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We present a Quantum Monte Carlo study of the Ising model in a transverse field on a square
lattice with nearest-neighbor antiferromagnetic exchange interaction J and one diagonal second-
neighbor interaction J ′, interpolating between square-lattice (J ′ = 0) and triangular-lattice (J ′ = J)
limits. At a transverse-field of Bx = J , the disorder-line first introduced by Stephenson, where the
correlations go from Neel to incommensurate, meets the zero temperature axis at J ′ ≈ 0.7J . Strong
evidence is provided that the incommensurate phase at larger J ′, at finite temperatures, is a floating
phase with power-law decaying correlations. We sketch a general phase-diagram for such a system
and discuss how our work connects with the previous Quantum Monte Carlo work by Isakov and
Moessner for the isotropic triangular lattice (J ′ = J). For the isotropic triangular-lattice, we
also obtain the entropy function and constant entropy contours using a mix of Quantum Monte
Carlo, high-temperature series expansions and high-field expansion methods and show that phase
transitions in the model in presence of a transverse field occur at very low entropy.

PACS numbers: 05.10.-a, 05.30.Rt, 75.10.Jm, 75.40.Mg,

I. INTRODUCTION

The Ising model in a transverse magnetic field,

Ĥ = +
∑
i,j

Jij Ŝ
z
i Ŝ

z
j −Bx

∑
i

Ŝx
i , (1)

illustrates a variety of interesting statistical mechanics
behaviors in part because of the simplicity of its
mapping to an equivalent classical problem in one higher
dimension1–6. In the case when the exchange coupling
Jij < 0 is ferromagnetic, the model exhibits a quantum
phase transition: increasing Bx causes the emergence of
a paramagnetic phase at T = 0. On the other hand, on
a triangular lattice when Jij > 0 is antiferromagnetic,
Bx can have the opposite effect and cause order to
occur by removing7 the large ground state degeneracy
(s(T = 0) ≈ 0.32) present in the zero field case8. The
antiferromagnetic transverse field model on the isotropic
triangular lattice was studied by Isakov and Moessner9

using Quantum Monte Carlo simulations, who concluded
that there are three different phases: a paramagnet and
two distinct ordered phases distinguished by the relative
dominance of quantum or thermal fluctuations.
Experimental motivation for the study of the

transverse field Ising model dates back to deGennes10,
who considered the ferroelectric KH2PO4 in which a
double well structure of the proton position corresponds
to the Ising variable, and the transverse field represents
inter-well tunneling11. Much more recently, transverse
field Ising models have also begun to be realized
experimentally in cold atom systems and this provides
the immediate motivation for our work. The Maryland
group12 has assembled small, highly-connected clusters
of trapped 171Yb+ ions, and demonstrated a sharp

crossover from paramagnetic to ferromagnetic behavior
as the Ising coupling is scaled up relative to the transverse
field. Similarly, the Bollinger group at NIST13 is
exploring larger collections of up to hundreds of Be ions
in a Penning trap in triangular geometries with a spin-
dependent optical dipole force with an adjustable power
law decay. Transverse field Ising models with dipolar
interactions have also been considered14 in the context
of solid state systems such as the glassy low temperature
properties of LiHoxY1−xF4.
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In this paper we calculate the thermodynamics
and phase transitions in several specific instances
of the transverse field Ising model in two spatial
dimensions, using a combination of high temperature
and high field series expansions16,17 and continuous
time Quantum Monte Carlo (CTQMC) approaches5,9,18.
Our motivations are twofold. First, in light of the
developments in cold-atom systems, we study the
entropy function of the triangular lattice model with
ferromagnetic and then antiferromagnetic couplings. In
both cases CTQMC results are compared with high
temperature and high field expansions. When J > 0,
a key conclusion is that the ordered phases which are
induced by Bx 6= 0 occur at very low entropy per particle
s. For these transitions to be accessible experimentally,
s <

∼ 0.1 kB will typically be required. Longer range
couplings, present in the experimental systems described
above, are shown not to dramatically alter the isentropes.
In particular, ordered phases, if present, will still occur
only at rather low entropy.

Our second motivation is to understand how the
Ising-like Neel transition in an unfrustrated system
gives way to incommensurate order and Kosterlitz-
Thouless type behavior as frustrating further neighbor
interactions are added. For this, we consider a square
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lattice model with nearest neighbor interaction J and
an antiferromagnetic next-nearest-neighbor interaction
J ′ along one diagonal, which then interpolates between
the square and triangular lattice limits. There have
been many previous studies of Heisenberg and Hubbard
models in this geometry19, but we are not aware of any
previous work on the quantum Ising model except in
the weakly frustrated case20. Indeed, this model raises
several challenging questions for any numerical study, but
also, as we shall demonstrate, some interesting and novel
physics.

