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We study features in the optically detected magnetic resonance (ODMR) signals associated with
negatively charged nitrogen-vacancy (NV−) centers coupled to other paramagnetic impurities in
diamond. Our results are important for understanding ODMR line shapes and for optimization of
devices based on NV− centers. We determine the origins of several side features to the unperturbed
NV− magnetic resonance by studying their magnetic field and microwave power dependences. Side
resonances separated by around 130 MHz are due to hyperfine coupling between NV− centers and
nearest-neighbor 13C nuclear spins. Side resonances separated by approximately {40, 260, 300}
MHz are found to originate from simultaneous spin flipping of NV− centers and single substitutional
nitrogen atoms. All results are in agreement with the presented theoretical calculations.

PACS numbers: 61.72.jn, 81.05.ug, 76.70.Hb

I. INTRODUCTION

Negatively charged nitrogen-vacancy (NV−) color cen-
ters in diamond are promising candidates for magnetom-
etry with an unprecedented combination of sensitivity
and spatial resolution1. In particular, diamonds with
high density of NV− centers are appealing for ensemble
magnetometry2. Optically detected magnetic resonance
(ODMR) signals enable probing the energy levels of NV−

centers, from which the external magnetic field can be
inferred. In this work, we analyze lineshapes in ODMR
signals of NV− centers in diamond. Specifically, we are
able to separate features related to 13C hyperfine inter-
actions from those related to simultaneous spin flips of
NV− and single substitutional nitrogen atoms (P1 cen-
ters). At sufficiently high microwave powers, the weak
coupling between the NV− and the P1 centers allows
both spins to be flipped at the same time, absorbing one
microwave photon.

In the absence of magnetic fields, the NV− center has
a magnetic resonance at a frequency of approximately
2870 MHz, which corresponds to a transition between
the triplet ground-state magnetic sublevels with electron
spin projections mS = 0 and mS = ±1 [see Fig. 1(a)].
Side resonances around this central resonance have been
reported in the literature. These extra resonances are
due to coupling between NV− centers and other param-
agnetic impurities in the diamond lattice.

A pair of side resonances asymmetrically offset from
the central peak and separated from each other by
130 MHz have been attributed to hyperfine interaction
between a NV− center and a nearest-neighbor 13C nu-
clear spin3–7. Hyperfine coupling with 13C spins located
in other lattice sites has also been studied in detail8,9.
Such interactions have been used to demonstrate quan-
tum information processing using NV− centers and 13C
nuclear spins10–12.

Other side resonances have been observed in nitrogen
rich diamond13–15. These resonances become particu-
larly pronounced at high microwave powers, where the
central resonance saturates, while these side resonances
continue to grow with increasing microwave power. Un-
derstanding this regime is important for understanding
light-narrowing effects in ODMR and for optimizing the
performance of sensors based on ensembles of NV− cen-
ters in diamond15.

At zero magnetic field, van Oort et al.13,14 report pairs
of side resonances separated by 140 MHz and 280 MHz,
symmetrically displaced from the central resonance. The
resonances separated by 140 MHz are unusually large
compared to side resonances at 130 MHz (see Sec. III),
and to our knowledge, they are reported only once in the
literature. Van Oort et al.13 attribute these resonances
to simultaneous spin flips of NV− centers and P1 cen-
ters. Later, resonances separated by approximately 130
MHz, observed by Baranov et al.16 and Babunts et al.17

in nanodiamonds, were interpreted as related to coupling
between NV− centers and substitutional nitrogen atoms.
Baranov et al. and Babunts et al. assumed that these res-
onances are the same as those of van Oort et al.; however,
they are separated by 130 MHz, asymmetrically located
around the central resonance, and are much smaller than
those observed by van Oort et al., so they are more likely
to be excellent examples of the side features associated
with 13C.

The P1 center has electron spin 1/2 and nuclear spin 1.
At zero field, these spins combine to form states with to-
tal angular momenta of 1/2 and 3/2 with a small splitting
of the latter due to the absence of spherical symmetry in
the diamond. As a result, the level separations in the
system are grossly unequal {22, 127, and 149} (as calcu-
lated in Sec. V A), in contrast to the equal separations
incorrectly assumed by van Oort et al.13.

In this paper we present improved ODMR spec-
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tra showing the different side resonances in diamonds
with both high and low nitrogen concentration. The
microwave-power and magnetic-field dependences of
these features are studied in detail. We are able to un-
ambiguously ascribe the origins of all the observed side
resonances by comparing experimental data with theo-
retical calculations. Furthermore, we show that the side
resonances separated by 280 MHz observed in Ref. 13 at
zero magnetic field are partially unresolved pairs of res-
onances; one group separated by 260 MHz and another
by 300 MHz. We determine the origin of side resonances
separated by approximately {40, 260, 300} MHz to be si-
multaneous spin flips of the NV− centers and P1 centers,
and we determine the origin of resonances separated by
130 MHz to be hyperfine coupling to 13C. We note that in
measurements of all our samples, including the represen-
tative ones we present in this paper, we do not observe
the side resonances split by 140 MHz reported by van
Oort et al..

