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We investigate the Landau-Zener transition in two- and three- level systems subject to a classical
Gaussian noise. Two complementary limits of the noise being fast and slow compared to character-
istic Landau-Zener tunnel times are discussed. The analytical solution of a density matrix (Bloch)
equation is given for a long time asymptotic of transition probability. It is demonstrated that the
transition probability induced/assisted by the fast noise can be obtained through a procedure of
Bloch’s equation averaging with further reducing it to a master equation. In contrast to the case of
fast noise, the transition probability for LZ transition induced/assisted by the slow classical noise
can be obtained by averaging the solution of Bloch’s equation over the noise realization. As a result,
the transition probability is described by the activation Arrhenius law. The approximate solution
of the Bloch’s equation at finite times is written in terms of Fresnel’s integrals and interpreted in
terms of interference pattern. We discuss consequences of a local isomorphism between SU(2) and
SO(3) groups and connections between Schrödinger and Bloch descriptions of spin dynamics. Based
on this isomorphism we establish the relations between S = 1/2 and S = 1 transition probabilities
influenced by the noise. A possibility to use the slow noise as a probe for tunnel time is discussed.

PACS numbers: 73.40.Gk, 05.40.Ca, 03.65.-w, 02.50.Ey

I. INTRODUCTION

The interest to Landau-Zener (LZ) model1–4 is con-
stantly increasing over last decades as it establishes
one of the most important fundamental notions in non-
stationary quantum mechanics. Original LZ model de-
scribes the probability of transition between two quan-
tum isolated states coupled by a linearly sweeping exter-
nal transverse field of a constant amplitude and a time-
dependent longitudinal field which passes through reso-
nance with the transition frequency. Even though the re-
sulting LZ formula seems to be quite simple, it has proved
to be applicable in analysing the experimental data on
charge transfer particle collisions5. The model has been
employed in various studies related to charge transport in
nanostructures6–9, Bose-Einstein condensates10–12, spin
tunnelling of nanomagnets13,14, quantum quenches15–17.
Especially, LZ becomes a corner stone of theories dis-
cussing adiabatic quantum computing18–20 due to a pos-
sibility to enhance a read out of qubits via the Zener
flip tunneling21. Such a mechanism has previously been
implemented for flux qubits22 and may serve also for in-
verting spin population by sweeping the system through
the resonance (rapid passage) in ultracold molecules23.

In realistic systems however, spins states remain con-
stantly coupled to their environment. Among various
mechanisms of dephasing and decoherence of LZ tran-
sitions between Zeeman-split spin states, the coupling
of two-level system both with phonon bath and nuclear
subsystem should be mentioned. If the spin-nuclear cou-
pling strength is weak enough and the relaxation of the

nuclear bath is fast, then the nuclear dynamics effects
can be reduced to a fast random field24–28. In the op-
posite situation, if the nuclear subsystem is slow enough
compared to the characteristic tunnel time, its influence
on LZ transition can be accounted by an effective model
of a slow classical noise29,30. For the simplest LZ sce-
nario, the nuclear dynamics can be considered in the
Born-Oppenheimer approximation, thus that the spins
are presumed isolated and transitions activated by an ex-
ternal magnetic field. Besides, the noise associated with
both a hyperfine and dipole fields plays an important role
in description of dynamical response of nanomagnets30.

Experiments with molecular magnets31 revealed the
presence of hysteresis phenomena in nanoscale molecu-
lar magnets among which are Mn12 and Fe8. LZ tran-
sitions at the avoided crossing between the Zeeman-
split spin levels produced by hyperfine interactions have
been pointed out as responsible of plateaus on hystere-
sis loops31,32. Hence, a number of proposals have been
suggested, clarifying the effects of nuclear bath, noises
and decoherence effects on the transition probability in
linearly driven systems including two and multi-states
systems33–39. Several compact analytic results have been
derived to describe these effects, namely; the Kayanuma’s
formula24–26 for a strong diagonal noise and Pokrovsky-
Sinitsyn formula27,28 for the coupling to a fast colored
noise with off-diagonal components.

Spin transport processes in magnetic semiconduc-
tors designs unavoidably suffer from hyperfine interac-
tions treated as noise source frustrating spins during
transmissions40–42. The common way to protect infor-
mation during the propagation consists on adiabatically
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applying an external controlling magnetic field. Bet-
thausen et al42 have recently presented an alternative
experimental method to protect spin propagation in spin-
transistors including diabatic LZ tunable transitions. In-
deed, in these experiments a controlling magnetic field is
a combination of a spatially rotating magnetic field Bs
and a homogeneous field B. Thus, the spin states are
subjected to both a constant magnetic field (B) and a
fluctuating (Overhauser’s) field. A theoretical attempt
to attack such problem has been introduced in Refs.[27],
[28] for two-level spin systems by means of fast noise asso-
ciated with random hyperfine interactions. In contrast to
it, recent experiments on spin polarization of nuclear sub-
system via time-dependent gate voltage in double quan-
tum dots43–46 have shown that the fluctuations of Over-
hauser’s field are rather slow changing dramatically the
properties of LZ transition. The ”minimal theoretical
model” should however take into account all low energy
two-electron states in a dot consisting of three singlet and
one triplet (S = 1) state.

In this paper, we consider the influence of both fast
and slow classical noise on two- and three- level sys-
tems. We calculate transition probabilities for the noise-
induced and noise-assisted processes by using density ma-
trix (Bloch) equation. The analytical expression for finite
time probabilities for two- and three- level systems are in-
terpreted in terms of Fresnel’s interference. In addition
to two standard definitions of a tunnel time for LZ tran-
sition by means of internal or external clock, we discuss
a possibility to use a noise as yet another probe for the
LZ time.

The paper is organized as follows; The Section II is
devoted to discussion of basic equations for LZ transi-
tion S = 1/2 derived through Schrödinger and Bloch
approaches. In Section III, we discuss the noise-induced
and noise-assistant LZ transitions in two-level system.
The classical noise associated with fluctuations of Over-
hauser’s field is considered as a colored noise with Gaus-
sian realization. Both the cases of one and two- com-
ponent transverse noise are discussed. Sections IV and
V contain the key equations for three-level S = 1 system
subjected to both fast and slow classical noise. In Section
VI, we discuss the LZ transition times defined through
internal and external clock in the presence of noise. The
details of derivation are sketched in Appendices.

II. BASIC RELATIONS FOR TWO-LEVEL
SYSTEMS

A. Schrödinger spin-1/2 picture

The time evolution of N states of a quantum mechan-
ical system with a coherently driven total spin S can
be described by a system of N coupled differential equa-

tions for the amplitudes C
(S)
1 (t), C

(S)
2 (t), ..., C

(S)
N (t) of the

states ψ
(S)
1 (t), ψ

(S)
2 (t), ..., ψ

(S)
N (t) (~ = 1):

i
d

dt
C(t) = Ĥ(t)C(t). (2.1)

Here, C(t) = [C
(S)
1 , C

(S)
2 , ..., C

(S)
N ]T is a column vector

for amplitude probabilities and

Ĥ(t) = ~Θ(t) · ~S (2.2)

is the total Hamiltonian of the system, ~S the total spin
vector involving all the three generators of the group
SU(2).

The relevant aspect of Eq.(2.2) with our aim lies in its
description of Zeeman splitting of spin states in a linearly
sweeping external magnetic field. This aspect intimately
refers to the traditional LZ problem and the functions in
Eq.(2.2) are explicited as follows:

Θx(t) = 2∆, Θy(t) = 0 and Θz(t) = 2αt. (2.3)

Here, α > 0 is the constant sweep velocity, ∆ the tun-
neling coupling matrix element between states that we
assume here as real and lasts from t = −∞ to t =∞.

For the special case of two levels, the problem Eq.(2.1)
leads to a system of two independent equations

d2

dz2
C

(1/2)
1 (z) +

[
iλ− 1/2− z2/4

]
C

(1/2)
1 (z) = 0, (2.4)

d2

dz2
C

(1/2)
2 (z) +

[
iλ+ 1/2− z2/4

]
C

(1/2)
2 (z) = 0. (2.5)

known as Weber’s equations47, where z =
√

2αte−iπ/4

and λ = ∆2/2α. Solutions of these equations are com-
puted with respect to the initial conditions. For the

choice C
(1/2)
1 (−∞) = 1 and C

(1/2)
2 (−∞) = 0 i.e. the

particle was initially prepared in the state ψ
(1/2)
1 (t), one

has1,2:

C
(1/2)
1 (t) = −A+√

λ
e−iπ/4eiϕD−iλ(−iµt), (2.6)

and

C
(1/2)
2 (t) = A−e

iϕD−iλ−1(−iµt). (2.7)

Here, Dn(z) is the parabolic cylinder (Weber’s47) func-

tion, ϕ a phase factor and µ =
√

2αe−iπ/4. The pa-
rameter λ is introduced hereafter to distinguish between
the sudden (λ � 1) and the adiabatic (λ � 1) limits
of transitions. The normalization factors A+ and A−
in Eqs.(2.6) and (2.7) are respectively defined by their

modulus, |A+| = |A−| =
√
λe−πλ/4.

The probability |C(1/2)
2 (t)|2 that the system will be

found in the state ψ
(1/2)
2 (t) at any given time t is therefore

given by

PLZ(t) = λe−πλ/2|D−iλ−1(−iµt)|2. (2.8)
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Symmetries of levels allow for directly finding the proba-
bility to remain in the same state. Some asymptotic and
exact values of Eq.(2.8) are performed with the aid of
asymptotic series expansion of Weber’s functions47. By
putting for instance t→∞ we recover

PLZ(∞) = 1− e−2πλ, (2.9)

known as the celebrated LZ formula1,2.

B. Bloch spin-1/2 picture

The general solution for time-dependent LZ probabil-
ity (2.8) is written in terms of products of Weber’s func-
tions. The asymptotic form of this equation casts nev-
ertheless a very simple exponential form (2.9). In this
section, we present an approximate solution for LZ finite
time probability (not necessarily in a long time limit) as
an exponential of single-parametric real function and dis-
cuss accuracy of this solution for sudden and adiabatic
limits.