For the classical Ising model (Bx = 0) it is known21,22

that there is a conventional second order phase transition
for J ′<J , but that Tc vanishes for J ′ ≥ J . As
J ′ → J , the critical temperature vanishes as Tc ∼
2(J − J ′)/ln2. The order in the low temperature phase
remains commensurate in the two-sublattice pattern for
all J ′/J < 1. Stephenson introduced a disorder line in
the T/J , J ′/J parameter space, where the short-range
order in the system moves away from (π, π). Above
J ′/J = 0.6, the disorder line comes very close to the
phase transition line, but the phase transition remains
pinned to the (π, π) state. We would like to understand
the fate of the disorder line in presence of the transverse-
field Bx and see if there is a resulting incommensurate
order of the Kosterlitz-Thouless (KT) type as would be
expected for a system with an emergent phase variable
with XY symmetry as discussed by Bak and Villain23.

In the triangular-lattice limit studied by Isakov and
Moessner, the order is locked to a commensurate
3-sublattice pattern. This gives rise to 6th order
anisotropies for the emergent phase variable. Although
such an anisotropy is irrelevant at the finite temperature
phase transition from the paramagnetic phase, thus
giving rise to a KT transition with a power-law phase,
it ultimately succeeds in driving the system to long-
range order, hence their conclusion of 3 different phases
in the model. In the T = 0 limit, our model is
equivalent to a 3-dimensional system and therefore can
have a Lifshitz point and a true incommensurate long-
range ordered phase.23 However, there can not be such
a long-range ordered phase at finite temperatures. We
have not studied the very low temperature limit of our
model, where the system may, for some ranges of J ′/J ,
lock in to different commensurate phases, thus giving
rise to long-range order which could extend to some
finite but very low temperatures. Our system has some
similarities with the well studied ANNNI models24 as
far as the onset of incommensurate order is concerned.
However, one key difference from the ANNNI models is
that in the latter one particular direction is singled out
by the interactions and becomes the direction in which
incommensurate order and various commensurate lock-
ins occur. In contrast, in our model incommensurate
wave vectors and commensurate phases can have a much
more two-dimensional character.

The remainder of this paper is organized as follows. In
Sec. II we summarize our three calculational approaches,

Quantum Monte Carlo and high temperature and
high field expansions. In Sec. III we discuss the
square to triangular interpolation and the nature of
the phases and phase transitions. Although this is the
second of the motivations presented above, we discuss
it first, since it illustrates some of the rich physics
introduced by frustrating interactions. We defer to
Sec. IV the thermodynamics of the triangular lattice
antiferromagnetic Ising model of relevance to optical
lattice experiments. Sec. V summarizes our results.

II. CALCULATIONAL APPROACHES

A. Quantum Monte Carlo Method

We employ the CTQMC (Continuous Time Quantum
Monte Carlo) algorithm described in [9]. In this
method, we use the Suzuki-Trotter formalism to map
a 2D quantum Hamiltonian, which is on a triangular
lattice, onto the 3D classical Ising model on a stacked
triangular lattice. The number of layers Lτ in the extra
dimension is Lτ = β/ǫ, where β represents the inverse
temperature and ǫ the discretization step. The mapping
becomes exact as ǫ → 0. In this limit, the number
of layers becomes infinite and computationally much
less intractable. However, an alternate view as ǫ → 0
is to think of consecutive spins, which have the same
value along the extra dimension, as parts of continuous
segments rather than living on individual, discrete lattice
points. We treat these segments as our dynamical objects
in the simulation. This approach makes the simulation
algorithm non-local, memory efficient and allows one to
work explicitly in the ǫ → 0 limit.9,26

Measured quantities include the real space spin
correlations C(r),

C(r) = 〈Ŝz
i Ŝ

z
i+r

〉 , (2)

and their momentum space counterparts, the magnetic
structure factor S(q),

S(q) =
1

N

∑
r

eiq·rC(r) . (3)

We also extract the Binder ratio,

UL = 1−
〈M4〉

3〈M2〉2
(4)

where M2 is the value of the structure factor at the
ordering wave vector.
Entropy s is measured by numerical integration of the

internal energy 〈E〉

s(T ) = ln 2 +
〈E(T ) 〉

T
−

∫
∞

T

dT ′
〈E(T ′)〉

T ′2
(5)

We have checked that our algorithm leads to data in
complete agreement with exact diagonalisation results
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FIG. 1: (Color online) Binder crossing for J ′/J = 0.5 at
Bx/J = 1. For J ′/J=0 we have the square lattice Tc/J =
2.269. Here the critical temperature has been suppressed by
a factor of two by the frustration introduced by the next-near
neighbor interaction J ′ and by the quantum fluctuations due
to Bx.

on the 3 × 3 lattice, and other limiting cases, for which
analytic solutions are possible.

