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Recently spin textures called skyrmions have been discovered in certain chiral magnetic materials without
spatial inversion symmetry, and have attracted enormous attention due to their promising application in spin-
tronics since only a low applied current is necessary to drive their motion. When a conduction electron moves
around the skyrmion, its spin is fully polarized by the spin texture and acquires a quantized phase; thus, the
skyrmion yields an emergent electrodynamics that in turn determines skyrmion motion and gives rise to a finite
Hall angle. As topological excitations, skyrmions behave as particles. In this work we derive the equation of
motion for skyrmions as rigid point particles from a microscopic continuum model and obtain the short-range
interaction between skyrmions, and the interaction between skyrmions and defects. Skyrmions also experience
a Magnus force perpendicular to their velocity due to the underlying emergent electromagnetic field. We val-
idate the equation of motion by studying the depinning transition using both the particle and the continuum
models. By using the particle description, we explain the recent experimental observations of the rotation of a
skyrmion lattice in the presence of a temperature gradient. We also predict quantum and thermal creep motion
of skyrmions in the pinning potential.

PACS numbers: 75.10.Hk, 75.25.-j, 75.30.Kz, 72.25.-b

I. INTRODUCTION

Spin texture called skyrmion was predicted to exist in cer-
tain magnetic materials.1–3 Skyrmion crystals have been re-
cently observed in MnSi, Fe0.5Co0.5Si, and other B20 tran-
sition metal compounds with small angle neutron scattering,
Lorentz force microscopy and spin-polarized scanning tunnel-
ing microscopy.4–10 These spin textures become more stable in
thin films8,9,11,12, and they crystallize into a triangular lattice
similar to that found for vortices in type II superconductors.
The typical size of a skyrmion is about 10 nm and the corre-
sponding lattice constant is about 100 nm. As more skyrmion
crystals are discovered in new materials, it is expected that this
state of matter will turn out to be a general form of magnetic
ordering, existing ubiquitously in magnets without inversion
symmetry.

A promising set of spintronics applications arises from the
fact that skyrmions can be driven by a spin-polarized current
as a result of the spin-transfer torque. The weak current re-
quired to move a skyrmion from the pinning center is 4 to
5 orders of magnitude smaller than the current required to
move the well-studied magnetic domain walls.13–15 Therefore,
skyrmions can be manipulated with much less energy dissi-
pation. A theoretical framework for understanding skyrmion
dynamics is then crucial for applications. Current descrip-
tions are mostly based on continuum models that are diffi-
cult to solve analytically, and can be computationally inten-
sive. Because skyrmions appear to have particle-like proper-
ties, the derivation of a particle-based equation of motion pro-
vides a functional form for interactions between skyrmions,
skyrmion-defect interactions, and the role of terms such as
the Magnus force. Such a model would have tremendous im-
pact on understanding skyrmion dynamics by theoretical anal-
ysis and computational modeling. The derivation of effec-
tive equations of motion for other systems, such as vortices in
type-II superconductors16, has been crucial for understanding
pinning and vortex dynamics in the flux-flow regime. We note

that the equation of motion for a single skyrmion has been
reported recently.17–22 However the full equation of motion
including the interaction between skyrmions, and interaction
between skyrmions and defects is not available. The purpose
of the present work is to fill this gap and also to show several
applications of the derived equation of motion.

In this article we derive a concise particle-like equation
of motion for skyrmions using the Thiele’s approach23. The
emergent electromagnetism induced by the Berry phase leads
to an additional Magnus force that strongly suppresses the de-
pinning current by deflecting skyrmions away from the pin-
ning centers. By applying the derived equation of motion to
the study of skyrmion lattice rotation in the presence of a tem-
perature gradient, we reproduce recent experimental results.
We use the same equation of motion to investigate the quan-
tum and thermal creep motion of a skyrmion in a pinning po-
tential. Finally, we validate the particle model by computing
depinning transitions and comparing against results obtained
with the original continuum model.

II. EQUATION OF MOTION

We consider a thin film of a chiral magnet with
Dzyaloshinskii-Moriya (DM) interaction which supports
skyrmions.1–3,24,25 The magnetic moments are described by a
unit vector n(r). The corresponding action for the magnetic
moments n can be written as

S = S B −
dαg

γ

∫
dtdt′d2r

[
n(t) − n(t′)

t − t′

]2

−

∫
dtH , (1)

S B = d
∫

d2rdtz†i
(

1
γ
∂t −

~

2e
J · ∇

)
z, (2)

where z ≡ |z〉 is the spin coherent state defined as n ·σ|z〉 = |z〉.
σ is the vector of Pauli matrices and d is the film thickness.
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FIG. 1. (color online) Schematic view of an electron (yellow sphere
with arrow) passing through a skyrmion (colored arrows). The spin
of the electron follows the spin texture of the skyrmion, giving rise to
an emergent magnetic field that couples the electronic orbital motion.
The black arrows (dots) are the spin projection in the x− y plane and
the spins in the ferromagnetic state are along the z axis.