The time evolution of the quantum dynamical system
described by the model (2.2) and coherently driven is
here governed by the von-Neumann equation for the total
density matrix ˆ̃ρ(t),

i
d ˆ̃ρ(t)

dt
=
[
Ĥ(t), ˆ̃ρ(t)

]
. (2.10)

With the help of Eq.(2.10), we find the population dif-
ference ρ̂(t) = ρ̂11(t) − ρ̂22(t) as being solution of the
differential equation:

dρ̂(t)

dt
= −iΘ−(t)ρ̂21(t) + iΘ+(t)ρ̂12(t), (2.11)

where ρ̂21(t) = ρ̂∗12(t) involving ρ̂∗(t) = ρ̂(t) with,

ρ̂12(t) =
i
∫ t
−∞ exp

(
i
∫ t1
−∞Θz(τ ′)dτ ′

)
Θ−(t1)ρ̂(t1)dt1

2 exp
(
i
∫ t
−∞Θz(τ ′)dτ ′

) ,

(2.12)

and Θ±(t) = Θx(t) ± iΘy(t). The indices 1 and 2 de-
note the two- level crossing. Inserting Eq.(2.12) into
Eq.(2.11), with reference to the context of LZ theory i.e.
Θz(t) = 2αt, without loss of generality, we find an equa-
tion

dρ̂(t)

dt
= −

∫ t

−∞
dt1 cos

[
α(t2 − t21)

]
Θ+(t)Θ−(t1)ρ̂(t1),

(2.13)

which can be included in the family of Volterra’s
integral-differential equations48,49. Eq.(2.10)-(2.13) cor-
respond to Bloch’s transformations related to the op-

tical Bloch’s50 equation ~̇b = −~Θ × ~b. Where ~b is the
Bloch’s vector set on unit sphere by the condition Trˆ̃ρ =

Trˆ̃ρ2 = 1. The z-component of it being expressed as a
linear combination of diagonal matrix elements of ˆ̃ρ(t) as
bz(t) = ρ̂(t) ≡ ρ̂11(t)− ρ̂22(t) satisfies Eq.(2.13)

d

dt
ρ̂(0)(t) = −4∆2

∫ t

−∞
cos
[
α(t2 − t21)

]
ρ̂(0)(t1)dt1, (2.14)

for the conventional LZ problem. The superscript (0)
refers to LZ problem in the absence of noise.

The integral-differential Eq.(2.14) can be solved iter-
atively with the condition ρ̂(0)(−∞) = 1 that preserves
the total population at any arbitrary time t. A pertur-
bation series expansion investigation with respect to the
parameter λ� 1 (see Appendix.A) is achieved as,

ρ̂(0)(t) = 1 + 2
[
− 2πλF (t) +

1

2!

(
− 2πλF (t)

)2
+ ...

−G(t, λ)
]

= −1 + 2
[

exp
(
− 2πλF (t)

)
−G(t, λ)

]
.

(2.15)

The function F (t) is defined as

F (t) =
1

2

[[
c
(√2α

π
t
)

+
1

2

]2
+
[
s
(√2α

π
t
)

+
1

2

]2]
.

(2.16)

c(
√

2α/πt) and s(
√

2α/πt) are respectively the cosine
and sine Fresnel’s integrals51. The function F (t) is more
often encountered in the theory of light diffraction, where
it relates to the intensity of light passed through a semi-
infinite plane bounded by a sharp straight edge with t
assuming the lateral distance of the edge from the point
of observation52.

The function G(t, λ) includes all corrections to the ex-
ponential solution and is determined so that as t → ∞
asymptotically one comes back to the conventional LZ
formula Eq.(2.9). Then, for convenience, we write our
finite time transition probability as follows53:

PLZ(t) = 1− exp
{
− 2πλ[F (t) + lnW (t)]

}
, (2.17)

with

lnW (t) = − 1

2πλ
ln
[
1−G(t, λ) exp

{
2πλF (t)

}]
, (2.18)

in which

G(t, λ) = λe−πλ/2|D−iλ−1(−iz)|2 −
(

1− e−2πλF (t)
)
.

(2.19)

One can see that in the limit λ � 1 the correction
function lnW (t) < F (t) for all times. The two forms
Eq.(2.17) and Eq.(2.8) are equivalent with the only dif-
ference being that Eq.(2.17) is the exponential form of
Eq.(2.8). The form (2.17) we obtained will be used for
analytic derivations of finite times transition probabili-
ties in the limit of slow noise driven LZ transitions.
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FIG. 1. Time evolution of the LZ transition probability in the
diabatic basis of a two-level system. The small values of the
Landau-Zener parameter λ = ∆2/2α correspond to sudden
limit (rapid drive), panel (a). The large values of λ describe
adiabatic limit (slow drive), panel (d). The intermediate LZ
regimes are presented on panels (b) and (c). The time is in
units of 1/

√
α.

The Fresnel’s integrals give rise to Fresnel’s oscilla-
tions (see Fig.1 below) and suggest interferences between
states around the anticrossing region. The Fresnel-type

oscillatory factors e±iαt
2

involved in Fresnel’s integrals
originate from the phase∫ t

0

Θz(t′)dt′ = αt2, (2.20)

accumulated by the two components of the wave function
during a linear sweep.

The function PLZ(t) could have also been found by nu-
merically solving the time-dependent Schrödinger’s equa-
tion (2.1). A typical result is depicted by Fig.1 above,
where the time evolution of the transition probability
PLZ(t) discriminates two regions. In the domain t ≤ 0,
all probabilities are smooth monotonic functions of time.
First, around the crossing time t = 0, one sees a sharp
transition of PLZ(t) which rises from zero to its maximum
value and later behaves asymptotically with decaying os-
cillations around the saturation value PLZ(∞). This last
performance characterizes the system for small values of
λ (sudden limit), while for largest λ (adiabatic limit),
oscillations are strongly mitigated. The first region iden-
tified characterizes the jump time τjump while the second
determines the relaxation time τrelax

54. The jump time
τjump called hereafter LZ transition time is denoted as
τLZ. In adiabatic limit (slow passage), this time should

be a function of the velocity α and the splitting energy
∆ (see discussion in Section VI):

τLZ = L(α,∆). (2.21)

The rapid drive of a two-level system produces re-
peated LZ transitions after passing the resonance, drives
the system into a coherent superposition of states
where they may interfere and generates Stückelberg’s
fringes55–60. As a consequence, appearing fringes en-
code information about the system’s evolution and en-
ergy spectrum3,55–60. The system will not then feel the
gap and τLZ should be independent on the energy split-
ting ∆:

τLZ = L(α). (2.22)

The slow drive in the opposite extreme limit produces os-
cillations of very weak amplitudes so that one can assume
a single transition; Stückelberg’s fringes of the former
sort could be absent on the interferometer. The advan-
tage being the possibility to probe spectroscopic infor-
mation about the coherent evolution of the system60. As
the system feels the gap,

τLZ = L(α,∆). (2.23)

Semiclassically, τLZ is a time necessary to reach a turning
point on imaginary time axis of integration contour61.

This mechanism of slowing down the sweep rate in or-
der to collect spectroscopic information about a quantum
system was recently employed by Berns and co-workers
in their experiment of spectroscopy analysis of solid-state
artificial atom60. In that experiment, they pointed out
that for Stückelberg’s interference to occur, the time in-
terval between two consecutive LZ transitions should be
much more smaller than the relevant decoherence times.

An alternative way to tackle the traditional LZ prob-
lem consists on transforming the equation (2.14) to a
differential equation. It can be achieved by applying a
second order time derivative to both sides of equation
(2.14) and excluding integral term with sin

[
α(t2 − t21

]
.

Hence, we show that ρ̂(0)(t) satisfies the third order dif-
ferential equation,

d3

dτ3
ρ̂(0)(τ)− 1

τ

d2

dτ2
ρ̂(0)(τ)− 4

[2λ

τ
ρ̂(0)(τ)

−(τ2 + 2λ)
d

dτ
ρ̂(0)(τ)

]
= 0, (2.24)

which can be interpreted as a differential equation for
the probability. Here, we performed the time scaled
transformation τ = t

√
α. While amplitudes found from

the linear Schrödinger’s equation satisfy a second order
linear differential equation, probabilities from the von-
Neumann equation rather satisfy a third order linear
differential equation. Similar equation was written in
Refs.[54, 62–64] in the same context of LZ theory and
numerically solved in Ref.[54] with the aid of a Runge-
Kutta algorithm. Here, using a correspondence between
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Schrödinger and Bloch approaches we propose an ana-
lytic and exact solution to this kind of equations.

The natural initial condition ρ̂(0)(−∞) = 1 was grad-
ually translated at each step of derivations and we solve
Eq.(2.24) with the conditions:

d2

dτ2
ρ̂(0)(τ) |τ=−∞= −8λ,

d

dτ
ρ̂(0)(τ) |τ=−∞= 0.

(2.25)

As Ĥ(t) in the Schrödinger’s equation (2.1) realizes

SU(2) symmetry operations, the amplitudes C
(1/2)
1 (τ)

and C
(1/2)
2 (τ) also realize the same set of operations.

This is due to the temporal linearity of the Schrödinger’s
equation which preserves symmetry properties. While a
Schrödinger’s equation describes dynamics of wave func-
tions (SU(2) spinors), the Bloch’s equation deals with
evolution of probability densities combined into a vector

on unit sphere (Bloch’s vector on 2-sphere). However, a
local isomorphism between SU(2) and SO(3) establishes
relations between these two objects.

In the population difference, the occupation probabil-
ities are expressed in terms of transition amplitudes for

half-spin in Eqs.(2.6) and (2.7) i.e.: ρ̂
(0)
11 (τ) = |C(1/2)

1 (τ)|2

and ρ̂
(0)
22 (τ) = |C(1/2)

2 (τ)|2 and this realizes the isomor-
phism we talked about. Thus, the solution of Eq.(2.24)
reads,

ρ̂(0)(τ) = −λe−πλ/2
[
|D−iλ−1(−iµ0τ)|2

− 1

λ
|D−iλ(−iµ0τ)|2

]
. (2.26)

Here, µ0 = µ/
√
α. We may deduce, from the same

technique, an integral relation between Weber’s func-

tions. From Eq.(2.12) one may notice that ρ̂
(0)
12 (t) =

C
(1/2)
1 (t)C

(1/2)∗
2 (t) and finds

D−iλ(−iµt)D∗−iλ−1(−iµt) = −λµ
∫ t

−∞
exp

(µ2

2
[t2 − t21]

)(
|D−iλ−1(−iµt1)|2 − 1

λ
|D−iλ(−iµt1)|2

)
dt1. (2.27)

Similar relation for D∗−iλ(−iµt)D−iλ−1(−iµt) can be

derived from ρ̂
(0)
21 (t) = C

(1/2)∗
1 (t)C

(1/2)
2 (t). Similar

matching procedure was recently employed in Ref.[43]
to establish an integral relation between Weber’s func-

tions not from ρ̂
(0)
12 (t) as we did here but from ρ̂(0)(t) in

Eq.(2.11).

One can easily check that the limit τ →∞ applied to
(2.26) brings us back automatically to Eq.(2.9). Thus,
the former represents the population difference at any
given time τ . The solution of Eq.(2.24) gives an infor-
mation about a time dependence of population difference
directly measurable in the flux qubits experiments in a
micromaser65–67. It might serve for transfer of popu-
lation between two states at any time τ . For instance
by measuring the LZ transition probability between two
states, it provides information about the strength ∆ of
the coupling between states. It could also offer great ad-
vantages in experiments with atoms transfer, having only
one parameter for control.

In the domain τ ≤ 0, the projection of Bloch’s vector
on z-axis is positive. The system remains in the state
where it has been set initially. Passing now through the
resonance, ρ̂(0)(τ) abruptly changes its concavity becom-
ing either greater or less than zero. Just around the
anticrossing region, the sharp drop of ρ̂(0)(τ) shows that
|1〉 has started to feed |2〉 via the LZ mechanism.

In the domain τ > 0, one has ρ(0)(τ) < 0, the two-level
system experiences decaying oscillations while the popu-
lation difference saturates to finite value. The oscillations
correspond to an interference between states |1〉 and |2〉.

