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Nonlocal charge correlations induced in two normal metals contacted separately to a supercon-
ductor have been studied intensively in the past few years. Here we investigate nonlocal correlations
induced by the transfer of pure spin currents through a superconductor on a scale comparable to
the superconducting coherence length. As with charge currents, two processes contribute to the
nonlocal spin signal: crossed Andreev reflection (CAR), where an electron with spin up injected
from one normal metal into the superconductor results in a hole with spin down being injected into
the second normal metal, and elastic cotunneling (EC), where the electron with spin up injected
from the first normal metal results in an electron with spin up being injected into the second normal
metal. Unlike charge currents, however, the spin currents associated with CAR and EC add due to
the fact that the bulk superconductor cannot sustain a net spin current.

PACS numbers: 74.45.+c 72.25.Ba 72.25.Hg 72.25.Mk

Electrons in two spatially separated normal metals in
contact with a superconductor show nonlocal correlations
that are mediated by their mutual interaction with the
superconductor1–4. Two processes are responsible for
these correlations. In the first process, called crossed An-
dreev reflection (CAR), an electron with one spin orienta-
tion, e.g., spin up, is injected from the first normal metal
(N) into the superconductor (S), resulting in a hole with
spin down being injected from the superconductor into
the second normal metal, with a concomitant generation
of a Cooper pair in the superconductor. In the second
process, elastic cotunneling (EC), the spin-up electron
injected from the first normal metal gives rise to a spin-
up electron being injected into the second normal metal.
Both processes are exponentially suppressed with the dis-
tance between the two NS interfaces on a length scale of
the order of the superconducting coherence length ξS

5.
In the case of charge currents, the net current injected
into the second normal metal in response to the drive cur-
rent injected from the first normal metal is the difference
of the two contributions CAR and EC. As the relative
amplitude of CAR and EC is predicted to depend on
the transparency of the interface6, the effect of electron-
electron interactions7, and so forth, the sign of the net
current injected into the second normal metal may be
positive or negative. Experimentally, nonlocal correla-
tions due to CAR and EC in charge transport have been
verified by many different groups8–10.

In this paper, we study theoretically nonlocal correla-
tions induced in a NSN structure in response to a pure
spin current. As with charge currents, both CAR and EC
contribute to the resulting nonlocal spin signal. However,
due to the fact that one cannot inject a pure spin current
into the bulk of a s-wave superconductor (which is the
case of interest here), we find that the resulting nonlocal
spin current is the sum of CAR and EC contributions:
Injecting a spin-down hole (CAR) or injecting a spin-up
electron (EC) into the second normal metal, both corre-
spond to injecting a net up spin. Consequently, with a

FIG. 1: Schematic diagram of the device. The bias current
is applied from a ferromagnet F1 to a normal metal N1 and
nonlocal voltage is measured between F2 and N2.

combination of charge and spin transport measurements
on the same device, one should in principle be able to
separate the contributions of CAR and EC, which has
not been possible to do so far.

In addition to CAR and EC, there are additional pro-
cesses that may contribute to the nonlocal signals in NSN
or FSF structures. These are charge11–15 and spin16,17

imbalance, associated with the injection of quasiparti-
cles, with energies larger than the superconducting gap
, into the superconductor. In contrast to these studies,
the proposed experiment addresses the regime of subgap
transport. Thus, no quasiparticle is injected above the
gap, and the effect does not depend on the long spin
relaxation times recently observed in the nonlocal mea-
surements of Refs.16,17 at applied bias voltage larger than
∆/e.

Figure 1 shows the schematic view of the device geom-
etry that we consider here. Our device is similar to the
usual NSN hybrid structure, except that there are two ad-
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FIG. 2: Nonlocal correlations near N1SN2 structure. Pure
spin current is injected from N1 and a finite spin current is
generated in N2 by CAR and EC. One should note that the
direction of the spin currents attributed to CAR and EC are
in the same direction and there is no net spin accumulation
in the superconductor.

ditional ferromagnets, F1 and F2, placed in contact with
the two normal metals, N1 and N2, respectively. One of
the normal-metal/ferromagnet junctions (N1F1) serves
as a spin injector. If one drives a bias charge current I
from F1 to N1, as shown in Fig. 1, spin accumulates at
the N1F1 interface. The resulting spin imbalance leads
to spin diffusion in all possible directions in N1. Since
the charge current is drained from the left side of N1,
the right side of N1 carries a pure spin current with no
net flow of charge. The second NF interface (N2F2) is
used to detect the spin current flowing through N2 by
measuring the nonlocal voltage Vnl that establishes it-
self between N2 and F2. If F1 and F2 are designed to
have different coercive fields, it is possible to realize both
parallel and antiparallel magnetization directions by ap-
plying an external magnetic field. Below we determine
the nonlocal spin signal by computing the nonlocal resis-
tance Rnl = Vnl/I.

