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We calculate the spectrum of the amplitude mode, the andldlgeoHiggs mode in high energy physics,
for the d-density wave (DDW) state proposed to describe the psepdplgase of the high. cuprates. Even
though the state breaks translational symmetry by a lagfieeing and is described by a particle-hole singlet
order parameter at the wave vecto= @ = (, ), remarkably, we find that the amplitude mode spectrum
can have peaks at both= (0,0) andg = @ = (m,7); we shall lattice spacing to unity. In general, the
spectrum is non-universal, and, depending on the micrésggrameters, can have one or two peaks in the
Brillouin zone, signifying existence of two kinds of magieeéxcitations. Our theory sheds important light
on how multiple inelastic neutron peaks at different wavetees can, in principle, arise even with an order
parameter that condensegat= (m, 7).

PACS numbers: 74.20.-z, 74.25.Dw, 71.45.-d

I. INTRODUCTION the fluctuation spectrum. Given the recent advances in exper
ments, it is therefore important to explore the consequeate

Ever since the discovery of pseudogap in high temperaturg‘e_SpeC'al fluctuation spectrum of the extended DDW model,
superconductors, it has been a profound myst@iythis day, whlch goes well beyond the Hartree—Foc_k theory. This is pre-
its origin is vigorously debated. In one view, pseudogap isusely vyhat we would like to accomplish in the present paper.
a remnant of thel-wave superconducting gap that defines a Within the extended DDW model, we shall find that al-
crossover temperatufE* in the phase diagram. The other though the DDW order parametercond(_enses at t_he wave vec-
view argues for a broken symmetry&t. The precise nature 0r¢ = Q = (7, m), remarkably, the amplitude or Higgs mode
of the broken symmetry is debated, howe¥éThe central ~ SPectrum can be peaked at bgth= (0,0) andg = Q =
defining property of the pseudo gap is a strongly momentunt™ 7)- Thes_e results provide important clugs regarding the
dependent gap of,»_,» character. At least at the level of r€cent experiments on the cuprdt&s which quite unexpect-
Hartree-Fock mean field theory, and perhaps even on mor@dly find multiple magnetic excitation modes at differente/a
general grounds, it is difficult to see how translationafly i Vectors, the precise origin of which has been mysterious. As
variant order parameté&can produce a gap in tharticle- 0 the elastic signature _of singlet DDW, two neutron scatter
hole channel. By contrast in thearticle-particle channel, i.e.  iNg measurements provide some evidence fér e believe
in a superconductor, the gap is tied to the Fermi surfaceipnot that the identification of the DDW staFe can be cons_|d_erably
the lattice, and there is no necessity for a broken trapsiati ~ Strengthened by careful experimentation of the predistian
symmetry to produce a momentum dependent gap. Here, W€ inelastic amplitude spectrum that we offer.
shall assume that much of the phenomenology associated with The plan of the paper is as follows: in Sec. Il we set out the
the pseudogap can be described in a unified manner by the Simodel gnd in Sec. lll we cglculate the fluctuation spectrum
gle assumption of a spin singlét>_,» density wave (DDW§ I detall_. T_he results are discussed in Sec. |V followed by
and deduce some observable consequences that shoulghelgitscussion in Sec. V.
detection.