We imposed periodic boundary conditions and did
simulations for different lattice sizes L and different sets
of the magnetic field Bx and the coupling constant Jij .
For each simulation, we estimated the autocorrelation
time τ and performed 5000τ Monte Carlo sweeps for
thermalisation and 105τ to carry out the measurements.
Results for the ferromagnetic case were on 30x30 lattices,
and for the antiferromagnetic case on 27x27 lattices,
unless otherwise stated.

B. High Temperature Series Expansions

High temperature series expansions are based on a
Taylor series expansion for the Boltzmann factor

exp (−βĤ) =
∑
n

(−β)n

n !
Ĥn (6)

The trace of ĤnÔ, where Ô is some local operator
involves only a finite number of sites and hence can
be evaluated, up to some order, by a straightforward
though cumbersome method. A particularly efficient way
of calculating high order series expansions for various
extensive and intensive properties of the model in powers
of β is the Linked Cluster Method. The details of the
technique can be found in the literature.16,17 We have
used this approach to obtain thermodynamic properties
of the model for the triangular-lattice transverse-field
Ising model with nearest neighbor and second neighbor
interactions.
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FIG. 2: (Color online) Evolution of the static structure
factor with increasing J ′/J (ie as the triangular lattice is
approached) for Bx = 1, T = 1. For J ′/J < 0.7 the
structure factor is peaked at the AF wavevector q = (π, π).
The beginning of a shift away from this value is evident at
J ′/J = 0.7 and completely unambiguous at J ′/J = 1.0,
where the peak is at the expected triangular lattice value
(2π/3, 2π/3).

C. High Field Expansions

Since the field term of the Hamiltonian is exactly
soluble, one can also develop a series expansion in powers
of J/Bx for the ground state properties of the model. We
have not done such a high order expansion at T = 0.
However, we have used finite temperature, high field
expansions to order (J/Bx)

2, to calculate entropy and
other thermodynamic properties. These are useful in
determining the isentropic contours at low temperatures
and high fields. In general one expects very high order
expansions to be valid down to any relevant phase
transitions. Here, we expect a leading order expansion
only to be valid down to Bx ∼ qJ , where q is the
coordination number, or perhaps to somewhat smaller
Bx owing to the presence of frustration in the system.

III. SQUARE TO TRIANGULAR LATTICE

INTERPOLATION

In the introduction we briefly reviewed the physics
of the square to triangular lattice interpolation of the
classical antiferromagnetic Ising model. In this section,
we generalize this problem to the case when a transverse
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FIG. 3: (Color online) Phase diagram in the T/J vs J ′/J
plane. Pentagons are critical points representing a second
order phase transition. Stars mark the disorder line at which
the ordering wavevector shifts from (π, π). It denotes the
cross-over from the commensurate to the incommensurate
region. Diamonds represent critical temperatures obtained
by Isakov and Moessner in the triangular lattice limit. The
dashed line separates a KT phase from a paramagnetic phase.

field Bx is included, and connect to what is known about
the problem with Bx 6= 0 in the triangular and square
lattice limits. We consider a square lattice geometry with
near-neighbor coupling J and with an additional next-
near-neighbor interaction J ′ across one of the diagonals of
each plaquette. In the limit J ′ = J the triangular lattice
is realized. As mentioned in the introduction, the nature
of the phase diagram in the three dimensional space of
T/J,Bx/J, J

′/J is already understood in certain limiting
cases.
In the classical limit Bx = 0, Stephenson21 solved

the model analytically and calculated various correlation
functions. Because the square lattic is bipartite, without
loss of generality one may restrict consideration to a
ferromagnetic choice J < 0. The critical temperature as
a function of J ′/J is obtained from the transcendental
equation22

t′ =
t2 + 2t− 1

t2 − 2t− 1
(7)

where t′ = tanh (J ′/T ) and where t = tanh (J/T ).
This equation has solutions for which Tc increases from
the square lattice value Tc/J = 2.269 for additional
ferromagnetic coupling J ′ < 0, and for which Tc

decreases for antiferromagnetic J ′ > 0. The critical
temperature vanishes in the triangular limit J ′ = −J
and remains zero thereafter.
Similarly, in the J ′/J = 0 plane, the square lattice

has a second order phase transition with Tc = 2.269
at Bx = 0, and a Tc which decreases as Bx grows,
ending in a Quantum Critical Point at T = 0, Bx/J =
3.0516. Finally, in the J ′/J = 1 plane (antiferromagnetic