This last remark tells us that population difference tends
to maintain the majority of the system into the excited
state rather than the ground state.

III. TRANSVERSE NOISE IN THE SPIN-1/2
LANDAU-ZENER THEORY

We now turn into a situation where LZ transitions are
noise induced. Basically, the coupling between level po-
sitions fluctuates due to a transverse noise with Gaussian
realizations.

LZ effects in presence of transverse classical noise in-
cluding inter-level transitions are specified by the proto-
type Hamiltonian (2.2) considering

Θx(t) = 2fx(t), Θy(t) = 2fy(t) and Θz(t) = 2αt.
(3.1)

These definitions are also valid for the case S = 1
we study below. The mean-zero stochastic functions
fi(t)(i = x, y) in Eq.(3.1) are characterized by their first
and second order moments,

〈fi(t)〉 = 0, 〈fi(t)fj(t′)〉 = η2δij exp(−γ|t− t′|). (3.2)

Here, η stands for the noise intensity that might be re-
lated to the absolute temperature via the universal fluc-
tuation dissipation theorem68 (see detailed discussion be-
low). The parameter γ = 1/tnoise defines a time scale as-
sociated with the noise. Comparison of tnoise with char-
acteristic time scales of LZ problem gives us a definition
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of fast and slow noise limits. The dynamics of the system
is governed by Eq.(2.13) for the occupation difference:

dρ̂(t)

dt
= −4

∫ t

−∞
cos
[
α(t2 − t21)

]
f+(t)f−(t1)ρ̂(t1)dt1,

(3.3)

where f±(t) = fx(t) ± ify(t). The solution of this equa-
tion is to be averaged over all possible realizations of the
two-level system (ensemble average). The result of this
averaging is different for the two limits of fast and slow
noise.

A. Fast noise, spin-1/2

If noise is fast, the characteristic noise time
tnoise � τLZ, one can average equation Eq.(3.3) di-
rectly and decouple the product 〈f+(t)f−(t1)ρ̂(t1)〉 as
〈f+(t)f−(t1)〉〈ρ̂(t1)〉. The resulting master equation for
the average 〈ρ(t)〉 gives the conventional equation for the
transition probability as the average 〈ρ̂(t1)〉 doesn’t really
change in the exceedingly short time interval ξ = t1 − t:

d

dt
〈ρ̂(t)〉 = −Ω̂(t)〈ρ̂(t)〉. (3.4)

Here, the functional Ω̂(t) ≡ Ω̂[ω̃(t)] of the frequency
ω̃(t) = 2αt is defined through the two-time correla-

tion function R̂(|t − t1|) = 〈f+(t)f−(t1)〉 as Ω̂(t) =

Ω̂(+)(t) + Ω̂(−)(t), where

Ω̂(±)(t) =

∫ ∞
−∞

exp
[
± iω̃(t)ξ

]
R̂(|ξ|)dξ, (3.5)

are the power spectral densities of noise capturing in-
formation about environmental effects. For the Gaus-
sian model we considered, Eq.(3.5) result in a Lorentzian.
The frequency ω̃(t) is antisymmetric ω̃(−t) = −ω̃(t), the
Lorentzian spectral density is symmetric in the Fourier
space leading thus to Ω̂(+)(t) = Ω̂(−)(t). Eq.(3.4) is thus
readily solved to give:

〈ρ̂(t)〉 = 〈ρ̂(−∞)〉 exp
[
−
∫ t

−∞
Ω̂(t′)dt′

]
, (3.6)

and Ω̂(t) is readily integrated accounting for the spectral
density. As a result, we obtained the phase ϑ(t) accumu-
lated during an interval of time (−∞, t]:

ϑ(t) =

∫ t

−∞
Ω̂(t′)dt′ =

πR̂(0)

α

[
1 +

2

π
arctan(

2α

γ
t)
]
.

(3.7)

and θ(t) = 2ϑ(t). By putting as usual t =∞ one gets

θ(∞) = 2

∫ ∞
−∞

Ω̂(t′)dt′ =
4π

α
R̂(0). (3.8)

So, the transition probability results from Eqs.(3.6) and
(3.7) or (3.8) as a combination of the initial condition

ρ̂(−∞) = 1 and the conservation law Trˆ̃ρ(t) = 1:

Pfn =
1

2

[
1− e−θ/2

]
. (3.9)

Here, θ = θ(∞). Eq.(3.9) is generalized by
Pokrovsky27,28 to arbitrary correlation function. It
demonstrates an equal distribution of the system between
the ground and excited states after passing the crossing
time for large noise η →∞. By taking the limits η →∞
and γ → ∞ while keeping η2/γ = const, white noise
limit can be obtained from (3.2). Note, that θ ∼ η2 does
not depend on γ in that limit.
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FIG. 2. Time evolution of the LZ transition probability in
the diabatic basis of a two-level system in presence of a fast
transverse noise for the rapid (a) and slow (b) passages. The
amplitude of the fast noise is fixed. The noise is characterized
by a dimensionless parameter ν = πη2/α and dimensionless
frequency γ0 = γ/

√
α. For all calculations γ0 = 100.

Here, we defined the dimensionless frequency γ0 =
γ/
√
α and dimensionless parameter ν = πη2/α. If

noise is directed on either the transverse direction (X-
noise) or the two-components transverse noise (XY -
noise), Eq.(3.9) reduces respectively to

P xfn =
1

2

[
1− exp

(
− 2π

α
〈fx(t)fx(t)〉

)]
(3.10)

and

P xyfn =
1

2

[
1− exp

(
− 2π

α

[
〈fx(t)fx(t)〉+ 〈fy(t)fy(t)〉

])]
.

(3.11)

Hence, in order to sum up noises in X and Y -directions
it just suffices to do that in the argument of the expo-
nential in Eq.(3.9). What happens if noise is colored in
one direction and white in another? The answer to this
question is provided by the argument of the exponential
in Eq.(3.11). Obviously, white noise will dominate the
colored one and there will not be a complete transfer of
population: both states remaining constantly coupled.

The solution (3.7) generalizing (3.8) to finite times
coincides at very large times with the results obtained
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in Refs.[27 and 28]. Similar results were discussed in
Ref.[29] for nonlinear drive with telegraph noise. A rele-
vant note similar to the fast telegraph noise in a two-level
system for this Gaussian model is that, noise fluctuations
are averaged out as there are no fluctuations (see Fig.2).

We specify for further purposes that η2/α � 1 and
η2/α� 1 correspond respectively hereafter to the sudden
and adiabatic limits of transitions. In the adiabatic limit
then, the transition probability depends non-analytically
on the sweep velocity. Thus far, for tnoise � τLZ, there
is no complete transfer of population; the two states are
constantly occupied.

Spin-1/2, in a constant off-diagonal field and a fast
transverse random field

Let us consider a spin coupled to a constant off-
diagonal and sweeping magnetic field and a transverse
noise source. Such pattern corresponds for instance to
spin frustrated by hyperfine field or Overhauser’s field
and protected by a constant magnetic field. With ref-
erence to the recent experimental work in Ref.[42], we
present an alternative way to protect spin propagation
in spin-transistor (see Introduction). In this frame, LZ
transitions are noise assisted and noise fields are no longer
centered at the origin in the X-direction:

fx(t) = ∆ + f̃x(t), fy(t) = f̃y(t). (3.12)

Noise correlation functions for f̃i(t) are given by Eq.(3.2).
The model (3.1) with Eq.(3.12) can also assume a spin
weakly interacting with an environment, for example a
nuclear spin bath. Assuming the spin-bath interaction
as weak enough as bath relaxation is much faster than
the inverse interaction energy, we may treat the bath as
a fast noisy magnetic field28.

As far as noise is no longer centered at the origin,
we call ρ̂(SF)(t) the average of the total density ma-
trix for the non-zero mean problem labeled by Eq.(3.12).
Straightforward calculations for spin-1/2 suggest a gov-
erning equation of the form:

d

dt
ρ̂(SF)(t) = −4∆2

∫ t

−∞
dt1 cos[α(t2 − t21)]ρ̂(SF)(t1)

−4

∫ t

−∞
dt1 cos[α(t2 − t21)]f̃+(t)f̃−(t1)ρ̂(SF)(t1).

(3.13)

Linear terms of noise have been dropped since after av-
eraging and use of fast noise requirements they vanish.
Hereafter, we adopt the label P to denote transition prob-
abilities related to the non-centered noise.

As noise is fast, we can readily average Eq.(3.13) as we
did before and apply the decoupling procedure associated
with the other arguments of fast noise. As a result, the

differential equation casts a form:

d

dt
〈ρ̂(SF)(t)〉 = −4∆2

∫ t

−∞
dt1 cos[α(t2 − t21)] 〈ρ̂(SF)(t1)〉

−Ω̂(t)〈ρ̂(SF)(t)〉. (3.14)

We obtained the conventional master equation for the
transition probability in which noise appears as a per-
turbing source. Noise essentially modifies the standard
occupation difference ρ̂(0)(t) by a decaying random phase
factor. Mainly, noise produces dephasing during the
transfer of population. The phase accumulated during
the short time interval t1 − t ∼ 1/γ is small enough such
that: ∫ t1

−∞
Ω(t′)dt′ ≈

∫ t

−∞
Ω(t′)dt′. (3.15)

Indeed, as the characteristic frequency γ → ∞ it ap-
pears that t1 ≈ t, justifying the approximation Eq.(3.15).
Thus, the solution of Eq.(3.14) can be formally expressed
as follows:

〈ρ̂(SF)(t)〉 = exp
[
−
∫ t

−∞
Ω̂(t′)dt′

]
ρ̂(0)(t). (3.16)

For the solution at t = ∞, we derive ρ̂(0)(∞) =
2e−2πλ−1 from Eq.(2.26) and the finding transition prob-
ability is obtained as follows:

P(SF)
fn =

1

2

[
1− e−θ/2(2e−2πλ − 1)

]
. (3.17)

Eq.(3.17) describing the probability to remain in the
same adiabatic state is fully consistent with the one ob-
tained in Refs. 28. Namely, equation (42) in Ref. 28
describes a system initially set in the diabatic state |1〉
and conserves the same state while Eq.(3.17), describes
a spin-flip between two different diabatic states.

As it is discussed in Ref. 27, the fast noise can lead
to full equilibration depending on the time-scales in-
volved (see Section VI of Ref. 27 for detailed analysis).
In Eq.(3.17), assuming an adiabatic addition of noise
θ → ∞ (α → 0), the probability achieves the value 1/2.
Such a system loses its memory. It becomes obvious that
by setting θ = 0 we recover the LZ formula Eq.(2.9).
Likewise, the requirement λ = 0 leads to the solution
for fast noise centered at origin. Spin state evolution in
spin-transistors might be protected during the transport
by adiabatically applying a homogeneous magnetic field
(λ� 1). This technique was employed in Ref.[42].