II. METHODS

In our experiment, we used a conventional confocal-
microscopy set-up shown in Fig. 1(b). We focus
continuous-wave 532 nm laser light onto the diamond sur-
face and optically pump the NV− centers to the |mS = 0〉
ground-state sublevel. The fluorescence (wavelength ≈
638-800 nm) propagates back though the lens, through
a dichroic mirror, and onto a detector (photodiode or
photomultiplier tube). Microwaves are applied with a
wire pressed across the diamond surface. The microwave
frequency is scanned over the transition between the
|mS = 0〉 and the |mS = ±1〉 sublevels. On resonance,
the NV− centers are transferred to the |mS = ±1〉 states,
which leads to lower red fluorescence intensity than when
the centers are in the |mS = 0〉 state (see the discussion
in Ref. 18). We also measured Rabi oscillations by op-
tically pumping NV− centers to the |mS = 0〉 state and
applying resonant-microwave frequency lasting a few mi-
croseconds while keeping the laser on. This allows us to
observe population oscillations between the |mS = 0〉 and
|mS = ±1〉 states in real-time by monitoring fluorescence
intensity modulation while microwaves are on. The mi-
crowave magnetic field that the NV− centers are exposed
to depends not only on the microwave power, but also
on the distance from the transmitting wire. Microwave
coupling strength is proportional to resonant microwave
Rabi frequency, which is therefore used as a reference of
coupling strength. We used low laser power in order to
avoid optical pumping during the duration of oscillation.

We tested diamond samples with different amounts
of impurities. Single-crystal diamonds were obtained
from Element Six with nitrogen concentrations of ∼
100 ppm synthesized by high-pressure, high-temperature
technique (HPHT) or with nitrogen concentrations of∼ 1
ppm synthesized by chemical-vapor deposition (CVD)19.
Then, the samples were irradiated with relativistic elec-
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FIG. 1: (a) Energy-level structure of the NV− center. Gray
areas represent phonon sidebands. 3A2 and 3E are the spin-
triplet ground and excited states, respectively. The elec-
tron spin-projection along the NV− axis is denoted mS . (b)
Confocal-microscopy set-up.

trons to create vacancies. In the measurements described
here, we used the HPHT W5 and S8 samples (S8 was
previously studied in Ref. 2) and the CVD W2 sample,
which were subjected to irradiation doses of 1018 cm−2,
4 × 1017 cm−2 and 1016 cm−2, respectively. W2 and
W5 samples were irradiated at the Mainz Microtron fa-
cility in Germany. Finally, the diamond samples were
annealed in vacuum for 3 hours at 750◦C to combine va-
cancies with nitrogen atoms to complete the formation
of NV− centers. Based on measurements of the amount
of fluorescence emitted from the the two samples, we can
estimate that the concentration of NV− centers is 25-100
times larger in the W5 sample compared to the W2 sam-
ple. The concentration of NV− centers in each sample
varies by a factor of 2-4 depending on the exact spot on
the diamond.

III. RESULTS AND DISCUSSION

Figure 2(a) shows experimentally obtained ODMR
spectra at zero magnetic field in the frequency range
2600 MHz to 3150 MHz. At 2870 MHz, we observe
the central resonance, which is labeled as resonance A
in Fig. 2(a). Resonance A corresponds to a transition
between the |mS = 0〉 and |mS = ±1〉 states of the NV−

center. In measurements taken at small resonant mi-
crowave Rabi frequencies (ΩR), which correspond to low
microwave powers, the central resonance is split into two
resonances because the presence of strain causes mix-
ing between the |mS = ±1〉 sublevels and energy split-
ting between the resulting eigenstates [see, for exam-
ple, the measurements taken at ΩR = 0.03 MHz and
ΩR = 0.30 MHz in Fig. 2(a)]. Contrast, which is de-
fined as the relative change of fluorescence intensity when
the microwaves are on and off resonance with a transi-
tion, increases with increasing resonant microwave Rabi
frequency. Figure 2(b) shows the contrast of each reso-
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TABLE I: Fit parameters obtained from a fit of the measured
contrast as a function of resonant microwave Rabi frequency
to Eq. (1). Data and fits are shown in Fig. 2(b).

Resonance Csat Ωsat (MHz)
Group A 0.122(5) 0.039(7)
Group C 0.0034(2) 0.03(1)
Group D 0.072(5) 2.4(2)
Group E 0.070(6) 2.5(2)

nance as a function of ΩR. The measured contrasts for
each resonance were fitted to the function15

C(ΩR) = Csat
(ΩR/Ωsat)

2

1 + (ΩR/Ωsat)2
, (1)

where C(ΩR) is the contrast, Csat is the saturation con-
trast, and Ωsat is the saturation Rabi frequency. The
measured contrasts and the fits are shown in Fig. 2(b),
and the fitted parameters are shown in Table I. For reso-
nance A, the saturation Rabi frequency was found to be
0.039(7) MHz.