In the following, we assume that the normal metals are
oriented along the x-axis whereas the ferromagnets are
oriented along the y-axis (see Figure 1). To simplify the
notation, we use two different coordinate systems for N1

and N2 with origins at the respective NF interface and
the x-axis directed toward the superconductor, i.e., the
respective NS interfaces are at x = Li (i = 1, 2).

Let us first consider the processes that occur at the
N1SN2 interfaces in more detail. As shown in Fig. 2, an
incoming electron with subgap energy may undergo four
possible processes at the N1S interface: local Andreev re-
flection (AR), normal reflection (NR), crossed Andreev
reflection (CAR), and elastic cotunneling (EC). Only the
nonlocal processes (CAR and EC) contribute to the non-
local signal. If the length of the superconducting link
between N1 and N2 is much longer than ξS , these pro-
cesses are suppressed. In that limit, only AR and NR
occur at the N1S interface, and thus the detector voltage

between N2 and F2 is zero. In the opposite regime, when
d is shorter than ξS , however, nonlocal processes such as
CAR and EC can occur and generate a spin current in
N2. The resulting spin accumulation at the N2F2 inter-
face yields a finite voltage difference between N2 and F2.
It is important to note here that, in the subgap regime,
the superconductor cannot support spin accumulation:
the spin of an electron injected into the superconductor
at the N1S interface is transferred to N2, either via a hole
with the opposite spin (CAR) or via an electron with the
same spin (EC), thus leaving no net spin in the supercon-
ductor. The spin current injected from N1 into S, IsN1S,
equals the spin current injected from S into N2, −IsN2S.

Here IsNiS = I↑NiS − I
↓
NiS

is the difference of spin-up and
spin-down currents, with a fixed spin quantization axis
collinear with the magnetizations in F1/2. As a conse-
quence, as can be seen schematically in Fig. 2, both
CAR and EC contribute to a spin current in N2 in the
same direction, such that their contributions to the spin
signal add. This is completely different from the case
of charge current, where one measures the difference be-
tween CAR and EC. The spin-resolved injected currents
from N1 into S are given by

IσN1S =
GCAR

2e

[
µσN1

(L1) + µσ̄N2
(L2)− 2µS

]
+

GEC
2e

[
µσN1

(L1)− µσN2
(L2)

]
, (1)

where σ =↑, ↓ and σ̄ =↓, ↑. Here we set [µ↑Ni(Li) +

µ↓Ni(Li)]/2 = µS , since there is no charge current flow-
ing into the superconductor. Overall, the spin current
through the superconductor, IsS = IsN1S = −IsN2S, is
related to the difference between the spin imbalances

δµNi(Li) = [µ↑Ni(Li)− µ
↓
Ni

(Li)]/2 at the two interfaces,

IsS =
G+

S

e
[δµN1

(L1)− δµN2
(L2)]. (2)

Here µ
↑/↓
Ni

are the spin-resolved electrochemical poten-
tials. Note that µN1

(L1) = µN2
(L2), with µNi(Li) =

[µ↑Ni(Li)+µ↓Ni(Li)]/2, in the absence of a charge current.

Furthermore, G+
S = GCAR + GEC, where GCAR/EC are

the conductances due to CAR and EC, respectively.
To describe spin accumulation and spin transport at

the NF interfaces, we use the model introduced by Taka-
hashi et al.18. The current density jσα = −(σσα/e)∇µσα for
spin σ =↑, ↓ is related with the spin resolved conductiv-
ity σσα and electrochemical potential µσα in material α =
Fi,Ni. The continuity equation for the charge current
density jα = j↑α + j↓α reads

∇jα = 0, (3)

while the relaxation of spin imbalance is described by the
phenomenological equation

∇2δµα − (1/λ2
α)δµα = 0, (4)
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where λα is the spin diffusion length. The spin current
density is jsα = j↑α − j↓α.