Ising model in a triangular lattice in a transverse field)
Isakov and Moessner argued9 that turning on Bx induced
an order-from-disorder transition in which there are in
fact two distinct (Kosterlitz-Thouless and clock) ordered
phases. The maximal critical temperature is Tc/J ≈ 0.4
at transverse field Bx/J ≈ 0.8. Their study motivates
us to pick a fixed value of Bx/J = 1 near this maximum
to provide a detailed description of the evolution from
square to triangular geometry.

Figure 1 shows an example of a Binder crossing which
can be used to locate the transition temperatures when
J ′/J is not too large. For the J ′/J = 0.5 value shown,
the crossing is well-defined and occurs at Tc/J ≈ 1.12.
For comparison, when the frustrating interaction and
transverse field vanish (J ′/J = 0 and Bx = 0) we have
Tc/J = 2.269.

We can track Tc from such Binder crossings only to
J ′/J ≈ 0.6. The reason is that, as with the Bx = 0
case discussed by Stephenson, a disorder line where
the structure factor peak shifts from q = (π, π) to
incommensurate values approaches the phase transition
line. The evolution of this incommensuration shift is
seen in Fig. 2. A peak in S(q) occurs at q = (π, π)
up to J ′/J ≈ 0.7. At this point the peak moves away
from the Neel value and evolves continuously towards the
triangular-lattice q = (2π/3, 2π/3), as shown in Fig. 2.

Figure 3 shows the analog of Stephenson’s classical
Ising model disorder line, which demarks the switch from
incommensurate peak in S(q) to a commensurate AF
peak, in the case of nonzero transverse field Bx/J = 1.
It provides further insight into the failure of the Binder
crossing procedure, which worked at J ′/J = 0.5 as seen
in Fig. 1. The phase above Tc for J ′/J > 0.6 no longer
has a peak in S(q) at q = (π, π), complicating the
Binder scaling analysis. It is important to note that
the disorder line is not a phase boundary, but rather a
cross-over line that separates the commensurate from the
incommensurate region. Below this line the short range
order becomes pinned at (π, π).

The interplay of this commensurate-incommensurate
transition with Isakov-Moessner’s observation of two
phase transitions in the triangular-lattice limit (J ′/J =
1) with the upper one being a Kosterlitz-Thouless
transition remains a tricky one. Our suggested phase
diagram is given in Fig. 3, where we show a dashed
line connecting a multicritical point to the upper phase
transition found by Isakov and Moessner. The lower
transition may simply form a dome in the phase diagram
near the triangular-lattice limit. As the magnitude of
Bx is reduced, the multicritical point will move closer
to J ′/J = 1 eventually ending at the highly degenerate
point of the T = 0 triangular-lattice Ising model.

Figures 4 and 5 provide numerical evidence for the
Kosterlitz-Thouless region in the interval 0.7 < J ′/J <
1.0 where the disorder line crosses the phase transition
line. Figure 4 shows the spatial decay of the real space
correlation function C(r) for several temperatures at
J ′/J = 0.8. It is clear that at T/J = 0.2 and 0.4 that
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FIG. 4: (Color online) Correlation function C(r) as a function
of r for several temperatures and transverse field Bx/J =
1. Upper Panel: J ′/J = 0.8: The evolution of C(r) with
r exhibits a clear qualitative difference for T/J = 0.2 and
T/J ≥ 0.6, and is consistent with power law decay in the
lower temperature range, and an exponential decay at the
higher temperatures. The function C(r) = 0.44r−1/4 (solid
line) shows the difference between power law nature of C(r) at
T = 0.2 and exponential decay for T ≥ 0.6. The oscillations
in C(r) are associated with the fact the structure factor peak
is not at q = (π, π). Lower Panel: J ′/J = 1.0: Same as upper
panel except in the triangular lattice limit. Oscillations are
now at wavevector q = (2π/3, 2π/3).