Apart from this central resonance, there are two small
resonances in group C, ∆C = 126(2) MHz, asymmet-
rically displaced to the low- and high- frequency sides
of the center by around 56 MHz and 70 MHz, respec-
tively. For the lowest microwave power corresponding to
ΩR = 0.03 MHz, only side-resonance group C and the
central resonance are observed [see Fig. 2(a)]. As seen
in Fig. 2(b) and from the fitted parameters in Table I,
the contrasts of resonance groups A and C saturate at
similar values of the resonant microwave Rabi frequency.
This similar growth of contrasts of side-resonance groups
A and C is expected assuming that the C resonances
are related to those NV− centers which have a nearest-
neighbor 13C atom. The NV− centers (which has elec-
tronic spin 1) and 13C atoms (which has nuclear spin 1/2)
can interact through the hyperfine interaction, which is
strongest when the 13C atom is in a nearest-neighbor
postion to the vacancy, where the electron density is
the highest. The relative sizes of the contrasts can be
estimated from the ratio of NV− centers with nearest-
neighbor 13C atoms to those without nearest-neighbor
13C atoms. Since the natural abundance of 13C atoms
is 1.1%, and there are three nearest-neighbor positions
to the vacancy, we expect the ratio of contrasts to be
roughly (3∗0.011/2) = 1.65% ≈ 1/60. The factor of 2 ap-
pears because the ground state |mS = 0〉 splits into two
states: |mS = 0,mI = +1/2〉 and |mS = 0,mI = −1/2〉
[as in Fig. 3(a)] due to the hyperfine interaction (here
mS is the NV− electronic spin projection and mI is the
13C nuclear spin projection). In the case that the 13C
nuclear spins are unpolarized, the two ground states con-
tain half of the population each. The measured ratio of
the contrasts is found to be 3.0(3)%, which is a bit higher
than the expected value because the side resonances are
less affected by strain than the central resonance. The
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FIG. 2: (a) Side-resonance features in ODMR are observed on
either side of the central resonance at 2870 MHz. Measure-
ments were done at zero magnetic field with a laser power
of 0.7 mW, on sample W5. ΩR denotes the resonant mi-
crowave Rabi frequency. (b) Measurement contrast of side
resonances A, C, D, and E is plotted as a function of ΩR,
which is proportional to the square root of microwave power
applied to the sample. The contrast of side-resonance group
C is multiplied by 20 for clarity. We only plot the contrasts
of the C resonances for resonant microwave Rabi frequencies
ΩR ≤ 0.6 MHz, because the C resonances overlap with the
B resonances for higher resonant microwave Rabi frequencies.
The relative uncertainties of the contrasts are less than 5%,
which is smaller than the size of the markers on the plot.

reason these side resonances are less affected by strain
can be understood from the fact that the magnetic field
from the 13C nucleus splits the mS = 1 and mS = −1
sublevels of the NV− center, making them insensitive, to
first order, to the strain. A similar immunity to strain is
observed when an external magnetic field is applied.

At high microwave powers, one can also see resonances
in group B with a separation of ∆B = 36(2) MHz, group
D with a separation of ∆D = 258(2) MHz, and group E
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FIG. 3: Mixed energy-level diagrams for (a) hyperfine cou-
pling of NV− centers to 13C nuclear spins and (b) simulta-
neous spin flipping of NV− centers and P1 centers. Each
transition causing a resonance in Fig. 2(a) is labeled with the
appropriate letter.

with a separation of ∆E = 295(2) MHz. Side resonance
groups B, D, and E are symmetrically displaced from
the center resonance. The features in the W5 signal in
Fig. 2(a) are too broad to resolve side-resonance group
B; the value for ∆B was therefore extracted from ODMR
measurements of the S8 sample, which exhibits narrower
features [Fig. 4(b)]. As seen in Fig. 2(b) and Table I, the
contrast of resonance groups D and E requires higher
microwave powers to saturate than the resonance groups
A and C. This implies that the D and E resonances are
of different origins than the C resonances.

A. Group C resonances

By measuring ODMR signals of samples with different
concentrations of substitutional nitrogen and equal
concentrations of 13C, we can gain information about
the relevance of substitutional nitrogen and 13C to the
signals. ODMR signals taken with the W2, S8 and W5
diamond samples are shown in Fig. 4. The essential
differences between these three samples are the concen-

trations of substitutional nitrogen and NV− centers.
The amount of 13C in the three samples is the same; it is
set by the natural abundance of 13C of 1.1%. Figure 4(a)
shows ODMR signals taken at low microwave power for
the three samples. Side-resonance group C is present in
all signals of the low-nitrogen-concentration sample W2
and those of the high-nitrogen-concentration samples
W5 and S8. The ratios of contrasts between resonances
in groups C and A are approximately 2.0% and 3.0% for
the W2 and W5 samples, respectively. The difference
in ratios is due to the varying amounts of strain in the
samples. Figure 4(b) shows ODMR signals taken at
high microwave power. The side-resonance groups B,
D, and E are present in the signals of the W5 and S8
samples and absent in that of the W2 sample. Since the
concentration of 13C does not vary across samples and
the side-resonances in group C are present in the signals
of all samples, the resonances in group C are most
likely due to interactions of the NV− center with 13C.
Moreover, this matches the previously-observed side
resonances with separation of 130 MHz attributed to
hyperfine coupling of the NV− center and a 13C nuclear
spin3–6. The origin of the other side-resonances possibly
involves coupling of the NV− center to substitutional
nitrogen, which is the highest-concentration impurity in
the HPHT samples.

Hyperfine coupling to 13C nuclear spin

Besides presenting the experimental data, we also pro-
vide detailed theoretical calculations which predict the
positions of all the side resonances. Here, we give a brief
discussion of the calculations of relevance for the side
resonance group C, for more details see Sec. V D.

As mentioned before, diamond consist of 1.1% 13C
which has nuclear spin 1/2. When a 13C atom is located
as a nearest-neighbor to the vacancy, the hyperfine
interaction between the NV− center electronic spin and
the 13C nuclear spin is particulary strong. The hyperfine
coupling can be written as Hhf = S · Ā · I, where here S
is the NV− center electronic spin, I is the 13C nuclear
spin, and Ā is the hyperfine tensor. As detailed in
Sec. V D and illustrated in Fig. 3(a), we find that the
energy eigen-states shift due to the hyperfine interaction.
Using known values for the components of the hyperfine
tensor, we calculate that magnetic resonance should
occur at frequencies (2870 − 56.9) = 2813.1 MHz and
(2870 + 70.7) = 2940.7 MHz. The separation between
the side resonances is calculated to be 127.6(2) MHz.
In an ensemble measurement, where only a fraction of
the NV− centers have a nearest-neighbor 13C atom,
we predict three magnetic resonances; one strong
resonance with frequency around 2870 MHz and a pair
of weaker side-resonances separated by 127.6(2) MHz.
We finally note that the measured positions of the
C side resonances agree with the calculated values to
within a few MHz, which supports that the C side res-
onances are related to the hyperfine interaction with 13C.
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FIG. 4: Comparison of ODMR signals of CVD and HPHT di-
amonds. The nitrogen concentration is different between the
samples, while the 13C concentration is the same. Measure-
ments were done at zero magnetic field with a laser power
of 1.7 mW, on diamond samples W2, and W5. The reso-
nant microwave Rabi frequencies were (a) 0.35 MHz and (b)
2.5 MHz. Measurements on the S8 sample were taken under
slightly different experimental conditions than for the W2 and
W5 samples. For the S8 measurements, the microwave power
had some frequency dependence due to an etalon effect.