On Fig.3 the abrupt decay of the population difference
〈ρ̂(SF)(t)〉 around the anti-crossing region characterizes a
rapid transfer of population. However, as the condition
〈ρ̂(SF)(t)〉 > 0 is always fulfilled, there is no way to expect
a complete transfer from one of the diabatic states to an-
other with the fast noise. Fast noise being characterized
by short time memory, essentially creates a dephasing
between the states of a two-level system.
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FIG. 3. Dynamical evolution of the population difference
〈ρ̂(SF)(t)〉 Eq.(3.14) in the presence of a fast transverse noise
with characteristic decay rate γ0 = γ/

√
α and amplitude

ν = πη2/α for a rapid LZ drive λ = ∆2/2α� 1. The numer-
ical calculations are performed with the parameters γ0 = 100,
ν = 0.5 and λ = 0.05.

B. Slow noise, spin-1/2

If now noise is slow (tnoise � τLZ), the decoupling pro-
cedure is not applicable, thus the density matrix equation
of motion (3.3) cannot be reduced to a master equation.
Instead one has to solve Eq.(3.3) and perform ensemble
average over the distribution Q of noise:

〈...〉 =
1√
2πη

∫ ∞
−∞

dQ... exp
(
− Q2

2η2

)
. (3.18)

The brackets 〈...〉 indicate as usual the ensemble aver-
age. In a given realization of classical field Q, the LZ
probability is given by standard equation

PLZ(Q) = 1− exp
(
− πQ2

α

)
. (3.19)

If the noise in transverse direction is single-component,
we can always rotate our coordinate frame such a way
that the fluctuations occur along X-direction. The noise
- averaged LZ probability is defined as

P xsn =
1√
2πη

∫ ∞
−∞

dxPLZ(x) exp
(
− x2

2η2

)
, (3.20)

and after straightforward calculation is given by

P xsn = 1− 1√
1 +

2πη2

α

. (3.21)

If the transverse noise is described by two orthogonal
non-correlated components, the transition probability is
averaged with a two-dimensional Gaussian distribution:

P xysn =
1

2πη2

∫ ∞
−∞

dx

∫ ∞
−∞

dyPLZ(x, y) exp
(
− x2 + y2

2η2

)
,

(3.22)

which after calculations acquires the form

P xysn = 1− 1

1 +
2πη2

α

. (3.23)

The difference between Eqs.(3.21) and Eq.(3.23) is a
consequence of the effective two-dimensional character of
noise fluctuation spectrum in the latter case and its one-
dimensionality in the former case (see also Ref.53).

As expected, renormalization of the inter-level distance
by a stochastic function considerably affects the generic
picture of LZ transitions with off-diagonal coupling. Fast
noise pours a large energy into the system during the
crossing, destroys the memory of the system in the do-
main of strong couplings identically distributing the sys-
tem between the ground and excited states. We note,
that in contrast to effects of the fast noise which does
not change analytical properties of the LZ probability at
extreme adiabatic limit α → 0, the two-component slow
noise transfers the property of the LZ probability from
Gaussian to Lorentzian, thus making it analytic function
of α in this limit.

The expansion method we exposed may allow one to
formulate transition probabilities for finite times. For
the case of X-noise, for example, the solution Eq.(2.17)
yields:

P xsn(t) = 1− 1√
1 +

2πη2

α

[
F (t) + lnW (t)

] . (3.24)

In the limit t→∞, where F (∞) = 1 and lnW (∞)→ 0,
we return to Eq.(3.21). One can do the same with the
two-components transverse noise (XY -noise model) and
get

P xysn (t) = 1− 1

1 +
2πη2

α

[
F (t) + lnW (t)

] . (3.25)

Similarly, the limit t → ∞ brings us back to Eq.(3.23).
These solutions may now be interpreted in an interference
pattern as they involve Fresnel-like integrals via F (t).
P xsn and P xysn have the same shape but P xysn is greater

than P xsn.

Spin-1/2, in a constant off-diagonal field and a slow
transverse random field

We dealt up to this point with LZ transitions induced
by the slow noise. This approach can be generalized
straightforwardly to the case where LZ transitions are
induced by an external magnetic field (in the case of spin
systems) or by an effective ”field” associated with the
finite transparency of the inter-well barrier in a double-
well potential in cold gases. To describe this effect, one
should take into account the value of the stochastic field
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FIG. 4. Time evolution of the LZ transition probability in the
diabatic basis of the two-level system in the presence of slow
one- (panels (a) and (b)) and two- (panels (c) and (d)) com-
ponent transverse noises (see discussion in the text). Panels
(a) and (c) represent the results of numerical calculations for
the small- amplitude noise. The data for the large-amplitude
noise are shown on the panels (b) and (d).

fi(t) as defined in Eq.(3.12). Then, averaging over slow
one-component noise fluctuation, results in

Pxsn(t) = 1− exp(−2πλΦ1(t))√
1 +

2πη2

α

[
F (t) + lnW (t)

] , (3.26)

where the phase Φυ(t) with υ = 1, 2, expressed as

Φυ(t) =

[
F (t) + lnW (t)

]
1 +

2πυη2

α

[
F (t) + lnW (t)

] . (3.27)

is due the local deviation of noise created in the X-
direction. If noise was also shifted along the Y -direction,
we would have an additional phase such that the argu-
ment of the exponential in Eq.(3.26) would be Φυ(t) =
Φxυ(t) + Φyυ(t). This would offer an access to sum noises.
Nonetheless, the choice we adopted has a great advantage
in controlling noise fluctuations in a two-level system.
For the meantime, the infinite time limit of Eq.(3.26)
suggests that:

Pxsn(∞) = 1− 1√
1 +

2πη2

α

exp
{
− 2πλ

1 + 2πη2/α

}
.

(3.28)

In the sudden limit,

Pxsn(∞) ≈ PLZ(∞). (3.29)

In the adiabatic limit,

Pxsn(∞) = 1−
√

α

2πη2
exp

{
− ∆2

2η2

}
. (3.30)

Thus, the argument of the exponent does not depend on
the velocity. Similarly, slow XY -noise in the presence of
a constant magnetic field results in

Pxysn (t) = 1− exp(−2πλΦ1(t))

1 +
2πη2

α

[
F (t) + lnW (t)

] . (3.31)

Therefore,

Pxysn (∞) = 1− 1

1 + 2πη2/α
exp

{
− 2πλ

1 + 2πη2/α

}
,

(3.32)

and in the sudden limit,

Pxysn (∞) ≈ PLZ(∞), (3.33)

while the adiabatic limit reads:

Pxysn (∞) = 1− α

2πη2
exp

{
− ∆2

2η2

}
. (3.34)

A two-level system subjected to a small-amplitude
(η2/α� 1) slow noise in the presence of a magnetic field
is insensitive to noise structure for long time asymptotic
of transition probability. For such a setup, the magnetic
field effects prevail on the noise and a pre-exponential
factor is close to one. These effects are supported by
Fig.5 where we plotted Eq.(3.28) for t = ∞. We es-
sentially show on Fig.5 that adiabatic addition of noise,
considerably suppressed the previous tendency.

Besides, by putting η → 0 in Eq.(3.28) one imme-
diately comes back to (2.17), the LZ formula for finite
times.

The averaging procedure described in details allows to
calculate the LZ probability if, for example, the noise is
fast in one of transverse directions and slow in another
orthogonal direction. In that case, one should first aver-
age the Bloch’s equation over fast realization and after
solve the “effective” Bloch’s equation in given realization
of slow fields. As a result, the fast noise contributes only
to the argument of LZ exponent, while the slow noise
appears both in exponential and pre-exponential factors.
Therefore, numerical fit of experimental data44–46 could
provide an information for both kind of noises without
requiring additional measurements.

By applying the fluctuation dissipation theorem one
can associate some effective temperature with equal time
two-point correlation function as follows

〈fi(t)2〉 = A · T, (3.35)
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where A and T are respectively the coupling constant
with the environment (model dependent) and the abso-
lute temperature in the units kB = 1. In this frame, the
solution (3.34) acquires the Arrhenius70 form

P xysn (∞) = 1− α

2πA · T
exp

{
− E

T

}
, (3.36)

where E = ∆2/2A is the activation energy24. The pre-
exponential factor provides proper normalization of the
distribution.

The theory of noise induced LZ effect may be extended
to the multilevel LZ problems, where more complicated
patterns of transient oscillations in the tunneling proba-
bility of transition from initial to final state of a nanosys-
tem with nontrivial dynamical symmetry is expected.

IV. BASIC RELATIONS FOR THREE-LEVEL
SYSTEMS

A. Schrödinger spin-1 picture

Consider the LZ transition in a three-level spin-1 sys-
tem with the upper and lower levels described respec-

tively by C
(1)
1 (t) and C

(1)
2 (t) that characterize respec-

tively the eigenenergy states E±(t) = ±2(α2t2 + ∆2)1/2.

The wave function C
(1)
0 (t) characterizing the middle level

corresponds to the eigenenergy state E(t) = 0. This
eigenenergy state does not evolve in time and the transi-
tions between neighboring energy levels are allowed.

The operator Sz is diagonal in its eigen representation
and has the eigen values −1, 0 and +1 as diagonal ele-
ments that match respectively the states |1〉, |0〉 and |2〉
that form avoided-level crossing points. From Eqs.(2.1)
and (2.3), we arrive at a system of three decoupled dif-

ferentials equations for the states C
(1)
1 (t), C

(1)
0 (t) and

C
(1)
2 (t). The first pair of equations for the states with

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

ΠD
2�Α

P
L

Z

Ν=2

Ν=0.6

Ν=0.3

Ν=0.01

Ν=0

FIG. 5. (Color online) Landau-Zener transitions probabili-
ties for the two-level system at infinite time as a function
of dimensionless parameter π∆2/α in the presence of a one-
component slow transverse noise. The parameter ν = πη2/α
characterizes the noise amplitude.

minimal/maximal projection to z-axis is:

d3

dz3
C

(1)
1 (z) + (4iλ− 2− z2)

d

dz
C

(1)
1 (z)− zC(1)

1 (z) = 0,

(4.1)

d3

dz3
C

(1)
2 (z) + (4iλ+ 2− z2)

d

dz
C

(1)
2 (z)− zC(1)

2 (z) = 0.

(4.2)

The dynamics of the middle level is independently de-
rived and is governed by a third order linear differential
equation of the form (2.24). For sake of consistency it is
presented here as follows:

d3

dz3
C

(1)
0 (z)− 1

z

d2

dz2
C

(1)
0 (z)− 4

[ iλ
z
C

(1)
0 (z)

+(
z2

4
− iλ)

d

dz
C

(1)
0 (z)

]
= 0.

(4.3)

Obtaining these equations, no assumptions on the initial
preparation of the system have been adopted. One may
arbitrary select a particular ground state and ask ques-
tions about the probability to find the system on the
excited states.

Considering equations (2.14) and (2.24) then equation
(4.3) may take the form:

d

dz
C

(1)
0 (z) = −4iλ

∫ z

−∞
dz1 cosh

[1

2
(z2 − z21)

]
C

(1)
0 (z1).