The purpose of the present paper is to calculate the spec-
trum of the amplitude mode, the analog of the recently discov
ered Higgs mode in high energy physics, for the DDW state.
As we shall see, this turns out to be very unusual and was The singlet DDW, as originally envisioned, consists of cir-
missed in a very early parj‘é’ron this subject because of the culating currenté? alternating between clockwise and anti-
simplicity of the formalism, which did not take into account clockwise directions in the neighboring plaquettes of an un
all possible fluctuations even in the context of an order paderlying square lattice in two-dimensional) CuQ, planes.
rameter formalism. Nonetheless, it was shown explicitgtth The particle-hole spin-singlet DDW order parameter is
a damped amplitude mode@t= (7, w) should be observable
in inelastic neutron scattering measurements. Since then i <CLaCk+Q.ﬂ> = iAq fxlas, (1)
was discovered that DDW model need to be extended in order
to solve the specific heat puzzle: to date no specific heatising wherec, ¢! are electron annihilation and creation operators,
larity is observed at the pseudogap transition. This ektens andea, 5 are the spin indices)\ is the magnitude of the or-
was described in Ref. 13. With this extension no specific header parameter and the form factfr = (cos k, — cos ky); we
singularity arises at the psudogap/DDW transition. WHike t set the lattice constant to unity throughout. Viewed frois th
Hartree-Fock theory captures the broad overall picturéef t perspective, the ordered state can be constructed as pguxta
phase diagrant, by its very nature it cannot properly address sition of two kinds of current conserving vertices, as shawn

Il. THE EXTENDED DDW MODEL
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FIG. 1. The six possible current vertices in theertex model. The
vertices (5) and (6) are the AF vertices which lead to the DD\aSe

with local orbital moments, while the rest of the verticeadeo
longer range current fluctuations.

FIG. 2. The phase diagram of the six-vertex model from Ref. 13

vertices 5 and 6 of Fig. 1, The ordered state breaks time rek b andc are the three independent vertex weights discussed there
o The regions | and Il are orbital ferromagnets (OF). The nedibis

versal, rotation byr/2, parity, and translational symmetry by the power-law phase and the region 1V is the orbital antfieragnet

one lattice spacing, but the product of any two of these SYMGith DDW order. The arrow marks a path (tetragonal symmetry a

m_etries _is preserved. The s_tatistical mechanics belonteto sumed) from the low temperature to the high temperatureephith
Ising universality clas$; and in Hartree-Fock theory the order e pseudogap transition &t .

disappears when the magnitude of the bond currents vanishes
with increase of temperature.

However, the model was extendétb include fluctuations  of an-vector(n = 2) model with cubic anisotropy. The pre-

that can reverse an arrow if it is possible to do so in a curgijse relation of the parameters in this continuum model¢o th
rent conserving manner. This can be done by enlarging thgarameters in the quantum six-vertex model is complex, but
configuration space by adding four additional vertices show this mapping is not without merit. Of course at finite tempera
as 1, 2, 3, and 4 in Fig. T The vertices corresponding to tyre it is an effective “Ginzburg-Landau” model that comple
sources and sinks should have a large negative chemical parents the picture in terms of the vertex model. The isotropic
tential. The model then belongS to the Universality claghef n = 2 vector model with cubic anisotropy has been exten-
classical six-vertex modé?. Including the sources or sinks sively studied” Here we do not pursue this route, but pursue

will convert the problem to the eight-vertex model and thethe more microscopic vertex model, which is more convenient
concomitant spacific heat singularity at the pseudogagitran tg describe the electronic excitations.

tion, which is not observed. The statistical mechanicgof

classical six-vertex is a solved problem; the phase diadggam

shown in Fig. 2. But the dynamics is, to our knowledge, unex-

plored. Itis indeed the collective dynamics of the modelwhe Il COLLECTIVE MODE ANALYSIS OF THE DDW

described in the context of the electronic model approptiat STATE
high temperature superconductors that we wish to study here
Given that the order parameter condenses at the wave vector A.  DDW Hamiltonian:
Q = (w,m), one would have naively expected that the ampli-
tude collective mode, the analog of th€1) Anderson-Higgs To calculate the DDW collective mode spectrum we start

mode, but in the particle-hole channel, would be peakedsat thwith the electronic Hamiltonian which has the form,
same wave vector. An important result of our paper is that

the spectra of the amplitude fluctuations of the DDW state are _ PR | -1 AT A

not confined to only the ordering wave vectgr but can have . kz;(ek M)ck""ck’a 9 zq: Boba @
finite-frequency peaks at both= (0,0) = 0 andq = @, as

well as considerable spectral weight over a substantigbneg \yhere

of the momentum space.