Magnetic field dependence of group C resonances

In the presence of a magnetic field, the nominally de-
generate |mS = ±1〉 states split according to the Zee-
man effect. The splitting is illustrated in Fig. 1(a),
and is equal to 2γBz, where Bz is the projection of
the external magnetic field on the NV− axis and γ =
1.761 × 1011 s−1 T−1 is the gyromagnetic ratio for the
NV− center. Magnetic resonance between |mS = 0〉 and
|mS = ±1〉 states therefore occurs (to first order) at fre-
quencies D ± γBz, where D ≈ 2870 MHz is the central
resonance frequency at zero magnetic field. Note that

there exist four possible orientations (along the four [111]
crystallographic directions) of the NV− center in the di-
amond lattice. Furthermore, the magnitude of the pro-
jection Bz on the NV− axis depends on the orientation
of the NV− center.

We studied magnetic field dependence of all resonance
group positions, and observed different behaviors be-
tween groups C and {B,D,E}, which suggests different
origins. ODMR spectra of the W5 sample were taken
for magnetic fields in the range from 0 G to 200 G along
the [100] crystallographic direction with high and low
microwave powers (Fig. 5). In this direction of applied
magnetic field, all four orientations of the NV− center
have equal projections Bz of the magnetic field on the
NV− axis. Figure 5(a) shows low-microwave-power mea-
surements in which we only see the C-group resonances.
At zero magnetic field, we observe the 130 MHz-split side
resonances. When a magnetic field is applied along the
[100] direction, these two side resonances split into a total
of eight side resonances.

Figure 5(c) shows the difference between side reso-
nance frequencies and the associated NV− central reso-
nance as a function of magnetic field. We have also calcu-
lated the expected magnetic field dependence of the mag-
netic resonances of an NV− center coupled to a nearest-
neighbor 13C nuclear spin (see Sec. V E for details). Solid
lines in Fig. 5(c) show the expected magnetic field de-
pendence. The theory describes the general trend of the
resonance positions in a magnetic field. This confirms
that the C-group resonances are due to interaction of the
NV− center with 13C.

B. Group B, D, and E resonances

We also studied spectra at high microwave power of the
W5 diamond, which has a high concentration of nitrogen.
As in Fig. 5(b), in the presence of a magnetic field, we ob-
serve many more side resonances than at zero magnetic
field. In spectra taken at magnetic fields lower than 60
G, we will focus on the side resonances furthest away (for
example, EL) and those closest (BL) to the central reso-
nance (AL) for simplicity. The outermost side resonances
belong to the E-group and the innermost side resonances
belong to the B-group. At magnetic fields of 100-200 G,
fewer side resonances are observed, so we can extract all
of their positions. Their offsets from the associated cen-
ter resonance A are plotted in Fig. 5(d) together with
their theoretically calculated positions in the presence
of a [100]-oriented magnetic field. The other lines in
Fig. 5(d) correspond to shifts of other resonances. The
details of the calculations can be found in Sections V A,
V B, and V C. In the absence of an external magnetic
field, the results of these calculations are ∆B ≈ 44 MHz,
∆D ≈ 254 MHz, and ∆E ≈ 298 MHz, which agree with
the measured values to within a few MHz. The model
used for calculating these frequency separations has two
input parameters which are related to the hyperfine inter-
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FIG. 5: Magnetic field dependence of side resonances for the W5 sample. A magnetic field was applied along the [100] orientation.
(a,b) ODMR measurements at low and high microwave powers corresponding to resonant microwave Rabi frequencies of 0.18
MHz and 3.0 MHz, respectively. Signals are normalized and offset for clarity. Low-microwave-power measurements show C
resonances, and high-microwave-power show {B,D,E} resonances. The magnetic field strength is indicated near each curve.
Note that the magnetic field along the NV− axis is Bz = B cos 54.7◦. The values used for labeling purposes reflect the total
B value. (c) Frequency differences between C-group resonances and their associated A-group resonance as a function of
applied magnetic field. Solid and dashed lines show theoretically predicted frequency differences for mS = 0 → mS = +1
and mS = 0 → mS = −1 transitions, respectively. Points are experimental data from the measurements presented in (a).
(d) Frequency differences between {B,D,E}-group resonances and their associated A-group resonance as a function of applied
magnetic field. Solid lines show the theoretically predicted P1 center transition energies. Points are experimental data from
the measurements presented in (b). Circles and squares represent frequency differences between A-group resonances and their
associated E-group and B-group side resonances, respectively. Triangles represent all resonance groups observed for magnetic
fields higher than 100 Gauss. The estimated uncertainties on the experimentally determined frequencies in (c) and (d) are
2 MHz and 4 MHz, respectively.

action between the P1 center electronic spin (S = 1/2)
and the P1 center nuclear spin (I = 1). The two pa-
rameters are the hyperfine interaction strength along the
P1 center axis (A‖) and perpendicular to the P1 center
axis (A⊥). In order to calculate the magnetic field de-
pendence, we also assume that the P1 center is oriented
along one of the four [111] crystallographic directions.