Here, γ = a3/(~s) with a the lattice constant and s the total
spin. The first term in S B describes the Berry phase for the
precession of a spin at r = (x, y). In the presence of con-
ducting electrons, the electrons become fully polarized by the
local moments n in the large Hund’s coupling limit, as de-
picted in Fig. 1. The second term in S B is responsible for the
Berry phase that the electron picks up when it moves around
the skyrmion. The term proportional to αg accounts for the
Gilbert damping. The spin Hamiltonian is

H = d
∫

dr2
[ Jex

2
(∇n)2 + Dn · ∇ × n −Ha · n

]
. (3)

The first term is the exchange interaction, the second term
is the DM interaction, which breaks spatial inversion sym-
metry, and the last term is the Zeeman energy. The exter-
nal magnetic field is perpendicular to the film. Systems gov-
erned by Eq. (3) support a skyrmion phase in an interme-
diate magnetic field 0.2D2/Jex < Ha < 0.8D2/Jex.25 The
skyrmion is characterized by the topological charge density
Q(r) =

∫
dr2n · (∂xn × ∂yn)/(4π) = ±1.

According to Eqs. (1) and (2), the spin dynamics is gov-
erned by the Landau-Lifshitz-Gilbert equation26–28

∂tn =
~γ

2e
(J · ∇)n − γn ×Heff + αg∂tn × n, (4)

with the effective magnetic field Heff ≡ δH/δn. In metal-
lic chiral magnets, the motion of skyrmions generates electric
fields, hence induces a dissipative current Jdiss = σ~[n · (∇n×
∂tn)]/(2e), where σ is the conductivity.17 In insulating mag-
nets, such a dissipative current is absent because σ = 0. The
current density in Eq. (4) thus is the sum of the external cur-
rent JB and the dissipative current Jdiss, J = JB + Jdiss.

Equations (1)-(4) describe the skyrmion dynamics as well
as its deformations. Skyrmions can be treated as particles

as long as deformations of their internal structure remain
small. In other words, a particle-like description assumes that
skyrmions have a rigid internal structure. Such rigidity is de-
termined by the frequency of the normal modes associated
with small fluctuations of the spin texture around the station-
ary state. Here it is important to not that the Zeeman and the
DM terms remove any continuous symmetry except for trans-
lations. Therefore, the only Goldstone mode arises from trans-
lations of the rigid skyrmion. Modes associated with the inter-
nal skyrmion structure always have a finite frequency. This fi-
nite frequency gap increases with magnetic field and provides
a natural justification for treating skyrmions as particles. To
treat skyrmions as point particles, we make the following two
approximations. We assume a skyrmion density such that the
overlap between different skyrmions is small. We also assume
that the structure of moving skyrmions is the same as that in
the static case. The internal structure of skyrmions becomes
irrelevant under these conditions, which are satisfied in the
low velocity region for certain magnetic fields.29 We first de-
rive the equation of motion for a skyrmion in the particle-level
description based on the Thiele’s approach23:

4πα
γ

vi = FM + FL +
∑

j

Fd(r j − ri) +
∑

j

Fss(r j − ri), (5)

where vi is the skyrmion velocity. Equation (5) is the main
result of the present work. The term on the left-hand side
accounts for the damping of skyrmion motion, which is pro-
duced by the underlying damping of the spin precession and
damping due to the conduction electrons localized in the
skyrmions. Thus α = αgη + αση

′ with

ασ = 4π
(
~

2eξs

)2

γσ, (6)

η = ηµ =
1

4π

∫
skyrmion

dr2(∂µn)2, (7)