In passing we note that the quantum six-vertex model de- Aq -
scribed elsewhetécan be cast in terms of a continuum action

N
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Here we adopt a commonly used dispersigbased on local tenas §;,i = 1,2, 3 are the conventional Pauli matrices)

density approximatiot¥, which is R g t .

Bg=735 >tk frra-@) 2V LUk q08 W ky g Fitth 144002 Vhiq Q)
k

(4) R )
The above expression fdx, is defined forg in the full BZ. In

the RBZ this corresponds to four different gap parametérs. |
is convenient to spli\, as

er, = —2t(cosky + cosky) + 4t' cos ky cos ky
— 2t"(cos 2k, + cos 2ky).

For subsequent notational simplicity, we define the fumsjo
Ep = %(ek + €k+Q), ande, = %(ek — ek+Q)- The band pa-
rameters are chosen to be= 0.15eV,¢ = 0.3¢, and A 9 T

t" = 0.5¢'. The difference with the conventional LDA band Ba=3 zk: uktthrafi-/z+a/2 Vi3 Ve
structure is a rough renormalizationtdffrom0.38 eV t00.15 . g :

eV), which is supported by experiments involving angle re- Agrq@ = 3 Zukuk+qfk+q/2‘1’k02‘1’k+qv
solved photoemission spectroscépyNote that in Eq. 3, as k

elsewhere, we shall drop the spin-indexas it will play no A

g i
i +Q =35 D UkUktq[i—G/24q/2¥ 103V k+q:
important role. a 2 Zk: 9/ k—Q/2+q/2 %k q

A g
Agrare =3 > wktikiqfiiq/2r0/2Yi0a Vg, (6)
k

B. Six vertex modes of the DDW state B
whereQ = (Q + Q) and we have dropped the imaginary

For an analysis of the collective modes of the DDW state IN Aq¢t+@ @nd Ao+ After this transformation, the vec-

at a generalj, we have generalized the gap parameter infor ¢ only takes values which are the differences of the wave-
Eq. 3. In this form,Ajz _ A,q, for an arbitraryg, which vectors in the RBZ. The explicit forms for these structuie fa

implies that the gap parameter is purely real in the realespac tOrs arefé.,k) = 2cos g sin 7, f(fg,)k = —2sin & sin 75,
This constraint is necessary to ensure that no gapless pha;oélz — 2gin k2 cos £« and f((;)l)k = —2cos £ cos \k/yi)_

mode is generated in the collective mode spectrum of theiqering these form factors in real space we note thaéthe
twofold cpmmensurate DQW state which breaks qnly dlscretql operators (with positive and negative signs) now corregpo
symmetrie§’. From Eq. 3 it follows that ag = Q, A rép- g the 8 current orderings of the eight-vertex model. As dis-
resents the conventional DDW gap parameter shown in Fig. &,ssed above, we will choose theassociated with the non-
in its vertex representation, while = 0 leads to a gap pa- ¢yrrent conserving vertices to vanish, thus leaving us with
rameterA, which represents uniform current flow along the six-vertex model. The phase transition of the six-vertexieio
+x and+y directions. Choosing = Q = @ + Q, where  does not have a singular specific heat at its transition, eeser
Q = (m, —), we find currents flowing along thez and—y  the eight vertex model does; this is in accord with experisien
directions. These, together with reversal of current® ¢ in high temperature superconductors.

remaining vertices in Fig. 1. Finally, gt= @, A, allows a

gap parameter that breaks local current conservation wéth s

having a current source at one vertex and a current sink in the C. Effective action for the six vertex fluctuations
neighboring vertex. However, in this paper we will choose

the fugacity of these current-conservation violating ices, For compactness of notation we will Writégag =
which are controlleql by the coupling constarin front of the AqubJraQi wherea = 0,1 andb = 0,Q. With this nota-
form factors, to vanisi. Thus the operatah, represents the he hermitici dit A | . h di
full set of current vertices of the six-vertex model. We find tion, the hermiticity condition om, transiates into the condi-

that only the DDW gap parametér,, develops a mean-field tion AZ,(Z) = Aé‘ﬁq. Furthermore it is convenient to write

expectation value in the saddle-point solution, though e w Al(fq) = >, qu+qp£“]2+q/2\11k, where pé"lzﬂﬂ are2 x 2
find fluctuations from all the other vertices as well. matrix-valued structure factors. The Hamiltonian in thimep

