetic (OF) phase in the six-
vertex generalization of the model, as mentioned above. In its
phase diagram one finds OF as well as orbital antiferromag-
netic (DDW) phases; see Fig. 2. The existence of such strik-
ing q = 0 fluctuations, even in the absence of an OF order
parameter, can be important in interpreting inelastic neutron
scattering experiments.9 However, because the response is at
higher frequencies, they are subject to considerable degree of
non-universality and serves as a warning that if our theory is
correct, experimental signatures should not be unique across
materials, as well as within a given material, as a function of
doping, frequency, etc.

We provide predictions as well as shed important light on
the recent neutron scattering experiments9,10, which evince
multiple magnetic excitations at different wave vectors inthe
pseudogap phase, the origin of which has remained mysteri-
ous within the existing theoretical framework of the the pseu-
dogap regime of the cuprates.
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