η′ =
ξ2

s

16π2

∫
skyrmion

dr2[n · (∂xn × ∂yn)]2. (8)

where the integration in Eqs. (7) and Eqs. (8) is performed
around the skyrmions and ξs ∼ Jex/D is the size of skyrmions.
Here µ = x, y in Eq. (7). η ≈ 1 and η′ ≈ 1 depends weakly on
Jex/D for Jex/D � a. For typical parameters, ασ � αg.17 In
Eq. (5), FM = 4πγ−1ẑ×vi is the Magnus force per unit length,
which is perpendicular to the velocity. FL = 2π~e−1ẑ × JB
is the Lorentz force due to the external current, that arises
from the emergent quantized magnetic flux Φ0 = hc/e car-
ried by the skyrmion in the presence of a finite current. Fss
is the pairwise interaction between two skyrmions and Fd is
the interaction between skyrmions and quenched disorder. It
is clear from Eq. (5), that the rigid skyrmion does not have an
intrinsic mass. For thin films, the skyrmions are straight in the
direction perpendicular to the film, and the forces in Eq. (5)
are defined per unit length. A similar equation of motion was
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considered before in the context of vortices of type II super-
conductors.16 However, the Magnus force is negligibly small
for superconducting vortices in most cases.16

The equation motion for a single skyrmion [without the
terms Fd and Fss in Eq. (5)] can be derived heuristically. In
stationary state, the skyrmion and conduction electrons form a
composite object and move together. Let us focus on the con-
duction electrons inside the skyrmion. The electric current
density inside the skyrmion is

Je = σ‖E + σ⊥ẑ × E, (9)

where σ‖ and σ⊥ is the longitudinal and Hall conductivity.
Using the Drude model, we have

σ‖ =
e2ρeτe

m
1

1 + (ωcτe)2 , σ⊥ =
e2ρeτe

m
ωcτe

1 + (ωcτe)2 , (10)

where τe is the electron relaxation time, ρe ∼ 1/a3 is the elec-
tron density and ωc = eBe/(mec) is the cyclotron frequency
with the electron mass me, because the electrons experience
the emergent magnetic field Be ≈ Φ0/(ξ2

s ). The electric field
is E = Be × v/c. Substituting E into Eq. (9) and taking the
cross product ×Φ0ẑ/c at both sides of Eq. (9), we obtain the
equation motion for conduction electrons

πρe
ωcτe

1 + (ωcτe)2 v = πρe
(ωcτe)2

1 + (ωcτe)2 ẑ × v + ẑ × JeΦ0/c, (11)

which is also the equation of motion for the skyrmion. For
a strong internal field, ωcτ � 1 and the Magnus force dom-
inates. The derivation based on the Landau-Lifshitz-Gilbert
equation is present in Sec. II A.

The action for the particle model of Eq. (5) can be written
as

S p

d
= S B,p − U(r) −

4πα
γ

∫
dtdt′

[
r(t) − r(t′)

t − t′

]2

, (12)

S B,p =
4π
γ

[
x
(

1
2
∂ty −

~γ

2e
Jy

)
− y

(
1
2
∂t x −

~γ

2e
Jx

)]
, (13)

where U(r) is the potential per unit length produced by other
skyrmions and pinning sites. A unique feature is that x and
y are conjugate variables, which is a hallmark of the Berry
phase, as given by S B in Eq. (2).

One can treat the Magnus force FM as originating from
an effective transverse magnetic field, Bz = 4πcd/(γq), that
couples to a charged moving particle with charge q. This
emergent magnetic field originates from the Berry phase.
The Magnus force does not produce work, but it affects the
skyrmion trajectory. As we will see later, skyrmions are eas-
ily deflected by pinning centers because of the Magnus force.
This effect explains the very weak pinning that has been ob-
served in different experiments.

In the present work, we focus on the adiabatic spin trans-
fer torque described by the term, ~γ(J · ∇)n/(2e), in Eq. (4).
Generally, there will be also non-adiabatic spin transfer torque
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FIG. 2. (color online) Profile of θ(r) obtained from a numerical solu-
tion of Eq. (16) for different values of the magnetic field.

given by the expression, −ζ~γn × (J · ∇)n/(2e).28 Our deriva-
tion is readily generalized to the non-adiabatic spin transfer
torque, which yields additional force at the right-hand side of
Eq. (5), Fnon = 2π~ζe−1JB. The effects of the non-adiabatic
spin transfer torque on skyrmion dynamics was studied re-
cently in Ref. 20.