The general solution of Eqs. (3) and (4) in Fi reads

µ
↑/↓
Fi

(y) = µFi(0) +

(
pFi ±

2σ
↓/↑
Fi

σF
e−|y|/λF

)
δµFi(0)

+
eIiy

σFAF
Θ(y) (5)

with I1 = I and I2 = 0. Θ(y) is the Heaviside function.
Note that the chemical potentials in the ferromagnets
are defined in the same way as in the normal metals, i.e.,

µ
↑/↓
Fi

(y) = µFi(y) ± δµFi(y). For simplicity, we assume
identical cross-sections AF, spin-diffusion lengths λF, and

total conductivities σF = σ↑Fi + σ↓Fi in the wires F1 and

F2, while pFi = (σ↑Fi − σ
↓
Fi

)/σF. In particular, pF1
and

pF2
have the same modulus pF, while their sign is deter-

mined by the magnetization direction in Fi, pFi = ±pF,
depending on whether electrons with spin up/down cor-
respond to majority/minority (+) or minority/majority
(−) electrons, respectively. Using Eq. (5) to compute
the current densities at y = 0±, we can relate the spin
imbalance at the FN interfaces to the drive current and
the spin currents IsFiNi injected from Fi to Ni through
the FiNi interface,

δµFi(0) =
1

2
eRF

(
pFiIi − IsFiNi

)
, (6)

where RF = λF/[AFσF(1− p2
F)].

The currents through the FiNi interface may also be
expressed in terms of the potential drops across the in-
terface,

Ii =
GTi
e

(µFiNi + pTiδµFiNi) , (7a)

IsFiNi =
GTi
e

(pTiµFiNi + δµFiNi) , (7b)

where GTi = G↑Ti+G
↓
Ti

and pTi = (G↑Ti−G
↓
Ti

)/GTi are re-

lated with the (tunnel) conductances G
↑/↓
Ti

of the NiFi in-
terface for spin up and spin down electrons. Furthermore,
µFiNi = µFi(0)−µNi(0) and δµFiNi = δµFi(0)−δµNi(0).
The sign of pTi again depends on the magnetization di-
rection of the ferromagnet. Note that spin-flip scattering
at the interface has been neglected in Eqs. (7) for sim-
plicity. Inverting these equations, we obtain

µFiNi = eRTi
(
Ii − pTiIsFiNi

)
, (8a)

δµFiNi = eRTi
(
−pTiIi + IsFiNi

)
, (8b)

where RTi = 1/[GTi(1− p2
Ti

)].
The general solution of Eqs. (3) and (4) in the normal

metals Ni reads

µNi(x) = µNi(0)− eIix

σNAN
Θ(−x), (9a)

δµNi(x) =
1

2
eRN

(
IsFiNie

− |x|λN − IsNiSie
− |Li−x|λN

)
,(9b)

with RN ≡ 1/GN = λN/σNAN. As for the ferromagnets,
here we also assume identical cross-sections AN and spin-
diffusion lengths λN, and conductivities σN in the wires

N1 and N2. Furthermore, σ↑N = σ↓N = σN/2. Using these
equations, we find in particular

δµNi(0) =
1

2
eRN

(
IsFiNi − I

s
NiSie

−Li/λN

)
, (10a)

δµNi(Li) =
1

2
eRN

(
IsFiNie

−Li/λN − IsNiSi
)
. (10b)

Combining Eqs. (10) with (2), we can eliminate the spin
currents and imbalances at the NS interfaces to obtain

δµNi(0) =
eRN

2

{
IsFiNi

[
1−

G+
S

2(G+
S +GN)

e−2Li/λN

]
+ IsFīNī

G+
S

2(G+
S +GN)

e−(L1+L2)/λN

}
, (11)

where we used the notations 1̄ = 2 and 2̄ = 1.
The nonlocal voltage Vnl between F2 and N2 is given

by µN2
(+∞)−µF2

(−∞). Using Eqs. (5) and (9), we find
Vnl = [µF2N2

+ pF2
δµF2

(0)]/e which, using Eqs. (6) and
(8a), may be rewritten as Vnl = −(pF2

/pF)RNFiI
s
F2N2

where we defined RNFi = pFRF/2 + |pTi |RTi and used
pTi/|pTi | = pFi/pF. Finally, combining Eqs. (6), (8b),
and (11), we determine the spin current IsF2N2

as a func-
tion of the injection current I to obtain the nonlocal spin
resistance,

Rnl = ± RNF1
RNF2

R0e
−(L1+L2)/λN

RNS1RNS2 −R2
0e
−2(L1+L2)/λN

, (12)

where R0 = G+
S /[4GN(G+

S + GN)] and RNSi = RN/2 +

RF/2+RTi−R0e
−2Li/λN . The overall sign ofRnl depends

on whether the ferromagnets are aligned parallel (+) or
antiparallel (−).