We have shown that the different side resonances
can be distinguished by their dependence on microwave
power and magnetic field strength. Side resonances due
to interactions with P1 centers can only be observed at
high microwave powers, while those due to hyperfine
interaction with 13C are observed only at low microwave

powers since they are masked by the other resonances
in the W5 sample at high microwave powers. These
measurements and the agreement of the positions as a
function of magnetic field of the side resonances with
the theory derived in the Appendix further support
interaction of the NV− center with the P1 center and
13C nucleus as the origin for the side-resonance groups
{B, D, E} and C, respectively.
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FIG. 6: Measurement contrast of side resonance E plotted as
a function of magnetic field. Circles correspond to contrast of
the E resonances, and squares correspond to contrast of the E
resonances relative to that of the A resonances. Data is taken
at ΩR = 3.0 MHz.

Simultaneous spin flips of NV− and P1 centers

Apart from correctly predicting the positions of the
resonances at various magnitudes of magnetic field, the
theory discussed in Sections V A, V B, and V C gives us
an intuition of why the interaction between P1 and NV−

centers leads to side resonances in the ODMR spectra.
We provide a short discussion here. P1 centers have elec-
tronic spin 1/2 and nuclear spin 1. These impurities are
present in HPHT-synthesized diamonds with concentra-
tion of ∼ 100 ppm, in comparison to the 13C concen-
tration of ∼ 104 ppm. Due to the low concentration of
P1 centers, the average separation between P1 and NV−

centers is large, leading to a weak magnetic dipole-dipole
coupling. This weak coupling slightly mixes the energy
levels of the two, which allows simultaneous spin flips
driven by the applied microwave field13. Such simulta-
neous spin flips result in side resonances displaced from
the unperturbed NV− resonance by an amount corre-
sponding to energies of transitions within the P1 cen-
ter. In the absence of a magnetic field, the P1 cen-
ter has three energy levels (each two-fold degenerate)
[see Fig. 3(b)], leading to three transitions within the
P1 center. The transition energies are calculated in de-
tail in Sections V A, V B, and V C and are found to be
{22, 127, 149} MHz. This gives rise to three groups of
sidebands symmetrically located around the unperturbed
NV− resonance A with separations of {44, 254, 298}MHz
as illustrated in Fig. 3(b).

As discussed previously, the dipole-dipole interactions
mix the eigenstates of the combined NV/P1 system. The
degree of mixing x can be estimated as the ratio of the
interaction strength to a typical energy separation of the
states of the P1 center (which are the smaller energy in-
tervals between the states that mix in the combined sys-

tem). The magnetic dipole-dipole interaction strength
can be estimated to be around 1 MHz assuming a den-
sity of 100 ppm of P1 centers (see Section V B). A typical
energy separation of the states of the P1 center is around
100 MHz due to the hyperfine structure (see Fig. 7). The
mixing is then x ≈ 1 MHz/ (100 MHz) = 10−2. When
driving the combined system with microwaves, the tran-
sition amplitude for a side resonance should be approx-
imately x times the transition amplitude of the central
resonance, i.e., approximately two orders of magnitude
smaller.

In the experiment, the contrasts of the magnetic res-
onances are measured as a function of MW power. The
fitted saturation Rabi frequencies are expected to be pro-
portional to the transition amplitudes of the particular
transitions. Experimentally, we find that the saturation
Rabi frequencies of the side resonances D and E are ≈ 60
times larger than the saturation Rabi frequency of the
central resonance (see Ωsat in Table I). This is in agree-
ment with our estimate.

Figure 6 shows the contrast of the E resonances (CE)
for magnetic fields in the range 0 G to 56 G. The con-
trasts of the side resonances decrease with increasing
magnetic field amplitude. Since the contrast of the A
resonances (CA) decreases slightly with increasing mag-
netic field amplitude, we also plot their relative contrast
(CE/CA). At approximately 50 G, the relative contrast
has dropped by a factor of two. At this magnetic field
value, the Zeeman energy (2.8 MHz/G) becomes compa-
rable to the hyperfine splittings of the P1 center, resulting
in lower relative contrast since the mixing between the
eigenstates of the combined NV/P1 system decreases.

IV. CONCLUSION AND OUTLOOK

Experimentally and theoretically we identify the ori-
gins of side resonances to the unperturbed NV− magnetic
resonance which at zero magnetic field occurs at approx-
imately 2870 MHz. We attribute symmetrically located
side-resonance groups separated by around 40 MHz, 260
MHz, and 300 MHz to simultaneous flips of spins of the
NV− center and weakly coupled P1 centers in the dia-
mond. Our results confirm the assignment of the asym-
metrically displaced side resonances separated by around
130 MHz to hyperfine interaction of the NV− center with
a nearest-neighbor 13C nuclear spin.

The side resonances due to coupling between NV− and
P1 centers are of importance for magnetic-field sensing
with NV− centers in nitrogen rich diamonds. The ex-
istence of many side resonances complicates the ODMR
spectrum and can lead to significant broadening of the
NV− magnetic resonances when the side resonances over-
lap with the unperturbed NV− resonances. Simultane-
ous spin-flips can be thought of as a source of relaxation
which depolarize the NV− center, leading to a reduced
longitudinal spin-relaxation (T1) time. The reduction
of T1 was observed indirectly in Ref. 15 as a nonlinear
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change in the linewidth of the NV− magnetic resonance
as a function of resonant microwave Rabi frequency.