We estimate the force using the typical parameters for
MnSi,17 a ≈ 2.9 Å, Jex ≈ 3 meV/a, D ≈ 0.3 meV/a2, α ≈ 0.1
and s ≈ 1. At a velocity v = 1 m/s, we estimate the dissipative
force per unit length to be Fdiss ≡ 4παv/(γ) ≈ 5 × 10−6 N/m;
the Magnus force per unit length is FM ≈ 5 × 10−5 N/m.
Thus FM � Fdiss. The repulsive force per unit length be-
tween skyrmions for d ≈ 20 nm is Fss ≈ 10−5 N/m at a
separation rd = 10 nm (see Fig. 3 below). The Lorentz
force per unit length at a current density JB = 106 A/m2 is
FL ≈ 4×10−9 N/m. Since the depinning current for skyrmion
lattice is of the order of 106 A/m2,13–15 we thus estimate the
pinning fore per unit length as Fd ≈ 4 × 10−9 N/m.

A. Derivations

Spins precess collectively when a rigid skyrmion moves
with velocity v, ns(r − vt), and their evolution is governed
by the equation of motion

∂tns =
~γ

2e
(J · ∇)ns − γns ×Hi + αgns × ∂tns, (14)

where Hi = Hs + Hd. Hs is the magnetic field produced by
other skyrmions and Hd is the field produced by defects. The
effective field H0 ≡ δH/δns due to the skyrmion ns does not
contribute to Hi because ns × H0 = 0 for a rigid skyrmion. If
we first multiply both sides of Eq. (14) by ×ns (cross product)
and then by ·∂µns (dot product), we obtain

αv =
γ

4π

[
FM + FL +

∫
dr2H⊥(r′ − r) · ∇rns(r)

]
, (15)
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after integrating over the area around the skyrmion. Here H⊥
is the field component perpendicular to ns and we have used
that

∫
dr2∂xns · ∂yns = 0 for a rigid skyrmion. The interaction

potential between a skyrmion at r and an another skyrmion
at r′ is Uss(r′ − r) = −

∫
dr′′2ns(r − r′′) ·Hs(r′ − r′′) and the

corresponding force is Fss =
∫

dr′′2∇rns(r−r′′)·Hs,⊥(r′−r′′).
The self-energy of the skyrmion in the presence of defects is
Es(r − r′) = −

∫
dr′′2ns(r − r′′) ·Hd(r′ − r′′), where Hd(r) =

Jex(r)∇2ns/2−D(r)∇×ns +B. The pinning force is then given
by Fd =

∫
dr′′2∇ns(r − r′′) · Hd,⊥(r′ − r′′). Thus, Eq. (15)

reduces to Eq. (4) if we replace the integral by the interaction
force.

To calculate the interaction between skyrmions and the in-
teraction between skyrmions and defects, we need to know
the structure of a single skyrmion. An isolated skyrmion is
described by ns(r, φ) = sin θφ̂+ cos θẑ in the polar coordinates
(r, φ) with φ̂ and ẑ being the unit vectors along the correspond-
ing axises. θ(r) is determined by minimizingH in Eq. (3),

− r∂2
rθ − ∂rθ + cos(2θ) +

sin(2θ)
2r

+
β

2
r sin(θ) − 1 = 0, (16)

with the boundary condition θ(r = 0) = π and θ(r → +∞) = 0,
where we have renormalized the distance r as r → r/(Jex/D),
and β = 2HaJex/D2. The profile of θ(r) for different β is
shown in Fig. 2. There are two length scales associated with
a skyrmion. θ decreases linearly in r for r � 1, while the
asymptotic solution far away from the center of the skyrmion,
r → ∞, is θ ∼ K0(r/ξ) with a healing length ξ =

√
2/β. Here

K0 and K1 below are the modified Bessel functions. The spin
recovers exponentially to the fully polarized state due to the
finite energy gap in the spectrum of the spin wave excitations
that is induced by the external field. One may define the core
region of the skyrmion as θ(r < Rc) < π/2.

FIG. 3. (color online) Force between two skyrmions as a function
of the separation rd in two different magnetic fields. Symbols are
obtained from a numerical solution of Eq. (4) and lines are fits to
K1(rd/ξ), with ξ = D/

√
Ha Jex. Inset: stationary configuration of

two skyrmions at rd = 3.6Jex/D. The vectors denote the nx and ny

components and the nz component is represented by the color scale.
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FIG. 4. (color online) (a) Interaction force between a skyrmion and
a defect for different strength and size of defect. Lines are results
obtained from full numerical calculations and symbols are results
obtained by assuming a rigid skyrmion structure.

Since the interaction between two skyrmions is induced
by the overlap between both spin textures, it must depend
on the length ξ. To calculate the interaction between two
skyrmions numerically (see Appendix A), we initially pinned
the two skyrmions at a fixed separation, rd, by freezing the
spins within a radius r ≤ Jex/D during the time evolution dic-
tated by Eq. (4), and calculated the energy as a function rd.
The results shown in Fig. 3 indicate that the interaction decays
exponentially and it is well described by Fss ∼ K1(rd/ξ).