(4.4)

To find the solutions of Eqs.(4.1)-(4.2), it would be in-
structive to know that the square of the Weber’s func-
tions in Eqs.(2.6) and (2.7) satisfies the third order dif-
ferential equation69:

d3

dz3

[
C

(1/2)
1 (z)

]2
+ (4iλ− 2− z2)

d

dz

[
C

(1/2)
1 (z)

]2
−z
[
C

(1/2)
1 (z)

]2
= 0, (4.5)

d3

dz3

[
C

(1/2)
2 (z)

]2
+ (4iλ+ 2− z2)

d

dz

[
C

(1/2)
2 (z)

]2
−z
[
C

(1/2)
2 (z)

]2
= 0. (4.6)

For consistency, we will expressed all our solutions
through the Weber’s function. The solutions to these
equations are, D2

iλ(z), D2
−iλ−1(iz), D2

−iλ−1(−iz) or any
product of any of the functions Diλ(z), D−iλ−1(iz), and
D−iλ−1(−iz)69. With given initial conditions, these give
the basis to the solutions of Eqs.(4.1) and (4.2).

Consider the case when the initial conditions are:

C
(1)
1 (−∞) = 1, C

(1)
0 (−∞) = 0 and C

(1)
2 (−∞) = 0,

(4.7)
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then C
(1)
1 (t) = B−D

2
−iλ(−iz) and C

(1)
2 (t) =

B+D
2
−iλ−1(−iz). Here, B± are normalization factors.

We establish relations between the wave functions of the
triplet C

(1)
1 (t), C

(1)
0 (t) , C

(1)
2 (t) and the doublet C

(1/2)
1 (t),

C
(1/2)
2 (t) states considering in addition the normalization

condition
∑S
m=−S |C

(S)
m (t)|2 = 1:

C
(1)
1 (t) =

[
C

(1/2)
1 (t)

]2
, (4.8)

C
(1)
0 (t) =

√
2C

(1/2)
1 (t)C

(1/2)
2 (t), (4.9)

C
(1)
2 (t) =

[
C

(1/2)
2 (t)

]2
. (4.10)

Considering conditions

C
(1)
1 (−∞) = 0, C

(1)
0 (−∞) = 1 and C

(1)
2 (−∞) = 0,

(4.11)

then, Eq.(4.3) or its integral-differential form (4.4) is iso-
morphic to (2.24):

C
(1)
0 (t) = −λe−πλ/2

[
|D−iλ−1(−iµt)|2

− 1

λ
|D−iλ(−iµt)|2

]
. (4.12)

From conditions C
(1)
1 (−∞) = C

(1)
2 (−∞) = 0, the solu-

tions of Eqs.(4.1) and (4.2) satisfy the following equa-
tions:

C
(1)
1 (t) =

√
2λe−iπ/4

∫ z

−∞
exp

(1

2
[z2 − z21 ]

)
C

(1)
0 (z1)dz1,

(4.13)

C
(1)
2 (t) =

√
2λe−iπ/4

∫ z

−∞
exp

(
− 1

2
[z2 − z21 ]

)
C

(1)
0 (z1)dz1,

(4.14)

and

d

dz
C

(1)
0 (z) =

√
2λ
(
C

(1)
1 (z) + C

(1)
2 (z)

)
e−iπ/4. (4.15)

Substituting Eq.(4.12) into Eqs.(4.13) and (4.14) consid-
ering (2.27) then this yields

C
(1)
1 (t) =

√
2λ exp

(
iϕ′ − iπ

4
− πλ

2

)
D−iλ(−iµt)[D−iλ−1(−iµt)]∗, (4.16)

C
(1)
2 (t) = −

√
2λ exp

(
iϕ′ +

iπ

4
− πλ

2

)
[D−iλ(−iµt)]∗D−iλ−1(−iµt). (4.17)

Here, ϕ′ is an arbitrary phase factor. The above per-
mits to achieve the LZ transition probabilities expressed
through the following :

C
(1)
1 (t) = −

√
2C

(1/2)
1 (t)C

(1/2)∗
2 (t), (4.18)

C
(1)
0 (t) = |C(1/2)

1 (t)|2 − |C(1/2)
2 (t)|2, (4.19)

C
(1)
2 (t) =

√
2C

(1/2)∗
1 (t)C

(1/2)
2 (t). (4.20)

For completeness, the solution of (4.1)-(4.3) with initial
conditions

C
(1)
1 (−∞) = 0, C

(1)
0 (−∞) = 0 and C

(1)
2 (−∞) = 1

(4.21)

can be found with the help of Eqs.(4.18)-(4.20). It is
instructive to know that the three-level system for S =
1 possesses an additional symmetry level that imitates
a particle-hole SU(2) symmetry group53. A transition
matrix for S = 1 is then constructed as follows:

ÛLZ(t) =



[
C

(1/2)
1 (t)

]2 √
2C

(1/2)
1 (t)C

(1/2)
2 (t)

[
C

(1/2)
2 (t)

]2
−
√

2C
(1/2)
1 (t)C

(1/2)∗
2 (t) |C(1/2)

1 (t)|2 − |C(1/2)
2 (t)|2

√
2C

(1/2)∗
1 (t)C

(1/2)
2 (t)[

C
(1/2)∗
2 (t)

]2
−
√

2C
(1/2)∗
1 (t)C

(1/2)∗
2 (t)

[
C

(1/2)∗
1 (t)

]2

 (4.22)

The transition matrix in (4.22) is thus a generalization of the result in Ref. 28. Here, the matrix element ULZ
nm(t)
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FIG. 6. Time evolution of the LZ transition probability in
the diabatic basis of the three-level system. Panels (a) and
(d) show the numerical results for rapid and slow LZ drive
respectively. The results on intermediate regime are presented
on panels (b) and (c). The LZ parameter λ = ∆2/2α. The
time is in the units of 1/

√
α.

is the transition amplitude for the transition from the
diabatic state |n〉 to |m〉. Applying the condition t =∞
to our generalized results yields exactly those in Ref. 28
for all transition matrix elements (see TABLE.I).

Compute numerically the dynamical evolution of the
model (2.2) for S = 1 by solving the Schrödinger equation

for the amplitudes C
(1)
n (t), (n = 1, 0, 2) then we plot the

population |C(1)
n (t)|2 considering conditions (4.6). These

results are depicted on FIG.6. As foreseen, the popula-

tions |C(1)
1 (t)|2 and |C(1)

2 (t)|2 are identically distributed
on levels defined by the states |1〉 and |2〉 .

Figures 6(a)-6(d) show how population of each of the
levels changes with the LZ parameter. Taking limits in
Eq.(4.22) as t → ∞ achieves the results in Ref. 72 (see
TABLE.I).

B. Bloch spin-1 picture

Focus in this heading is exclusively on P01(t) =
|ULZ

01 (t)|2 and P00(t) = |ULZ
00 (t)|2. Here ULZ

01 (t) and ULZ
00 (t)

are matrix elements of the time evolution operator 3× 3
matrix defined in (4.22).

The dynamics of the system is governed by 9 equations
for the components of the 3 × 3 density matrix. This
is reduced to a set of 6 equations due to symmetry of
the levels. Knowledge of two of the matrix elements is
enough to compute the other matrix elements considering

Initial occupation for t = −∞ | Final occupation for t =∞

1 e−4πλ

0 2[e−2πλ − e−4πλ]

0 [1− e−2πλ]2

0 2[e−2πλ − e−4πλ]

1 [1− 2e−2πλ]2

0 2[e−2πλ − e−4πλ]

0 [1− e−2πλ]2

0 2[e−2πλ − e−4πλ]

1 e−4πλ

TABLE I. Landau-Zener transition probabilities in the three-
level system.

the condition for the probability conservation. In this
regard, we reduce the problem to a set of two equations
for ρ̂+(t) = ρ̂11(t) − ρ̂00(t) and ρ̂−(t) = ρ̂22(t) − ρ̂00(t).
Here, the indices 1, 0 and 2 denote the three crossing
levels. It would be convenient to express the probabilities
P01(t) and P00(t) in exponential form as we did in the
preceding section for LZ spin-1/2 probabilities. Eq.(4.12)
establishes a relation between the occupation probability
P00(t) and the LZ transition probability PLZ(t):

P00(t) = (2PLZ(t)− 1)2. (4.23)

The normalization of probabilities helps one to express
the finite tunneling time probabilities as:

P01(t) = 2
[

exp
{
− 2πλ[F (t) + lnW (t)]

}
−

exp
{
− 4πλ[F (t) + lnW (t)]

}]
, (4.24)

and

P00(t) =
[
1− 2 exp

{
− 2πλ[F (t) + lnW (t)]

}]2
. (4.25)

This will aid to derive the LZ transition probabilities in
the slow noise approximation. This paper considers the
transition probabilities in the fast and slow noise approx-
imations. Detailed calculations for relevant equations are
found in Appendix B.

We show the correspondence between the Schrödinger
and Bloch approaches. Schrödinger dynamics of N -level
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systems describing spin S = (N −1)/2 may be expressed
through a set of N coupled first order linear differential
equations (LDE). These equations represent N indepen-
dent N -th order LDE.

The time evolution operator expressed through Jacobi
N − 1 order polynomials61,71 may be constructed on
the basis of the SU(2) group with fundamental spinors.
Therefore, the solution of N -th order LDE is expressed
through the (N − 1)-fold product of Weber’s functions.
The Bloch dynamics of the spin S is based on one vector
and 2S − 1 tensor Bloch equations. This is due to the
fact that the density matrix has 2S conservable values28.

V. TRANSVERSE NOISE IN THE SPIN-1
LANDAU-ZENER THEORY

In this section we evaluate the tunneling probabilities
for the case when the inter-level distance between the

states of a three-level system is renormalized by a ran-
dom classical field. Similar studies were performed by
Pokrovsky27 with restriction to fast noise. To the best of
our knowledge the slow noise approximation has not yet
been investigated for three-level systems. So, we study
the LZ transition probabilities for the three-level system
in the slow noise approximation by applying an ensemble
averaging over all possible noise realizations. The proce-
dure to obtain the equation of motion for the density
matrix describing transitions in three-level systems imi-
tate that of S = 1/2 in section II of this paper (details
of the procedure can be found in Appendix B). From
equations (B1)-(B5) one gets:

dρ̂+(t)

dt
= −4

∫ t

−∞
Θ+(t)Θ−(t1) cos

[
α(t2 − t21)

]
ρ̂+(t1)dt1 − 2

∫ t

−∞
Θ+(t)Θ−(t1) cos

[
α(t2 − t21)

]
ρ̂−(t1)dt1 + Φ, (5.1)

dρ̂−(t)

dt
= −2

∫ t

−∞
Θ+(t)Θ−(t1) cos

[
α(t2 − t21)

]
ρ̂+(t1)dt1 − 4

∫ t

−∞
Θ+(t)Θ−(t1) cos

[
α(t2 − t21)

]
ρ̂−(t1)dt1 + Ψ. (5.2)

Here, Θ±(t) = (Θx(t) ± iΘy(t))/
√

2. Equations (5.1)
and (5.2) are obtained considering the functions Θ+(t)
and Θ−(t) to be noise fields. Φ and Ψ are functions
of Θ+(t)Θ+(t1) and Θ−(t)Θ−(t1). It is instructive to
note that the averages 〈Θ+(t)Θ+(t1)〉 and 〈Θ−(t)Θ−(t1)〉
vanish as Gaussian correlators and consequently Φ and
Ψ will not contribute to the transition probabilities. If

Θ+(t) and Θ−(t) are not noise correlated then this is
not applicable and the components ρ̂12(t) and ρ̂21(t) will
enter the expression of the density matrix.