The side resonances due to coupling of NV− and P1
centers could perhaps be used to polarize and detect P1
centers, which, in contrast to the NV− centers, cannot
be directly optically polarized or probed. By driving sev-
eral side resonances sequentially, it should be possible to
fully polarize and initialize the P1 center in a specific
quantum state. The ability to polarize P1 centers is im-
portant for magnetometry and quantum information pro-
cessing with NV− centers. Previously, P1 centers have
been thermally polarized by cooling a diamond located in
a high magnetic field down to a few kelvin20. Recently, a
scheme of transferring spin polarization from NV− cen-
ters to nearby P1 centers by dressing their spin states
with oscillating magnetic fields was demonstrated21.This
polarization leads to improved spin relaxation times T1
and T2, which are of importance for magnetic field sens-
ing22–24.
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V. APPENDIX: THEORY

A. Energy level structure of the P1 center

We here calculate the energy-level structure of the P1
center in diamond. The P1 center has electronic spin
S = 1/2 and nuclear spin I = 1 which are coupled by the
electron-nuclear hyperfine interactionHhf = S·Ā·I where
Ā is the hyperfine-interaction tensor. Since the hyperfine
interaction of a P1 center has axial symmetry along one
of the four possible [111] crystallographic directions25,
the hyperfine Hamiltonian can be written as

Hhf = A‖ · SzIz +A⊥ · (SxIx + SyIy). (2)

The z-direction is here defined as the direction where the
P1 center hyperfine coupling is largest. We use values
A⊥ = 81 MHz and A‖ = 114 MHz which has been mea-

sured using EPR25 (uncertainties on A⊥ and A‖ are not
given in Ref. 25).

First, we construct the ordered orthonormal tensor
product basis B in the form |mS ,mI〉 from the electron

spin basis BS = {|−1/2〉 , |1/2〉} and the nuclear spin
basis BI = {|−1〉 , |0〉 , |1〉},

B =

{∣∣∣∣−1

2
,−1

〉
,

∣∣∣∣12 ,−1

〉
,

∣∣∣∣−1

2
, 0

〉
,

∣∣∣∣12 , 0
〉
,

∣∣∣∣−1

2
, 1

〉
,

∣∣∣∣12 , 1
〉}

.

(3)

Using this ordered basis, we find the following block-
diagonal matrix:

H =



A‖
2 0 0 0 0 0

0 −A‖
2

A⊥√
2

0 0 0

0 A⊥√
2

0 0 0 0

0 0 0 0 A⊥√
2

0

0 0 0 A⊥√
2
−A‖

2 0

0 0 0 0 0
A‖
2


. (4)

The eigenenergies of this system areA‖
2
,
−A‖ +

√
A2
‖ + 8A2

⊥

4
,
−A‖ −

√
A2
‖ + 8A2

⊥

4

 , (5)

each with a degeneracy of 2. Plugging in numerical values
for A‖ and A⊥, we calculate the following values for the
eigenenergies {-92, 35, 57} MHz. Between these states,
there are three transitions with frequencies {22, 127, 149}
MHz.

B. Simultaneous spin flips of NV− and P1 centers

From experiment, we determined that resonance
groups B, D, and E [see Fig. 2(a)] are due to coupling
of the NV− center to P1 centers. More specifically,
these resonances are due to simultaneous spin flips of
the NV− center and a P1 center. The two impurities
can interact through the magnetic dipole-dipole interac-
tion. The interaction strength depends on the distance
between the NV− and P1 center and is expected to be
weak (for instance, Ref. 13 gives 1-10 MHz for the inter-
action strength). This dipole-dipole interaction allows
for simultaneous spin-flips at frequencies corresponding
to the sums (spin-flip in the same direction) and differ-
ences (spin-flip in opposite directions) between the typi-
cal transitions of NV− centers (on the order of GHz) and
the possible transitions of the P1 centers (on the order
of 0-100’s of MHz) described above.

In the absence of strain and magnetic field, we predict
resonances in the ODMR signal at frequencies of {2721,
2743, 2848, 2870, 2892, 2997, 3019} MHz [see Fig. 3(b)].
In other words, we predict a central resonance at 2870
MHz, and three sets of resonances symmetric about the
center. These groups of side resonances should be sep-
arated by {44, 254, 298} MHz. We observe these reso-
nances in Fig. 2(a) as groups B, D, and E, respectively.
Furthermore, in Fig. 4, the resonances predicted to origi-
nate from interaction of the NV− center with P1 centers
are not observed in the ODMR signal of the CVD sample
due to low concentration of P1 centers (∼ 1 ppm).
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We now estimate the magnetic dipole-dipole coupling
strength between an NV center and an P1 center. The
magnetic energy between two spins S1 and S2 can be
written as

Hdip = −µ0

4π

γ1γ2
r312

~2 [3 (S1 · r̂12) (S2 · r̂12)− S1 · S2] , (6)

where r12 is the distance between the two spins, and r̂12
is a unit vector pointing from spin 1 to 2, γ1 and γ2 are
the gyromagnetic ratios for spin 1 and 2 and µ0 is the vac-
uum permeability. If we assume that the concentration
of P1 centers is much higher than the concentration of
NV centers, the average distance between an NV center
and an P1 center is approximately equal to n−1/3 where
n is the density of P1 centers. For a concentration of
100 ppm of P1 centers, we find n = 1.76 · 1019 cm−3. A
characteristic magnitude of the dipole-dipole interaction
energy is

Edip ≈
µ0

4π
γ1γ2 · n · ~2 · 1 · 1/2, (7)

where 1 is the NV− electron spin and 1/2 is the P1 center
electron spin. Assuming gyromagnetic ratios γ1 = γ2 =
γe = 1.76 · 1011 rad/ (s · T) equal to the gyromagnetic
ratio of the electron spin, we calculate the dipole strength
to be Edip/h ≈ 1 MHz.