We next proceed to study the interaction between
skyrmions and defects. The electronic density is not homoge-
neous in real systems leading to an inhomogeneous exchange
interaction Jex produced by the double-exchange mechanism.
We model the defects by the following profile of Jex:

Jex(r) = J0

1 +
∑

i

Jd exp[−|r − rd,i|/ξd]

 , (17)

where Jd characterizes the strength of the defects and rd,i is
the pinning center. The characteristic size of the defects, ξd,
is comparable to the inter-atomic separation. For weak pin-
ning, we can still use the rigid approximation for skyrmions.
In this case the interaction energy is just the self-energy of the
skyrmion given by using Jex(r) in Eq. (17). We first obtain
the structure of the skyrmion from Eq. (16) and then calcu-
late its self-energy with Eq. (3). We also do a full numerical
relaxation by holding the spin at the center of the skyrmion
unchanged in order to pin the skyrmion at a desired position.
Both methods yield consistent results, as shown in Fig. 4.
Several observations are as follows: 1) The length scale of
the exponentially decaying force at a large distance is given
by the size of defects ξd. Because the main contribution to
the self-energy comes from the core of the skyrmion, the ex-
ponential tail does not contribute significantly and the inter-
action range is determined by ξd. 2) The force is maximized
when the separation becomes close to the skyrmion radius,
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rd ≈ Rc, and it drops when the skyrmion gets even closer to
the defect and finally vanishes when the core coincides with
the center of the defect. 3) Because the amplitude of the force
is proportional to the strength of the defects, the force can
be expressed as Fd ∼ Jdexp (−rd/ξd) for large separations.
4) The force is attractive for Jd < 0 and it is repulsive for
Jd > 0, so skyrmions prefer to stay in the Jd < 0 region to
minimize their self-energy. 5) The non-uniformity of electron
density in real solids (size of defects) is of the order of the
inter-atomic length, ξd ∼ 0.1 nm, that is much smaller than
the typical skyrmion size. Thus, the interaction between de-
fects and skyrmions is extremely weak. This is one of the
reasons why the pinning of skyrmions is very weak.

III. APPLICATIONS

We apply the particle model of skyrmions to study the ro-
tation of the skyrmion lattice in the presence of a temperature
gradient, as well as the creep motion. We also compare the
particle and continuum models by considering the depinning

FIG. 5. (color online) (a) and (b) Real-space configuration of the
skyrmion lattice in the absence of temperature gradient (a) and in the
presence of temperature gradient (b). For clarity, only part of the
configuration is shown. (c) Bragg peaks (green dots and lines) of the
skyrmion configurations with a temperature gradient. The triangu-
lar skyrmion lattice is rotated and distorted. The Bragg peaks for a
perfect triangular lattice without a temperature gradient (orange lines
and dots) are shown for comparison.

transition.

A. Rotation of skyrmion lattice

Recent neutron scattering experiments have shown that
the skyrmion lattice rotates in the presence of a temperature
gradient.13 The rotation was explained in Refs. 18 and 19 by
using a continuum model. Here we show that the rotation can
also be explained by using our particle model in Eq. (5).

Fss = Fd = 0 in the crystal phase without defects. The
Hall angle of the skyrmion trajectory is tan θH = vy/vx = −α
when the current is along the x direction. The damping coef-
ficient, α, has two contributions: the Gilbert damping and the
dissipation due to the electric field induced by the skyrmion
motion17. The latter contribution is dominant. Thus, α ∼ σ,
where σ(T ) is the temperature-dependent conductivity. The
temperature gradient leads to a spatial variation of the Hall
angle that exerts a finite torque on the skyrmion lattice. In
the absence of pinning, the lattice keeps rotating with a finite
angular velocity. However, pinning is always present real sys-
tems due to the underlying atomic crystal structure that favors
one particular orientation of the skyrmion crystal. An addi-
tional pinning arises from the geometric confinement of finite
samples. The competition between torque and crystal pinning
thus yields to a stationary state in which the skyrmion lattice
is rotated by a finite angle. The lattice keeps rotating with fi-
nite angular velocity for a sufficiently large torque induced by
large enough currents and/or temperature gradients.