Equation (12) is the central result of this paper: it pre-
dicts a finite nonlocal resistance with no charge current
injected into the superconductor. The exponential de-
pendence∝ e−(L1+L2)/λN ofRnl on the lengths of the nor-
mal wires clearly shows that it is due to the spin transport
through the structure. In the case of fully polarized fer-
romagnets, where |pTi | = pF = 1 and RF/2 + RTi →∞,
the result (12) simplifies to Rnl = ±R0e

−(L1+L2)/λN .
A nonloncal spin signal is possible also in the absence

of superconductivity. Note that, at G+
S � GN, when the

contribution of the superconducting element to the non-
local signal is negligible, Eq. (12) is similar to the result
of Ref.18 up to factors due to a different geometry of the
normal part of the FNF spin valve. In our geometry, a
conventional spin valve is realized at temperatures above
the superconducting transition temperature Tc. We ex-
pect the decay lengths of the nonlocal signal within the
superconductor to be quite different below and above the
transition. At T � Tc, our results yields Rnl ∝ e−d/ξS

since GCAR/EC decay exponentially on the scale ξS. In
contrast, above Tc, the nonlocal resistance should be pro-
portional to e−d/λS , where λS is the spin diffusion length
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of the superconductor in the normal state. Typically, λS

for Al is ∼ 500 − 1000 nm and ξS is ∼ 100 − 300 nm.
Thus, one would expect an abrupt change in the nonlo-
cal resistance when the superconductor transitions to its
zero-resistance state. This effect is possible to demon-
strate in experiments similar to Ref.8.

The magnitude of the nonlocal resistance that is in-
duced by the injection of pure spin current may be es-
timated from the nonlocal signal measured in the case
of charge current injection. In that case, based on the
formalism suggested by Falci et al.3, the nonlocal resis-
tance can be written as RNSN

nl = (GEC −GCAR)/G2
AR,

where the conductance due to AR at a single NS inter-
face GAR � GCAR, GEC is assumed to be the same for
the N1S and N2S interfaces. Using the measured RNSN

nl as
well as estimated values of GAR from Cadden-Zimansky
et al.10 yields a rough estimate ofGEC−GCAR ∼ 0.5 Ω−1.
A lower bound for the nonlocal spin resistance can be ob-
tained if we assume that GEC � GCAR. For copper wires
with a spin diffusion length λN ∼ 1 µm and cross section
AN =100×50 nm2, corresponding to GN ≈ 0.3 Ω−1, the
factor R0 in Eq. (12) would be of the order of 0.5 Ω in
this case. If GCAR and GEC are of the same order of
magnitude, the nonlocal resistance would likely be much
larger.

The advantage of the device suggested in the paper
is that it is possible to perform multiple measurements
on the same device. First, one can perform the nonlocal
measurement similar to that reported earlier10 on NSN
structure of the device by biasing charge current from
N1 to S and measuring the nonlocal voltage between N2

and S. The nonlocal resistance measured in this scheme
is attributed to the difference between the contribution
of CAR and EC. By combining with the nonlocal resis-
tance that arises in response to pure spin current injec-
tion described earlier in the paper, it should be possible
to separate CAR and EC. Second, if one biases charge
current from F1 to S, the charge current flowing through
N1 is spin-polarized. Since the nonlocal voltage between
F2 and S would exhibit additional effect due to spin-
polarization on the nonlocal voltage induced by charge
current injection that can be picked up by the nonlocal
voltage between N2 and S, the effect of spin-polarization
can be investigated by comparing the the nonlocal volt-
ages between N2/S and F2/S.

In summary, we have investigated the nonlocal signal
that arises from the injection of pure spin current into a
superconductor. We have shown that a finite electrical
resistance may be generated entirely due to the nonlocal
correlations mediated by a superconductor. In contrast
to other recent work, this nonlocal signal arises from spin
transport at energies far below the superconducting gap.
Measurements of the nonlocal resistance resulting from
charge and spin injection on the same sample would allow
independent determination of the contributions due to
CAR and EC.
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