Anticipating a twofold commensurate DDW order with notation is
the order parameter given by Eq. (1), we first fold the full . )
2D Brillouin zone (BZ) to the reduced BZ (RBZ). The re- H = Z\I’L((—M-i-fik)ao-i-ews)‘lfk-#g*l > [Aé‘lq”Aé"q’],
duced zone is defined in terms of the rotated coordinates, k a,a.b
(ko + ky)/V2 = k., (ks — ky)/V2 = k|, so that in the @)

RBZ k!, k! € [-n/\/2,7/\/2]. Note that the Dirac points in where in the sums oves andb, a = 1 andb = @
Y are dropped because these vertices do not conserve currents

the spectrum occur &k, k) = (/v/2,0) and (k3. ky) = To compute the collective response of the ground state of
(0,7/+/2). The vectorQ is at(v/2x,0), while @ = (7,—7) [, we write the partition function forff as a path inte-
in the original basis is now &0, /27). gral over an imaginary time actiéh In this formalism, the

To facilitate our discussion, we introduce the spinor notafour-fermion termy”, AgaﬁAga) in Eq. 7 can be decou-
tion ¥} = (cf,c], ). Defining a BZ periodic functiom,  pled using Hubbard-Stratonovich-transformation by idtro-

which is 1 inside the RBZ and zero outsid?eq may be writ-  ing auxiliary real fieldﬂl()‘fq),w (i.e. satisfying the constraint
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Affl o AZV(;)W , corresponding to their operator counter- equatioA = —(§25/52A)~1¢. Thus the response kerriél
parts) as is given by the inverse af?S/§A2. Restoring all the indices,
the second derivative of the actighin Eq. 10 is obtained by
exp {9*1 3 AE“;TAIE‘I;} considering the second order termsp,,, in Eq. 10 as
q,w,a,b 1
ERESY
a — A (a)T a) *(a) a
= /DAlg,g,w exp |:g ! Z (2Al(7,q,wAl(7,q,w - Ab,(q,wAl(),q),w)} ' 2 k1,w1
@b (a) () -
(8) Tr [uk1 Uy +q{z pb7k1+q/2Ab,q,w1 —ws }Mo,lil +q,w1tw
a,b
This leads to the effective action, (a) (a) 1
{Z pb,k1+q/2Ab,q,w17w2}MO,kl,wl]
S= Z‘I’L,w((—iw—M+€k)00+6k03)‘11k,w a,b
o 97 Y0 ALA 14)
—2970 0 ALATL o D0 ATTLATL
aw,a.b aw,a.b Performing the Matsubara summations and analytically con-
(9) tinuing to real frequency leads to
Expressing the\ operators in Eq. (9) in terms of the fermion EREEY AIE‘IJZUISS,“ >(q,w)A§?737w, (15)

spinors¥’s and then performing the Grassmannian path inte- a,b,a’,b’
gral over the quadratic terms leads to the effective action,

WhereUlfg,’“/)(q,w) = 528/5A* 5AY) are given by
S=g! Z AZ,(G) A@

b,q,w” b q,w

q,w—b,q,w wa
q,w,a,b Ulfb/ )(Qaw) = Z Am,n(kl, k1 + q;w),
— Tr[In(Mo i, .y Oky ks Ows ws + 5M£i7’f}22)], (10) ki,m,n
(‘1) (a/) —1
where T (pb,k1+q/2Am,k1 pb/7k1+q/2An,k1+q) +y9 5a,a'5b,b/,
(16)
Mo g = (—iw — p+ €)oo + €03 — Zb pl()fllegflg, (11) and
kil (a) (a) Nopon(k1, k ; =
6M“’17“’2 = T Uk Uk Zpb7(k1+k2)/2Ab=k1*kz.,unfum' (12) ’ ( LR g w)
a,b np(mEg, + eg, — 1) — nr(nEyy+q + Ekitq — 1)