We perform numerical simulations of Eq. (5) by modeling
the temperature gradient with α(x) = 0.6 − 0.5(2x − Lx)2/L2

x,
where Lx is the length along the x direction. The current is
also parallel to the x direction and we use a simulation box
with aspect ratio Lx : Ly = 2 :

√
3 and periodic boundary

conditions. These boundary conditions favor a particular ori-
entation of the principal axis of the skyrmion lattice, which
is parallel to the x direction. In the stationary state, we find
that the skyrmion lattice is rotated by a finite angle relative to
the case of zero temperature gradient α0 = 0.1 [see Fig. 5].
In addition to the rotation, there is a small distortion of the
skyrmion lattice. Thus the experimental observation can be
explained with the particle model in Eq. (5).

B. Creep motion of skyrmions

The skyrmions can easily leave the pinning potential either
by quantum or/and thermal fluctuations because pinning is
weak. This phenomenon leads to creep motion. We consider
the dynamics of a single skyrmion in a pinning potential U(r).
Because α � 1 for real materials, such as MnSi, we will ne-
glect the damping for simplicity. The quantum creep rate for
Eq. (5) was calculated in Refs. 16 and 30 for superconducting
vortices. To be specific, we will consider a pinning potential
per unit length

U(x, y) = Ud

(
y2

λ2 +
x2

λ2 −
x3

λ3

)
. (18)
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The action of Eq. (12) becomes

Sp

d
=

∫
dτ

[
4π
γ

y∂τx −
y2Ud

λ2 + Ud

(
x2

λ2 −
x3

λ3

)]
, (19)

in the imaginary time representation t → −iτ. Here y
plays the role of momentum; thus, if the potential is sep-
arable, i.e. U(x, y) = U1(x) + U2(y), the y dependent po-
tential is not inverted in the imaginary time representation.
Equation (19) is the same as the one for a particle with
mass m̃ = λ2/(2Ud) moving in a one dimensional potential
U(x)/Ud = x2/λ2 − x3/λ3. The skyrmion does not have an in-
trinsic mass according to Eq. (5). However, it gains an extrin-
sic mass in the presence of a pinning potential. The quantum
rate, Γq ∼ exp(−Sq/~), with

Sq

~
=

32πλ2d
15γ~

, (20)

is independent of the height of the pinning potential, but it
depends on the width. The quantum tunneling of skyrmions
between pins is weak because Sq/~ ∼ λ

2d/a3 � 1.
We now consider the escape rate due to thermal fluctua-

tions. For this purpose we add a noise force Fn in Eq. (5)
which satisfies

〈Fn〉 = 0,
〈
Fn(t)Fn(t′)

〉
= 2kBT

4πα
γ
δ(t − t′), (21)

according to the fluctuation-dissipation theorem. The thermal
rate, ΓT = Ω exp(−∆U/kBT ), is dominated by the exponential
factor, exp(−∆U/kBT ), where ∆U = 4Udd/27 is the height
of the pinning potential. This factor reflects the Boltzmann
distribution of the skyrmion in the potential U, and is thus
independent of the dynamics (see Appendix B). In contrast,
the attempt frequency, Ω, does depend on the dynamics and
the Magnus force.

Thermal escape becomes dominant at high temperatures,
while quantum creep is dominant in the low temperature re-
gion. The crossover temperature between quantum and ther-
mal tunneling is kBT ∗ = ∆U~/Sq = 5γ~Ud/(72πλ2), which
depends on the ratio of the width of the pinning potential and
its height. T ∗ can be increased for properly engineered pin-
ning potentials. Since the skyrmion carries a magnetization
that is opposite to the ferromagnetic background, the creep
motion manifests itself in experiments as a decay of the oppo-
site magnetization. Thus, like in the case of superconducting
vortices, the rate can be obtained by measuring the time de-
pendence of the magnetization.

C. Comparison between continuum and particle models

To validate the particle model, we perform numerical sim-
ulations with both the particle and continuum models. We
calculate the velocity of skyrmions as a function of the driv-
ing force when defects are present. The defects are modeled
as in Eq. (17). Skyrmions are pinned in a low driving cur-
rent, and they depin from the defects when the Lorentz force
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5 . 0 x 1 0 - 4

1 . 0 x 1 0 - 3

1 . 5 x 1 0 - 3
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FIG. 6. (color online) Comparison between the continuum and parti-
cle models. The lines are obtained with the continuum model while
the symbols are obtained with the particle model. We convert the
velocity of skyrmions in the particle model to an electric field by
multiplying by an appropriate scaling factor. The inset is the scaling
of the electric field near the depinning transition with Jc = 0.007.
The lines in the inset are power-law fits.

is high enough. The particle model yields results that are in
reasonable agreement with the continuum model. Near depin-
ning, the electric field behaves as Eµ ∼ (J − Jc)βµ , where Jc
is the depinning current. From the numerical data we obtain
βx ≈ 1.55 and βy ≈ 1.93. The exponent βµ > 1 indicates that
the depinning is plastic, i.e., some skyrmions escape from the
pinning centers, while the others remain pinned. Eventually,
all skyrmions become depinned when the current is further
increased.