We verify if the method employed in Section II for the
spin-1/2 LZ transition relates a third order differential

equation considering ρ̂
(0)
12 (t) and ρ̂

(0)
21 (t):

d

dt
ρ̂
(0)
+ (t) = −8∆2

∫ t

−∞
cos
[
α(t2 − t21)

]
ρ̂
(0)
+ (t1)dt1 − 4∆2

∫ t

−∞
cos
[
α(t2 − t21)

]
ρ̂
(0)
− (t1)dt1

−6∆2

∫ t

−∞
exp

[
iα(t2 − t21)

]
ρ̂
(0)
21 (t1)dt1 − 6∆2

∫ t

−∞
exp

[
− iα(t2 − t21)

]
ρ̂
(0)
12 (t1)dt1, (5.3)

d

dt
ρ̂
(0)
− (t) = −4∆2

∫ t

−∞
cos
[
α(t2 − t21)

]
ρ̂
(0)
+ (t1)dt1 − 8∆2

∫ t

−∞
cos
[
α(t2 − t21)

]
ρ̂
(0)
− (t1)dt1

−6∆2

∫ t

−∞
exp

[
iα(t2 − t21)

]
ρ̂
(0)
21 (t1)dt1 − 6∆2

∫ t

−∞
exp

[
− iα(t2 − t21)

]
ρ̂
(0)
12 (t1)dt1. (5.4)

It is less obvious to derive a third order differential equa-
tion for the matrices:

ρ̂(0)(t) =

[
ρ̂
(0)
+ (t)

ρ̂
(0)
− (t)

]
and Q̂(0)(t) =

[
ρ̂
(0)
21 (t)

ρ̂
(0)
12 (t)

]
, (5.5)

as we did for the spin S = 1/2. The matrix elements
in the second matrix of equation (5.5) generated by the



14

last two terms in Eqs.(5.3) and (5.4) might be viewed as
external sources for a homogeneous matrix element equa-
tion of the form (2.14). However, an appropriate choice
of variables leads to the non homogeneous equation:

d

dt
ρ̂(0)(t) = −4∆2

M

∫ t

−∞
cos
[
α(t2 − t21)

]
ρ̂(0)(t1)dt1

−6∆2Ĵ (t)Q̂(0)(t). (5.6)

Obtaining this, we define corresponding functions in the
absence of noise as follows as in Eq.(5.5). In equation
(5.6), the square of the inter-level distance is given by
the following matrix

∆2
M = 2∆2

(
1 1/2

1/2 1

)
. (5.7)

The operator Ĵ (t) acts onto the subspace Sb of the vector

Q̂(0)(t) and generates the last two terms in Eqs.(5.3) and
(5.4). The Lie algebra associated with the time derivative

properties of Ĵ (t) can be defined from the relation,

Ĵ (t)ρ̂
(0)
12 (t) =

∫ t

−∞
cos
[
α(t2 − t21)

]
Re[ρ̂

(0)
12 (t1)]dt1

−i
∫ t

−∞
sin
[
α(t2 − t21)

]
Im[ρ̂

(0)
12 (t1)]dt1. (5.8)

Eq.(5.8) shows Ĵ (t) in action into Sb. The action of

Ĵ (t) is symmetric so that Ĵ (t)ρ̂
(0)
21 (t) = Ĵ (t)ρ̂

(0)
12 (t). Ob-

viously, the operators d/dt and its higher orders dq/dtq

(q > 1) have non-zero actions in Sb . The simultaneous

actions d
dt ◦ Ĵ (t) and d2

dt2 ◦ Ĵ (t) including dq

dtq ◦ Ĵ (t) are
then also defined in Sb.

By evaluating d
dt Ĵ (t)ρ̂

(0)
12 (t) and d2

dt2 Ĵ (t)ρ̂
(0)
12 (t) and

considering the initial condition ρ̂
(0)
12 (−∞) = 0 we define

equivalent initial conditions helpful for further purposes.
It can be verified that,

d

dt
Ĵ (t)ρ̂

(0)
12 (t) |t=−∞= Ĵ (t)ρ̂

(0)
12 (t) |t=−∞= 0. (5.9)

These properties are directly applicable to ρ̂
(0)
21 (t) as

ρ̂
(0)
21 (−∞) = 0. We omitted the symbol ◦ keeping in

mind the ordering of actions in Sb, namely, Ĵ (t) first
passes and dq/dtq follows.

Eq.(5.6) imitates Eq.(2.14) for the column matrix
ρ̂(0)(t) of one variable and may be transformed to a non
homogeneous linear third order differential equation:

d3

dτ3
ρ̂(0)(τ)− 1

τ

d2

dτ2
ρ̂(0)(τ)− 4

[2λM
τ

ρ̂(0)(τ)

−(τ2 + 2λM )
d

dτ
ρ̂(0)(τ)

]
= −6∆2X̂ (τ),

(5.10)

where

X̂ (τ) =
1√
α

d2

dτ2
Ĵ (τ)Q̂(0)(τ)− 1√

α

d

dτ
Ĵ (τ)Q̂(0)(τ)

+
4τ2√
α
Ĵ (τ)Q̂(0)(τ),(5.11)

with λM = ∆2
M/2α being the LZ parameter in ma-

trix form. The physical sense of X̂ (τ) may be achieved

by expressing ρ̂
(0)
12 (τ) = C

(1)
1 (τ)C

(1)∗
2 (τ) and ρ̂

(0)
21 (τ) =

C
(1)∗
1 (τ)C

(1)
2 (τ) through Weber’s functions.

Considering Eq.(5.9), the solution of Eq.(5.10) may be
obtained with the aid of ρ̂(0)(−∞) = −[1 1]T and the
following conditions

d2

dτ2
ρ̂(0)(τ) |τ=−∞= −8λM ,

d

dτ
ρ̂(0)(τ) |τ=−∞= 0.

(5.12)

Then the solution of (5.10) is given by

ρ̂
(0)
+ (τ) = λe−πλ

(
2|D−iλ(−iµ0τ)|2|D−iλ−1(−iµ0τ)|2

+λ
[
|D−iλ−1(−iµ0τ)|2 − 1

λ
|D−iλ(−iµ0τ)|2

]2)
.

(5.13)

The nontrivial dynamics of the population difference for
the three-level LZ transition at any given time τ is gov-
erned by Eq.(5.10). Considering the limit τ → ∞, we
have the population difference

ρ̂
(0)
+ (∞) = ρ̂

(0)
− (∞) = 12e−3πλ sinh(πλ)− 1. (5.14)

Using Eq.(5.14) and the conservation of probability

Trˆ̃ρ(τ) = 1, we arrive at the transition probabilities in
the second part of TABLE.I.

A. Fast noise, spin-1

For the proper apprehension of the reader we review
briefly the effects of fast noise on a three-level system. In
the spirit of previous derivations, we transform Eqs.(5.1)-
(5.2) to

d

dt
ρ̂(t) = −4

∫ t

−∞
cos
[
α(t2 − t21)

]
R̂M (|t− t1|)ρ̂(t1)dt1.

(5.15)

Here,

ρ̂(t) =

[
〈ρ̂+(t)〉
〈ρ̂−(t)〉

]
, (5.16)

and

R̂M (|t− t1|) = 2

[
1 1/2

1/2 1

]
R̂(|t− t1|) (5.17)
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the matrix correlator. Equation (3.3) is structurally iden-

tical to Eq.(3.3). Similarly we define Ω̂M (t) = Ω̂
(+)
M (t) +

Ω̂
(−)
M (t) as

Ω̂
(±)
M (t) =

∫ ∞
−∞

exp
[
± iω̃(t)ξ

]
R̂M (|ξ|)dξ. (5.18)

The solution of Eq.(5.15) can be found as

〈ρ̂11(∞)〉 =
1

3

(
1 + 〈ρ̂+(−∞)〉

[
sinh

θ

2
+ 2 cosh

θ

2

]
e−θ − 〈ρ̂−(−∞)〉

[
cosh

θ

2
+ 2 sinh

θ

2

]
e−θ
)
, (5.19)

〈ρ̂00(∞)〉 =
1

3

(
1− 〈ρ̂+(−∞)〉

[
cosh

θ

2
− sinh

θ

2

]
e−θ + 〈ρ̂−(−∞)〉

[
sinh

θ

2
− cosh

θ

2

]
e−θ
)
, (5.20)

〈ρ̂22(∞)〉 =
1

3

(
1− 〈ρ̂+(−∞)〉

[
cosh

θ

2
+ 2 sinh

θ

2

]
e−θ + 〈ρ̂−(−∞)〉

[
sinh

θ

2
+ 2 cosh

θ

2

]
e−θ
)
. (5.21)

We considered the matrix transformation

exp
[
−
∫ ∞
−∞

Ω̂M (t′)dt′
]

= e−θ

 cosh
θ

2
− sinh

θ

2

− sinh
θ

2
cosh

θ

2

 .

(5.22)

The results agree with those of Pokrovsky28. The general
form of these equations for arbitrary t can be obtained
by θ → θ(t) (see TABLE.II), where θ(t) is defined sim-
ilarly as in (3.7). On TABLE.II, we show infinite time
transition probabilities for all possible initial occupation
of the system. One can see that the transition probabili-
ties for S = 1 have the same form as for S = 1/2. In the
white noise approximation, we have the same probability
distribution for all the triplet states.

Spin-1 in a constant off-diagonal field and a fast transverse
random field

We investigate the LZ transition assisted by fast-noise.
The two-component noise is defined by Eq.(3.12). The
mean-value of the stochastic function describing noise in
X-direction is non-zero:

〈Θ±(t)Θ±(t1)〉 6= 0. (5.23)

The matrix density describing the noise assisted transi-
tion may now be represented as follows:

ρ̂(SF) =

[
〈ρ̂(SF)+ (t)〉
〈ρ̂(SF)− (t)〉

]
and Q(SF)(t) =

[
〈ρ̂(SF)21 (t)〉
〈ρ̂(SF)12 (t)〉

]
.