)

(17)

2 (w - mEkl + nEkH-q — Eky T Ekyi4q T 25)

D. Saddle point treatment of the six vertex fluctuations

with A, ;, = ﬁ(Ek +meros —mfrAgas). For the rest of

The mean-field equation for the DDW state is obtained bythe paper we will focus on the spectra at the speciabints
extremizing the actio by differentiating Eq. 10 with respect ¢ = Q andq = 0, where thel/ coefficients take the form

to Ay ., and setting the derivatives to zero. This leads to the

a)2
equation, U(a,a)(o w) = Z w? ff — 4A?Qf13 —de (fi — éi )
Q,Q \™ - 2 _ 2 ’
Ep(w? — 4E3)
1 f]? k:E>|p—ek|
== Elnp(er + Ex — p) — np(ex — B — p)). (13) (18)
9 Lk
and
for the order parametekq; Ey, = /¢ + ff A andnp(E) 242 L AAZ(f2 _ pl@)2
. . . . . ) (a,a) oW €k olfi 0,k )
is the Fermi-function. The chemical potentigis determined  Uy's™' (0,w) = Z fi T — 17 ,
from the hole-doping:.. There are no static saddle point so- k:Ep>|p—eg k(w? — AE})
lutions corresponding tdA,) and (A, o) for the range of (19)

parameters considered. However, interestingly, the ciblie ) L ,
mode spectrum for the DDW state will contain a componen{eSpeCt'Velx af’ = O; In this limit, we find that all terms,
also neay ~ 0, which can be interpreted as orbital ferromag- WNereb 7 b’ or a # a’, vanish because of the different sym-
netic fluctuations of the bond currents. metries of the form factors undég — —k, andk, — —k,.

To compute the response to a perturbatiotthat cou- The measyrerrlent of dA|SS|pa.t|0n from any prqbe that cou-
ples linearly toA through a term in the actioS.,; = ples to the fieldsA, and.AquQ is related to the imaginary
[ dgdw(, A, ., (Where we have suppressed the indicegPart of the response, which would be of the form
a, b) one needs to extremize the action in the presence of such a o a.a’
a p)erturbation SO thal(.S + Seqt)/0A = 0. Thig leads to an %[@z(;,q),wﬁz(;glq,w)] = 3[‘/};(,5’ (g w)), (20)



with 2 ‘ 2 | |
1.5
Vigw) = (szfi;/“ )(q7w)) , 21
S 0.5
where(a, b) and(a’, b’) are treated as matrix indices. Thus the
peaks in the imaginary part of the spectrum ngar 0 and@ 0

are given by the zeroes of the functions in Eq. 18 and Eq. 1¢
Thea = 0 (corresponding to the conventional DDW order
parameter) propagator ne@r given by Eq. 18, can be easily 23
seen to vanish when ~ 2A because of the numerator. On 2t
the other hand, low zeroes in the other propagators only ;s
emerge whe is such that the denominat@e? — 4E7) can
vanish while satisfying the conditioR;, > |u — ex|. This
occurs in the presence of a non-zero next nearest neighb®®
couplingt’, which breaks particle-hole symmetry in the band 9
structure.