It is also interesting to discuss the effect of the Magnus
force on the pinning of skyrmions. The Magnus force dom-
inates over the dissipative force, FM � 4παv/γ, for α � 1.
When a skyrmion moves around a pinning center or an obsta-
cle, it is easily scattered with a velocity perpendicular to the
pinning force or repulsive force. Thus, the skyrmion avoids
passing through the pinning center and its influence is mini-
mized, as shown in Fig. 7 (a) and (b). When the dissipative
force is dominant, α � 1, the skyrmion has to pass through
the pinning center so the pinning becomes very strong, as it
shown in Fig. 7(c). We performed numerical simulations for
several α ratios [see Fig. 7 (d)]. The depinning current is
weaker for smaller values of α, i.e., when the Magnus force is
dominant.

IV. DISCUSSION

The equation of motion for the center of mass of a rigid
skyrmion lattice has been derived in Ref. 19 by using an
approach proposed by Thiele23. This equation is similar to
Eq. (5) for Fss = 0 and Fd = 0. The equation of motion for
the collective excitations in the skyrmion lattice was derived
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FIG. 7. (color online) (a) and (b): Schematic view of a skyrmion
passing through a pinning center (a) and obstacle (b) when the Mag-
nus force is dominant. When the Magnus force is dominant over the
dissipative force, the skyrmion is deflected by the pinning centers or
obstacles. (c) Same as (a) and (b) except that the dissipative force is
dominant. The skyrmion has to overcome the pinning site or obsta-
cle by passing through it. (d) Numerical results of current-velocity
curves with different α. The depinning current increases with α.

in Ref. 17, and it also shares a similar structure with Eq. (5).
The equation of motion presented in this work is more general
because it also describes the dynamics of a single skyrmion
and its interaction with other skyrmions and defects.

The resulting equation of motion is similar to that of
vortices in type II superconductors. However, the pinning
of superconducting vortices is much stronger than that of
skyrmions because of the following reasons. The Magnus
force is negligibly small for vortices, except in the super clean
region, which has not yet been realized experimentally.16 In
contrast, the Magnus force of skyrmions is stronger than the
dissipative forces. Vortices have to pass through the pinning
centers, which leads to large critical currents, while skyrmions
can be easily deflected by the pinning center because of the
dominant Magnus force.20 In addition, defects suppress su-
perconductivity over a range that is equal or larger than the
superconducting coherence length (linear size of the normal
vortex core). This matching of length scales makes the pin-
ning rather strong. In contrast, the characteristic length of de-
fects (inter-atomic spacing) is much smaller than the core size
of the skyrmions.

In conclusion, we have derived an effective particle model
for skyrmions, which includes repulsive skyrmion-skyrmion
interactions, interaction with defects and the role of the Mag-
nus force. The model successfully describes the rotation of
the skyrmion lattice in the presence of a temperature gradient
and explains the small depinning thresholds that have been ex-
perimentally observed. It also provides clear predictions for
quantum and thermal creep. Finally the model has been vali-
dated by direct comparisons resulting depinning and transport
curves against the original continuum model. Our particle
model offers a convenient and transparent theoretical frame-
work for the future computational and analytical studies of
skyrmions.
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Appendix A: Numerical details

In simulations, we introduce dimensionless units in Eqs. (3)
and (4). Length is in unit of Jex/D; energy is in unit of J2

ex/D;
magnetic field is in unit of D2/Jex; time is in unit of Jex/(γD2);
current is in unit of 2De/~. We use the periodic boundary con-
dition in both directions. To find the ground state, we anneal
the system by adding a Gaussian noisy magnetic field along
the z direction in Heff . Equation (4) is solved by an explicit
numerical scheme developed in Ref. 31. The current is along
the x direction. In calculations of the results in Fig. 3, we use
a simulation box of size Lx × Ly = 30× 10. The system is dis-
cretized with a grid size of 0.2. In calculations of the results
in Fig. 6, the defects are modeled by Eq. (17) with Jd = 1.0
and ξd = 1.0, where the interaction between skyrmions and
defects is repulsive. The Nd = 500 defects are randomly dis-
tributed in a simulation box of size Lx × Ly = 100 × 100. The
I-V curves are obtained by averaging over 20 realizations of
random defects.