(5.24)

Initial occupation for t = −∞ | Final occupation for t =∞

1 1
3
(1 + 3

2
e−θ/2 + 1

2
e−3θ/2)

0 1
3
(1− e−3θ/2)

0 1
3
(1− 3

2
e−θ/2 + 1

2
e−3θ/2)

0 1
3
(1− e−3θ/2)

1 1
3
(1 + 2e−3θ/2)

0 1
3
(1− e−3θ/2)

0 1
3
(1− 3

2
e−θ/2 + 1

2
e−3θ/2)

0 1
3
(1− e−3θ/2)

1 1
3
(1 + 3

2
e−θ/2 + 1

2
e−3θ/2)

TABLE II. Fast noise transition probabilities in the three-
level system.
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Initial occupation for t = −∞ | Final occupation for t =∞

1 1
3
(1− [ 3

2
e−θ/2 − 1

2
e−3θ/2][1− 4e−2πλ + 3e−4πλ] + [ 3

2
e−θ/2 + 1

2
e−3θ/2][3e−4πλ − 2e−2πλ])

0 1
3
(1− e−3θ/2[1− 4e−2πλ + 3e−4πλ]− e−3θ/2[3e−4πλ − 2e−2πλ])

0 1
3
(1 + [ 3

2
e−θ/2 + 1

2
e−3θ/2][1− 4e−2πλ + 3e−4πλ]− [ 3

2
e−θ/2 − 1

2
e−3θ/2][3e−4πλ − 2e−2πλ])

0 1
3
(1 + e−3θ/2[6e−2πλ − 6e−4πλ − 1])

1 1
3
(1− 2e−3θ/2[6e−2πλ − 6e−4πλ − 1])

0 1
3
(1 + e−3θ/2[6e−2πλ − 6e−4πλ − 1])

0 1
3
(1 + [ 3

2
e−θ/2 + 1

2
e−3θ/2][1− 4e−2πλ + 3e−4πλ]− [ 3

2
e−θ/2 − 1

2
e−3θ/2][3e−4πλ − 2e−2πλ])

0 1
3
(1− e−3θ/2[1− 4e−2πλ + 3e−4πλ]− e−3θ/2[3e−4πλ − 2e−2πλ])

1 1
3
(1− [ 3

2
e−θ/2 − 1

2
e−3θ/2][1− 4e−2πλ + 3e−4πλ] + [ 3

2
e−θ/2 + 1

2
e−3θ/2][3e−4πλ − 2e−2πλ])

TABLE III. Transition probabilities for the three-level system in both a constant magnetic field and a classical transverse noise.

The dynamics of the system is described by the equation:

d

dt
ρ̂(SF)(t) = −4∆2

M

∫ t

−∞
cos
[
α(t2 − t21)

]
ρ̂(SF)(t1)dt1

−4

∫ t

−∞
cos
[
α(t2 − t21)

]
R̂M (|t− t1|)ρ̂(SF)(t1)

−6∆2Ĵ (t)Q̂(SF)(t)dt1.
(5.25)

Considering equations (3.14), (3.16) then this permits us
to write the solution of equation (5.25). We consider the
decaying factors inducing dephasing that enter the final

transition probabilities:

ρ̂(SF)(t) = exp
[
−
∫ t

−∞
Ω̂M (t′)dt′

]
ρ̂(0)(t), (5.26)

and

Q̂(SF)(t) = exp
[
−
∫ t

−∞
Ω̂M (t′)dt′

]
Q̂(0)(t), (5.27)

Equations (5.26) and (5.27) permit us to have the follow-
ing relations:

〈ρ̂(SF)11 (∞)〉 =
1

3

(
1 + ρ̂

(0)
+ (∞)

[
sinh

θ

2
+ 2 cosh

θ

2

]
e−θ − ρ̂(0)− (∞)

[
cosh

θ

2
+ 2 sinh

θ

2

]
e−θ
)
, (5.28)

〈ρ̂(SF)00 (∞)〉 =
1

3

(
1− ρ̂(0)+ (∞)

[
cosh

θ

2
− sinh

θ

2

]
e−θ + ρ̂

(0)
− (∞)

[
sinh

θ

2
− cosh

θ

2

]
e−θ
)
, (5.29)

〈ρ̂(SF)22 (∞)〉 =
1

3

(
1− ρ̂(0)+ (∞)

[
cosh

θ

2
+ 2 sinh

θ

2

]
e−θ + ρ̂

(0)
− (∞)

[
sinh

θ

2
+ 2 cosh

θ

2

]
e−θ
)
. (5.30)

From equations (5.28) and (5.30) considering the dy-
namics of the system from an initial occupation for

t = −∞ to a final occupation, for t = ∞ this permit
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to write TABLE.III of the transition probabilities.

The quantities ρ̂
(0)
+ (∞) and ρ̂

(0)
− (∞) can be obtained

from TABLE.I. The corresponding transition probabili-
ties are reported in TABLE.III.

B. Slow noise, spin-1

The transition probabilities for S = 1 subjected to slow
noise are obtained in the same spirit as was discussed
for S = 1/2. In a given realization Q of noise, the sys-
tem of equations for the population differences (Eq.(5.3)-
Eq.(5.4)) is reduced to Eq. (5.10). The solutions of this
problem for τ =∞ are derived via Eq.(5.14).

The LZ solutions for the case of one-component slow
transverse noise are given by

Pxsn[0→ 1](t) = 2
[ exp(−2πλΦ1(t))√

1 +
2πη2

α

[
F (t) + lnW (t)

]−
exp(−4πλΦ2(t))√

1 +
4πη2

α

[
F (t) + lnW (t)

]],
(5.31)

Pxsn[0→ 0](t) = 1− 4 exp(−2πλΦ1(t))√
1 +

2πη2

α

[
F (t) + lnW (t)

]+

4 exp(−4πλΦ2(t))√
1 +

4πη2

α

[
F (t) + lnW (t)

] .
(5.32)

For the two-component transverse noise, the transition
probabilities read:

Pxysn [0→ 1](t) = 2
[ exp(−2πλΦ1(t))

1 +
2πη2

α

[
F (t) + lnW (t)

]−
exp(−4πλΦ2(t))

1 +
4πη2

α

[
F (t) + lnW (t)

]],
(5.33)

and

Pxysn [0→ 0](t) = 1− 4 exp(−2πλΦ1(t))

1 +
2πη2

α

[
F (t) + lnW (t)

]+

4 exp(−4πλΦ2(t))

1 +
4πη2

α

[
F (t) + lnW (t)

] .
(5.34)

In equations (5.31)-(5.34) the notation a → b de-
notes, transition from the diabatic state |a〉 to state |b〉.
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FIG. 7. Time evolution of the LZ transition probability in the
diabatic basis of the three-level system in the presence of slow
one- (panels (a) and (b)) and two- (panels (c) and (d)) com-
ponent transverse noises (see discussion in the text). Panels
(a) and (c) represent the results of numerical calculations for
the small- amplitude noise. The data for the large-amplitude
noise are shown on the panels (b) and (d).

P`sn[0 → 1] = P`sn[0 → 2], with ` = x, xy. Solutions
(5.31)-(5.34) represent the general LZ transition proba-
bilities for a three-level system in the presence of the slow
one- and two- dimensional transverse noise. This is also
relevant for both noise-induced and noise-assisted tran-
sitions. Letting λ = 0, in (5.31)-(5.34) we achieve slow-
noise-induced LZ transition.

VI. DISCUSSION ON EFFECTS OF NOISE ON
LANDAU ZENER TIMES

It is well-known that if one deals with a system of con-
sequent Landau-Zener transitions, it is not sufficient to
characterize a behavior of such system by an asymptotic
values of probabilities. One also needs to define a tun-
nel time54,73–78 in order to put a borderline between two
cases when the consequent tunnel processes can or can
not be considered independently.

There exist several ways to define the tunnel Landau-
Zener time for two level system. Although we are not
going to dwell onto detailed discussion of tunnel times
in this paper, let us list a few physical definitions. One
possible approach is so-called ”internal clock” definition.
It is based on analysis of LZ probability behavior at finite
times. As it has been pointed out several times along
our discussion, the finite time probability dynamics is
characterized by monotonous function for slow adiabatic



18

passage, while for sudden (rapid) transition it oscillates
before saturation at constant value. These oscillations
correspond to interference processes and determine the
population of two states. Therefore, the ”internal clock”
approach defines the Landau-Zener time as the width of
transition to its asymptotic value (see Refs.[77 and 78]
for detailed discussion).

An alternative approach to a definition of LZ times is
based on ”external clock” probe. In that case, the LZ
Hamiltonian is perturbed by a periodic transverse field
δĤ(t) = ε sin(ωt + φ). Where, ω is the frequency of the
field and φ its initial phase. The LZ time is determined
through analysis of infinite time probability as a function
of external field frequency (see details in Ref.[78]).

Both definitions consistently lead to estimation of LZ
times as τLZ = ∆/α for slow adiabatic passage and
τLZ = 1/

√
α for rapid passage. Obviously, both defini-

tions can be straightforwardly generalized for multi-level
LZ transition.

Let us consider a slow noise as a special case of ”ex-
ternal clock”. We add a perturbation δĤ = 2fx(t)Sx

to the system such that the coupling ∆ is deviated as
∆̃(t) = ∆ + fx(t). This case has been discussed in
the Section III B and corresponds to a non-centered one-
component transverse noise. The role of noise is to frus-
trate the spins in the direction of the Zeeman field. Let
us consider a square fluctuation of the Bloch’s vector as
a probe for LZ time:

〈(δ~b)2〉 = 〈~b2〉 − 〈~b〉2. (6.1)

Since the classical noise only dephases the system and

does not create any dissipation in it, the condition ~b2 = 1

holds. In general, 〈(δ~b)2〉 mixes the diagonal and off-
diagonal components of the density matrix but for the
two- and three- level systems subject to classical trans-
verse noise we consider thus far, 〈bx〉 = 〈by〉 = 0 and
bz(t) = ρ̂11(t)− ρ̂22(t). Thus we write,

〈(δ~b)2〉 = 4Psn(t)(1− Psn(t)). (6.2)

The subscript sn refers as usual to slow noise. It should
however be noted that relation (6.2) works both for two-
and three- level systems under the assumption that the
system initially prepared in one of the (upper or lower)
diabatic states.

With these ideas in mind, we check the numerical be-

havior of 〈(δ~b)2〉 for these initial conditions of the spin.
Essential of results are depicted by Fig.8. Interestingly,

〈(δ~b)2〉 abruptly increases around the anticrossing region
and saturates to its top value, confirming a spin flip tran-
sition. After the transition, the variance slightly fluctu-

ates (slight decay of 〈(δ~b)2〉) in the direction of the Zee-
man field for adiabatic addition of noise (see Figs.8b):

〈(δ~b)2〉 ≤ 〈(δ~b)2〉max. (6.3)

The two- and three- level systems, seems no longer sen-
sitive to any addition of noise from certain value of ν:
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FIG. 8. Typical time evolution of the fluctuation of the square
of the Bloch vector given by equation (6.2). Panel (a) shows
the result for small and intermediate values of the noise am-
plitude. The large-amplitude noise results are presented on
panel (b).

states are in thermal equilibrium. Transition time may
then be defined as the particular moment where the
square fluctuation of the Bloch’s vector achieved its max-
imum value.

This qualitative definition can be experimentally
probed. For the physical realization of this condition,

we pose that 〈(δ~b)2〉 is a function of the variable Psn(t).
Then, the latter behaves as the quadratic function h(x) =
4x(1 − x) defined in the real space. The mathematical
requirement for a maximum of a function yields,

Psn(τLZ) =
1

2
. (6.4)

This definition actually coincides with the half-width
condition Psn(τLZ) = 1

2Pmax, where Pmax is the max-
imum value of probability. We emphasize in addition
that the definition (6.4) holds both for two- and three-
level systems.