1+

2 T 2 T

(e) -a=00 (f) - q=000)
1.5- - q=(n,n)7 150 - q=(1t,1t)

IV. RESULTS

0.5+
There is no mean field OF order coexisting with the twofold
commensurate DDW order in the regime of doping studiec
here. In contrast, from Fig. 3 it is clear that in the under-
doped regime there is a noticeable finite-frequency peak au

4= .O coexisting Wlthda f|n|te_ E’Qquency pe%k @th The Inl'_ FIG. 3. (Color online) Collective mode response of the comme
tensity atg = 0 goes down with increasing, but the ampli- ;316 DDW state as a function of/t for ¢ = Q (solid curve) and

tudes strongly depend on the microscopic parameters, Which_  (dashed curve) for the band parameters given in the texteln t
implies that the amplitude fluctuation spectra can havesfinit panels (a)-(c)Ao = 0.3¢, andz = 0.06 (a),z = 0.1 (b), z = 0.14

frequency peaks at both wave vectgrs= 0 andg = Q, or  (c), z = 0.18 (d). The emergence of an inelastic= 0 fluctua-
only a single peak. Such non-universality, commonly unrection peak with underdoping is a signature of hidden undegydF
ognized, indicates that different families of cupratesewen fluctuations co-existing with the commensurate DDW fludtret
samples at different hole doping within the same family ofcentered ay = Q. The vertical axes correspond to arbitrary units,
cuprates, may have different fluctuation spectra. The nonbtut are the same for all panels.The panels (e) and (f) caonesto
universality of the collective modes and the coexistende of * = 0-06 andAq = 0.4t andAq = 0.5¢ respectively and demon-
nite frequency peaks at multiple wave vectors are the dentratrates further the non-universal aspects as a functioaraipeters.
aspects of our work. These results are direct consequefices o

the vertex model framework of the fluctuations for the DDW

state and may have important consequences for the inelastic V. CONCLUSIONS

neutron scattering experiments. We also note previouscoll

tive mode calculations in the framework ©f J-model, but In summary, we calculate the spectrum of the amplitude

with important differences with our present resits. mode, the analog of th& (1) Higgs mode, for the com-

In principle, one can also expect fluctuations associateghensurate DDW state proposed earlier to explain the anoma-
with the ¢ = 0 nematic state, which, as shown in Ref. [22], lous phenomenology of the pseudogap phase of the High-
is comparable in energy to the DDW state. This nematic orcuprates. To properly take account of the fluctuations of the
der parametepem = >, kaLCk is a close cousin of the DDW state we map the DDW fluctuation problem on to the
order parameter discussed here. Finally, because thalorbifluctuations of a vertex model, which is the most natural de-
magnetic moment contribution to inelastic neutron scimger ~ Scription of the DDW current fluctuations. Our central résul
is expected to be enhanced at long wavelengths, the rdyativelS that the amplitude or Higgs mode spectrum of the DDW
small peak ay = 0 can produce scattering peaks compara-=state can be peaked at both wave vectprs- (0,0) and
ble to that at). However, the detailed kinematics addressingg = @ = (m, ), even though the ordered state condenses
quantitatively the neutron scattering signatures of thelam only at the wave vecta®.
tude modes will be meaningful once the experiments provide The emergence of @ = 0 peak, even with a mean field
a more detailed picture. state that breaks the lattice translation symmetry (suthes




twofold commensurate DDW) indicates = 0 fluctuations
are hidden within the DDW state. We find that these fluctu-
ations reflect armrbital ferromagnetic (OF) phase in the six-
vertex generalization of the model, as mentioned abovésIn i
phase diagram one finds OF as well as orbital antiferromag-
netic (DDW) phases; see Fig. 2. The existence of such strik-
ing ¢ = 0 fluctuations, even in the absence of an OF order
parameter, can be important in interpreting inelastic rogut
scattering experimenfsHowever, because the response is at
higher frequencies, they are subject to considerable dexjre
non-universality and serves as a warning that if our thesry i
correct, experimental signatures should not be uniquesacro
materials, as well as within a given material, as a functibn o
doping, frequency, etc.

We provide predictions as well as shed important light on
the recent neutron scattering experimé&tts which evince
multiple magnetic excitations at different wave vectorghe
pseudogap phase, the origin of which has remained mysteri-
ous within the existing theoretical framework of the theipse
dogap regime of the cuprates.
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