In the particle-level simulation, we take the interaction
between skyrmions as Fss = Fs0K1(rd/ξ)r̂d and the repul-
sive interaction between skyrmions and defects as Fd =

Fd0 exp(−rd/ξd)r̂d. Here r̂d is a unit vector along rd. In di-
mensionless units, the equation of motion becomes

αvi =

N∑
j

Fss(ri − r j) +

Nd∑
j

Fd(ri − rd, j) + ẑ× J + ẑ× vi. (A1)

In simulation ξd = 2ξ = 2.0, Fs0 = 1.0 and Fd0 = 0.6. The
number of skyrmions N and the number of defects Nd are N =
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Nd = 225. The simulation box is Lx × Ly = 45 × 39. We use
the second-order Runge-Kutta method to integrate Eq. (A1)
with a time step ∆t = 0.05.

Appendix B: Thermal activation of a skyrmion over a barrier

Here we calculate the thermal activation rate for a skyrmion
in a metastable potential U(x, y). The equation of motion for
the skyrmion in dimensionless units is

f̃ + [ẑ × v − ∇U] = αv, (B1)

with a Gaussian noisy force
〈

f̃µ(r, t)
〉

= 0 and

〈
f̃µ(r, t) f̃µ′ (r′, t′)

〉
= 2αTδ

(
r − r′

)
δ
(
t − t′

)
δµ,µ′ . (B2)

Using the nonequilibrium path integral approach32, the proba-
bility of finding the skyrmion at r′ at t′ starting from the initial
position r0 at t0 is

p(r′, t′|r0, t0) =

∫
D[r, r̃] exp

(∫
dtL

)
, (B3)

L = ir̃ ·
[
∂tr −

(
−

1
α
∂rU +

1
α

ẑ × v
)]
−

T̃
2

r̃2, (B4)

with T̃ = 2T/α. It is more convenient to use the Hamiltonian
description

H = p · ∂tr − L =

−

Aα2
(
p2

x + p2
y

)
2
(
α2 + 1

) +
∂xU

(
αpx + py

)
α2 + 1

+
∂yU

(
αpy − px

)
α2 + 1


where the conjugate momentum p is defined as px = ∂L/∂vx
and py = ∂L/∂vy. For a weak noise T̃ � 1, the dominant con-
tribution to the path integral are those trajectories governed
by the standard Hamiltonian dynamics. For the Hamiltonian
dynamics, H is conserved. Initially for the skyrmion at the
well rw, the system has H = 0 since px = py = 0. We then
look for the trajectories with H = 0 and with minimal action
S T = −

∫
dtL. One obvious solution forH = 0 is px = py = 0

with S T = 0. This is a non-fluctuating trajectory, which does
not contribute to the thermal activation of skyrmions. There is
another trajectory with a minimal S T

pµ = −
2

T̃α
∂µU, (B5)

with µ = x, y. The corresponding equation of motion is

[ẑ × v − ∇U] = −αv. (B6)

Compared with Eq. (B1), the sign of damping is changed.
Thus Eq. (B6) describes the motion of a skyrmion in a po-
tential with a negative damping, which forces the skyrmion to
leave the well, and contributes to the thermal activation. The
action S T for this trajectory is

S T =

∫
dtp · v =

2
αT̃

∫ rb

rw

[∇U · dr] =
∆U
T
, (B7)

where the integration is from the well rw to the barrier rb of
the potential U, and ∆U = U(rb) − U(rw) is the height of
the barrier. The action does not depend on the Magnus force.
The reasons are as follows: first the dynamics of skyrmions is
irrelevant for the thermal activation of skyrmions over the bar-
rier. The probability distribution of skyrmion in the potential
only depends on the potential energy. Secondly, the Magnus
force does not produce work when skyrmions move.
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schor, M. Garst, and A. Rosch, Science 330, 1648 (2010).

14 X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Ki-
moto, Y. Matsui, Y. Onose, and Y. Tokura, Nature Communica-
tions 3, 988 (2012).

15 T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz,
C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Nature
Physics 8, 301 (2012).

16 G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin, and
V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

17 J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, Phys. Rev.
Lett. 107, 136804 (2011).

18 K. Everschor, M. Garst, R. A. Duine, and A. Rosch, Phys. Rev. B
84, 064401 (2011).

19 K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Mühlbauer,
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