VII. CONCLUSIONS

In this paper, we discuss the effects of a transverse
colored noise on both two and three-level systems sub-
ject to LZ transitions. The approximate solution for the
traditional LZ problem is written down in terms of Fres-
nel’s integrals and appears to be useful for exploring the
effects of slow noise at finite times. We demonstrated
in the framework of von-Neumann equation, that the ef-
fects of noise on a two-level system were regulated by an
integral-differential master equation of the form (2.13).
We showed that for a fast Gaussian noise it is sufficient
to average that equation while for the slow noise cor-
rect procedure is based on averaging the solutions over
the Gaussian realization of the noise. These arguments
have been found to be general for description of multi-
level systems were complicated interference patterns are
expected. The solution of Bloch’s equation is generalized
for the finite times LZ probabilities of two-and three-
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level system models in the presence of slow noise. We
have essentially shown that for any initial preparation
of noise along one of transverse directions (X-noise) or
two-component transverse noise (XY -noise) the proba-
bility is renormalized by new functions with shapes of
standard LZ curves. The famous frequent exponentials
appearing in LZ transition probabilities are considerably
discriminated by an inverse square-root function of η2/α.

In the absence of noise, we showed that population
difference for two- and three- level system can be found
as a solution of a third order linear differential equation.
The solution of this equation is given in terms of prod-
ucts of the parabolic cylinder Weber’s functions. We in-
vestigated solutions by evoking an isomorphism between
Schrödinger’s and Bloch’s pictures. In the presence of
noise in general, the equations for density matrix ele-
ments are integral-differential equations. Their solutions
can be found through the averaging procedure discussed
in the paper.

In conclusion, we would like to mention various real-
ization of two- and three- level Landau-Zener transitions
in recent quantum transport experiments44–46. The two-
electron spin quantum bits are manipulated by the gate
voltage applied to GaAs double quantum dot in the pres-
ence of external transverse magnetic field. The low en-
ergy two-electrons states in a double quantum well are
given by three singlet and one triplet states. While the
singlet states are not affected by the external magnetic
field, the degeneracy of the triplet state is lifted out by
the external Zeeman field. In addition, there is a fluc-
tuating Overhauser’s field appearing due to a hyperfine
interaction of electrons and nuclear magnetic field of Ga
and As sublattices of a host material. On one hand, the
slowly fluctuating Overhauser’s field is known to be re-
sponsible for both decoherence and dephasing81. On the
other hand, if the double dot is not symmetric, the hy-
perfine magnetic field can result in transitions between
singlet and triplet states. Therefore, in addition to three
singlet states which form a three-level system, one of
the triplet component should also be taken into account.
Moreover, the transition between the singlet and triplet
states provides a mechanism of nuclear spin polarization
and effective cooling down the nuclear subsystem. Thus,
the Overhauser’s field leads to two competing effects of
both nuclear polarization and depolarization due to re-
laxation and dephasing. The model we discuss in the
paper does not account for the effects of relaxation only
addressing the question of dephasing by classical fast-
and slow- Gaussian noise. Nevertheless, the competition
between the polarizing (due to two- and three- state tran-
sitions) and depolarizing (due to the dephasing) effects is
fully taken into account. The suppression of the LZ tran-
sition by the Overhauser’s field fluctuations characterizes
the effective temperature associated with noise and can
give a qualitative explanation for the nuclear spin depo-
larization mechanism.

Appendix A: Perturbative solution of the LZ
problem

The integral-differential equation for conventional LZ
problem (2.14) in the absence of noise can be solved it-
eratively by setting the perturbative series expansion of
ρ̂(0)(τ) via the parameter ∆2/α:

ρ̂(0)(τ) =

∞∑
k=0

(
− 4∆2

α

)k
ρ̂
(0)
k (τ). (A1)

Where ρ̂
(0)
0 (τ) = 1 and ,

ρ̂
(0)
k (τ) =

∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2 cos[τ21 − τ22 )]× ...

...×
∫ τ2k−2

−∞
dτ2k−1

∫ τ2k−1

−∞
dτ2k cos[τ22k−1 − τ22k]. (A2)

(See Ref. 79 for details of calculation of sophisti-
cated multiple integrals (A2) appearing in a classical-
mechanical problem of a ball rolling on a Cornu spiral.)

In the presence of noise, we do ∆→ η in Eq.(A1) and

the function ρ̂
(0)
k (τ) is modified ρ̂k(τ):

ρ̂k(τ) =

∫ τ

−∞
dτ1

∫ τ1

−∞
dτ2 cos[τ21 − τ22 ]× ...

...×
∫ τ2k−2

−∞
dτ2k−1

∫ τ2k−1

−∞
dτ2k cos[τ22k−1 − τ22k]×

×F (k)(τ1, τ2, ..., τ2k), (A3)

where

F (k)(τ1, τ2, ..., τ2k) =

η−2k〈f+(τ1)f−(τ2)...f−(τ2k−1)f+(τ2k)〉. (A4)

To calculate the higher order correlation function, the
Wick theorem is used. For the zero-mean random vari-
ables f+(τ) and f−(τ) this theorem suggests that:

F (k)(τ1, τ2, ..., τ2k) = η−2k{ ∑
pairs

∏k
n=1〈f+(τ2n−1)f−(τ2n)〉, for even k,

0, for odd k.
.

(A5)

The summation
∑
pairs runs over all possible combina-

tions of pairs out of the 2k variables (τ1, τ2, ..., τ2k). Cal-
culations for a one-component transverse noise lead to
the Kayanuma result26 (γ0 = γ/

√
α):

F (k)(τ1, τ2, ..., τ2k) =
∑
pairs

exp
(
− γ0

k∑
n=1

|τ2n−1 − τ2n|
)
,

(A6)
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while the two-component transverse noise (XY -noise),
using combinatorics , Keldysh model80:

F (k)(τ1, τ2, ..., τ2k) =
∑
pairs

2k exp
(
− γ0

k∑
n=1

|τ2n−1 − τ2n|
)
.

(A7)

For slow or fast noise, we do respectively γ → 0 and the
former time-dependent function (A4) turns out to be a
simple combinatorial factor. The long-time asymptotic

value of ρ̂
(0)
k (τ) becomes

ρ̂
(0)
k (∞) =

πk

22k−1k!
, k ≥ 1. (A8)

This helps to find (2.9) in a perturbative expansion:

PLZ(∞) = −
∞∑
k=1

ak

(π∆2

α

)k
. (A9)

Here, ak = (−1)k/k! and the radius of convergence for
Eq.(A9) equals infinity. Following considering the limit
of slow or fast noise, the probability (A9) is modified by
a coefficient in the perturbative expansion. We write the
solution of the integral equation (3.3) for the cases of slow
and fast noise driven LZ transition as

PLZ(∞) = −
∞∑
k=1

akbk

(πη2
α

)k
, (A10)

where bk are the combinatorial factors which appear after
averaging over noise realization and depend on either fast
or slow noise.

1. Slow noise

It has been shown in Ref. 80 that for slow noise, the
combinatorial factor bk is expressed as:

bk =
∑
pairs

1 = (2k − 1)!!, (A11)

for an X-noise model and

bk =
∑
pairs

2k = 2kk!, (A12)

for an XY -noise.

2. Fast noise

The case of fast noise is completely different. In con-
trast with the slow noise, as shown in Ref. 25 only a
single term out of the (2k− 1)!! pairings in Eq.(A4) con-
tributes to the summation for an X- noise:

bk = 2k−1. (A13)

For an XY - model, noise contributes as

bk = 22k−1. (A14)

Equation (A10) can be viewed as a result of averag-
ing the LZ probability over disorder noise realizations
(the exponential function in LZ probability containing
the fluctuating field is an ensemble average). This is in
contrast to the fast noise case for which the argument of
exponential function in the LZ probability is proportional
to ”two-point noise correlation function” (the argument
is disorder average). Moreover, the statement concerning
disorder averaging remains true for any finite time tran-
sition probability. Therefore, the same time dependent
function F (t) + lnW (t) will enter the equation for the fi-
nite time slow noise driven LZ transition. Since the coeffi-
cient bk strongly depends on k, the radius of convergence
of the perturbative expansion must also be found. After
summing up the perturbative series for the LZ probabil-
ity within the circle of convergence, the function has to
be analytically continued into the outer part of the circle.
We will identify analytical functions describing slow noise
driven LZ probability and consider finite time LZ tran-
sition. Proceeding, with bk in Eqs.(A11)-(A14) we will
recover exactly all the LZ probability found previously.

Appendix B: Spin-1 density matrix equations

The equation of motion for the density matrix describ-
ing transitions in three-level systems can be obtained
in the same way as we discussed in details earlier for
S = 1/2. In this Appendix we present the full set of
these equations for completeness of the discussion about
connections between Schrödinger and Bloch pictures:

dρ̂+(t)

dt
= iΘ+(t)(2ρ̂10(t)− ρ̂02(t))− iΘ−(t)(2ρ̂01(t)− ρ̂20(t)) (B1)



21

dρ̂−(t)

dt
= −iΘ+(t)(2ρ̂02(t)− ρ̂10(t)) + iΘ−(t)(2ρ̂20(t)− ρ̂01(t)). (B2)

Here,

ρ̂10(t) = i

∫ t
t0

exp
(
i
∫ t1
t0

Θz(τ ′)dτ ′
)

Θ−(t1)ρ̂+(t1)dt1

exp
(
i
∫ t
t0

Θz(τ ′)dτ ′
) + i

∫ t
t0

exp
(
i
∫ t1
t0

Θz(τ ′)dτ ′
)

Θ+(t1)ρ̂12(t1)dt1

exp
(
i
∫ t
t0

Θz(τ ′)dτ ′
) , (B3)

ρ̂12(t) = −i

∫ t
t0

exp
(

2i
∫ t1
t0

Θz(τ ′)dτ ′
)

Θ−(t1)(ρ̂02(t1)− ρ̂10(t1))dt1

exp
(

2i
∫ t
t0

Θz(τ ′)dτ ′
) , (B4)

ρ̂02(t) = −i

∫ t
t0

exp
(
i
∫ t1
t0

Θz(τ ′)dτ ′
)

Θ−(t1)ρ̂−(t1)dt1

exp
(
i
∫ t
t0

Θz(τ ′)dτ ′
) − i

∫ t
t0

exp
(
i
∫ t1
t0

Θz(τ ′)dτ ′
)

Θ+(t1)ρ̂12(t1)dt1

exp
(
i
∫ t
t0

Θz(τ ′)dτ ′
) . (B5)

Here, ρ̂ij(t) = ρ̂∗ji(t) and ρ̂±(t) = ρ̂∗±(t).
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55 M. Sillanpää, T. Lehtinen, A. Paila, Yu. Makhlin, and P.J.
Hakonen, Phys. Rev. Lett. 96, 187002 (2006).

56 C. M. Wilson, T. Duty, F. Persson, M. Sandberg, G.
Johansson, and P. Delsing, Phys. Rev. Lett. 98, 257003
(2007).

57 M. Mark, T. Kraemer, P. Waldburger, J. Herbig, C. Chin,
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