C. Magnetic-field dependence of energy level
structure of P1 centers

We now calculate the energy levels of the P1 center as
a function of magnetic field. The zero-field energy levels
were calculated above using the hyperfine Hamiltonian
Hhf = S ·A ·I. The magnetic field can be described using
the Hamiltonian HB = γB · S, where γ is the gyromag-
netic ratio. The total Hamiltonian is

Htot = Hhf +HB

= A‖ · SzIz +A⊥ · (SxIx + SyIy)

+ γ |B| [cos (φ)Sz + sin (φ)Sx] , (8)

where φ is the angle between the direction of the mag-
netic field and the z-axis, which is defined as the direction
along which the P1 center hyperfine interaction is largest,
i.e. one of the [111] crystallographic directions. Notice
that both the hyperfine interaction and the magnetic field
give rise to preferred directions in space. The P1 center
can be oriented along one of the four possible [111] direc-
tions. For a general magnetic field direction, the energy
of the P1 center depends on its orientation. However,
if the magnetic field is oriented along one of the four
possible [100] crystallographic directions, the P1 center
energies are the same for all P1 centers, independent of
their orientation. This is because the angle between any
[100] direction and any [111] direction is φ ≈ 54.74◦.

Diagonalizing the total Hamiltonian leads to the en-
ergy levels shown in Fig. 7. At zero magnetic field, there

50 100 150 200
�B� �G�

�300

�200

�100

100

200

300

Frequency �MHz�

FIG. 7: The theoretically-predicted dependence of the
eigenenergy levels of the P1 center on the magnetic field ap-
plied in the [100] crystallographic direction.

are three energy levels which are each two-fold degener-
ate. The zero-field energies are given in (5). When we
consider nonzero magnetic fields, the degeneracies break
to form six energy levels. At high magnetic field, the en-
ergy levels split into two branches; corresponding to the
P1 center electronic spin either parallel or anti-parallel
with the magnetic field.

The possible transition frequencies can be calculated
from the energy diagram shown in Fig. 7. With 6 energy
levels, up to 15 transitions are possible. The 15 possible
transition frequencies are plotted in Fig. 5(d) for mag-
netic field values up to 200 G (the range investigated in
the experiment). Some transitions may be forbidden; for
instance, when the magnetic field is large we observe only
four pairs of side resonances for each NV− central reso-
nance. The transitions of the P1 center corresponding to
these observed resonances are plotted as arrows in Fig. 7.

D. Hyperfine coupling to 13C

Diamond consists mainly of 12C atoms which have no
nuclear spin. However, 13C, which is present due to the
1.1% natural abundance, has nuclear spin I = 1/2 and
can couple to the NV− center electronic spin S = 1
through the magnetic dipolar (hyperfine) interaction.
This interaction is particularly strong when the 13C atom
is nearest-neighbor to the vacancy in the NV− center.
The nearest-neighbor hyperfine interaction between the
NV− center and a 13C atom has been studied using elec-
tron paramagnetic resonance (EPR)3,5 and optically de-
tected magnetic resonance4,6.

Here, we calculate the energy spectrum of the com-
bined system consisting of the electronic spin of an
NV− center and a nearest-neighbor 13C nuclear spin [see
Fig. 3(a)]. In the absence of strain and magnetic fields,
the NV− center has C3v symmetry. The ground states
|mS = 0〉 and |mS = ±1〉 are separated by D ≈ 2.87 GHz.
In this case, the Hamiltonian for the NV− center can be
written as H0 = D(Sz)2. The quantization axis for the
NV− center, here denoted z, is along one of the four [111]
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crystallographic directions.
The hyperfine interaction energy can be written as

Hhf = S · Ā · I =
∑

i,j=x,y,z

SiĀijIj , (9)

where Ā is the hyperfine tensor. For the case of the NV−

center and a nearest-neighbor 13C atom, the hyperfine
interaction has axial symmetry around the axis, here de-
noted by z′, which connects the vacancy and the 13C
atom3,26. This axis is one of the [111] directions which
is not the NV− axis. The angle between the z and z′

directions is θ ≈ 109.47◦.
We consider the two coordinate systems X andX ′ with

axes x, y, z and x′, y′, z′. We choose the y-axes to coin-
cide: y = y′. X ′ can be obtained from X by a rotation
around the y-axis with angle θ. We have the relationx′y′

z′

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

xy
z

 ≡ R(θ)

xy
z

 . (10)

We can express the hyperfine Hamiltonian in either co-
ordinate system

Hhf = S · Ā · I = S′ · Ā′ · I′, (11)

where S and I are the electronic and nuclear spins, re-
spectively, in the coordinate system X, and S′ = R(θ)S
and I′ = R(θ)I in X ′.

Since this particular hyperfine interaction is approxi-
mately axially symmetric, the hyperfine tensor has a sim-
ple form in the coordinate system X ′:

Ā′ =

A⊥ 0 0
0 A⊥ 0
0 0 A‖

 . (12)

The hyperfine coupling parameters have been measured
and calculated in previous works and have values A‖ ≈
199.7(2) MHz and A⊥ ≈ 120.3(2) MHz 3,5,26.

We can obtain the hyperfine tensor in the coordinate
system X using the transformation

Ā = R(θ)†Ā′R(θ) =

Axx 0 Axz

0 Ayy 0
Azx 0 Azz

 , (13)

where we have defined the constants Axx = A⊥ cos2 θ +
A‖ sin2 θ, Ayy = A⊥, Azz = A‖ cos2 θ + A⊥ sin2 θ
and Axz = Azx = (A⊥ − A‖) sin θ cos θ. Using the
above-mentioned values for A‖, A⊥, and θ, we calcu-
late Axx = 190.9(2) MHz, Ayy = 120.3(2) MHz, Azz =
129.1(2) MHz and Axz = Azx = −25.0(1) MHz.

We now find the eigen-energies of the combined system.
Notice that the NV− zero-field splitting D is much larger
than the hyperfine-coupling parameters A‖ and A⊥. Us-
ing the secular approximation, where only the terms in
Hhf which are proportional to Sz are kept, we find the
total Hamiltonian

Hsec
hf = H0 +Hsec

hf = D(Sz)2 +AzxSzIx +AzzSzIz. (14)

The Hamiltonian can be written in matrix form using the
basis {|mS ,mI〉 |mS = −1, 0, 1, mI = −1/2,+1/2}. By
diagonalizing this Hamiltonian, we find the eigen-energies
0, D± (A2

zx +A2
zz)1/2/2, each with a degeneracy of 2 [see

Fig. 3(a)]. The combined system of an NV− center and a
nearest-neighbor 13C atom has two magnetic resonances
with frequencies D ± (A2

zx + A2
zz)1/2/2. Inserting the

values for Azx and Azz, we find magnetic resonance fre-
quencies of 2.87 GHz ± (1/2) ·131.5(2) MHz. Notice that
with the secular approximation, one calculates that the
two resonances should be symmetric around the unper-
turbed NV− resonance at D ≈ 2.87 GHz.

In the experiment, we observe that the resonance group
C due to 13C is not symmetrically displaced from the cen-
tral resonance A [see Fig. 2(a)]. This can be explained
by corrections beyond the secular approximation. We
can diagonalize the full Hamiltonian Htot = H0 + Hhf .
In this case, we find the resonance frequencies to be
−56.9(1) MHz and +70.7(1) MHz displaced to the low-
and high- frequency sides of the central resonance at
around 2870 MHz. The separation between the two res-
onances is in this case 127.6(2) MHz. Notice that by
full diagonalization, we calculate that the resonances are
asymmetrically located with respect to the unperturbed
NV− resonance.

E. Magnetic field dependence of side resonances
due to 13C

We now calculate the energy-level structure of an NV−

center and the combined system consisting of an NV−

center and a nearest-neighbor 13C nuclear spin as a func-
tion of magnetic field strength.

The Hamiltonian describing an NV− center located in
a magnetic field is

H0+HB = D (Sz)
2
+γ |B| [cos (φ)Sz + sin (φ)Sx] . (15)

If the magnetic field is applied along a [100] crystallo-
graphic direction, the angle between the NV− axis and
the magnetic field is φ ≈ 54.74◦. The energy level struc-
ture of the NV− center can be calculated by diagonaliz-
ing the Hamiltonian. The dashed lines in Fig. 8(a) show
the calculated energies. The energy of the lowest level
changes with magnetic field because the magnetic field is
applied along the [100] direction, which differs from the
direction of the NV− axis.

Some NV− centers have a nearest-neighbor 13C nuclear
spin, in this case the Hamiltonian for the combined sys-
tem is H0 +HB +Hhf , where the hyperfine interaction
energy is given by Eq. (9). Note that we neglected the
effect of the magnetic field on the 13C nuclear spin since
the gyromagnetic ratio is much smaller for a nuclear spin
than for an electronic spin. The energy level structure
of the combined system calculated by diagonalizing the
Hamiltonian is shown with solid lines in Fig. 8(a). We see
that each of the energy levels of the NV− center splits
into two due to the hyperfine interaction with the 13C
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FIG. 8: Dashed lines: Energy level structure (three levels) of an NV− center located in a magnetic field applied along one of
the (a) [100] crystallographic directions and (b) the NV− axis (which is one of the [111] directions) as a function of magnetic
field strength. Solid lines: Energy level structure of the combined system consisting of an NV− center and a nearest-neighbor
13C nuclear spin (six levels).

nuclear spin. There is therefore a total of eight transi-
tions between the two lower states and the four upper
states [marked by arrows in Fig. 8(a)]. Measurements of
ODMR spectra showing the C resonances are presented
in Fig. 5(a). For magnetic fields in the range of 50 to
200 G, we observe eight side resonances. Figure 5(c)
shows the relative position of the C side resonances with
respect to their associated A resonance (points: experi-
ment, lines: theory). Based on the agreement between
theory and experiment on the number of side resonances
and on the resonance positions, we can conclude that
the C side resonances originate from NV− centers with a

nearest-neighbor 13C nuclear spin.
For completeness, we also present calculations of the

NV− energy level structure for the case where the mag-
netic field is aligned along the NV− axis. In this case,
the mS = 0 ground state energy does not change with
magnetic field (see Fig. 8(b), dashed lines). Figure 8(b)
(solid lines) also shows the energy level structure of
NV− centers with a nearest-neighbor 13C nuclear spin.
Note that the ground states mS = 0,mI = −1/2 and
mS = 0,mI = +1/2 remain degenerate. In this case
(when the magnetic field is aligned along the NV− axis),
only four side resonances should be present.
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