C(r) is decaying much more slowly than at T ′/J = 0.6
and higher. While this change is suggestive of a phase
transition to a long-range ordered phase, Fig. 5 puts
things on a firmer footing. Here a log-log plot of the
square of the structure factor versus linear lattice size
gives the linear behavior which defines the Kosterlitz-
Thouless phase for T = 0.2 and T = 0.4. The latter
temperature has the power law slope −1/4 expected at
TKT. At T = 0.6 the largest lattice sizes exhibit a decay
with slope −2, a value generated by the normalization
by N = L2 in Eq. 3, since the spatial sum gives a
contribution which is a lattice size independent constant
at high temperatures owing to the exponential fall-off of
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ln
M
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FIG. 5: (Color online) Below TKT the structure factor decays
as a power law with the lattice size, giving a straight line on
a log-log plot, as shown occurs here for T = 0.2 and T = 0.4
at J ′/J = 0.8 and Bx = 1.0. At higher T = 0.6 the slope
simply reflects the lattice normalization in Eq. 3.

C(r).

IV. ISENTROPES ON THE NEAREST

NEIGHBOR TRIANGULAR LATTICE

A. Ferromagnetic Case

We begin by showing in Fig. 6(a) the entropy function
for the ferromagnetic nearest-neighbor Ising model as a
function of temperature and three values of transverse
field. In this section, we will let J denote the magnitude
of the nearest-neighbor interaction. Fig. 6(b) shows the
entropy function as a function of Bx/J at four fixed
temperature values. In both cases the symbols represent
the results of the QMC simulations, while the solid lines
give the high temperature series expansion results. The
heat capacity as a function of temperature is shown in
Fig. 7 for the same Bx as the entropy plot. One can see
a dramatic suppression in the specific heat peak as the
quantum critical point Bxc = 4/67 is approached. In the
thermodynamic limit, this must imply a sharp reduction
in the amplitude for the specific heat divergence caused
by the substantial loss of entropy before the transition to
long-range order occurs.28,29

In Fig. 8 we show the phase diagram for the model
together with the isentropic contours. While there is
a very healthy amount of entropy in the system at the
transition in small transverse fields (it is approximately
46 percent of the total entropy), when Bx/J exceeds
4 the entropy at the transition is very small- less than
10 percent of the total entropy. The quantum critical
point is known from previous studies to be at Bx/J =
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FIG. 6: (Color online) (a) Entropy s versus temperature
T for several fixed values of the transverse field Bx. (b)
Entropy s versus transverse field Bx for several fixed values
of the temperature T . Squares (circles) are the results of
CTQMC simulations on 27x27 lattice. Solid curves are series
expansions.

4.67.25,26 We found that, as the quantum critical point
is approached and the transition temperature Tc goes to
zero, the entropy along the transition vanishes as T 2

c .
This is consistent with general scaling arguments.27 The
appearance of minima in the isentropes near the phase
transition line has been seen in a number of other classical
and quantum models30.

1 2 3 4
T/J

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

C
/J

Bx =0.5

Bx =1.5

Bx =4.0

FIG. 7: (Color online) Specific heat C(T ) for the
ferromagnetic nearest-neighbor model. The quantum
fluctuations introduced by the transverse field Bx reduce
Tc from the classical triangular lattice Tc = 3.64 until, for
sufficiently large Bx, order no longer occurs at any finite T .
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FIG. 8: (Color online) Phase diagrams and isentropes of the
ferromagnetic triangular lattice model in the temperature
(T/J) vs megnetic field (Bx/J) plane. Isentropes obtained
from CTQMC on a 27x27 lattice and high temperature
expansions. Phase boundary is obtained from the Binder
cumulant.

B. Antiferromagnetic nearest-neighbor triangular

lattice model

We now turn to the antiferromagnetic nearest-neighbor
Ising model on the triangular lattice in a transverse field.
The entropy as a function of temperature at fixed Bx and
as a function of Bx at fixed temperatures are shown in
Fig. 9. The heat capacity for a few selected Bx values as
a function of temperatures is shown in Fig. 10. Note that,
in this case, the peak in the heat capacity is associated
with short-range order. Any long range order occurs only
at much lower temperatures.

Fig. 11 shows the phase diagram and isentropes of the
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FIG. 9: (Color online) (a) Entropy s versus temperature
T for several fixed values of the transverse field Bx. (b)
Entropy s versus transverse field Bx for several fixed values
of the temperature T . Squares (circles) are the results of
CTQMC simulations on a 30x30 lattice. Solid curves are
series expansions.

antiferromagnetic model. Here, the phase boundaries
showing two transitions as a function of temperature
are taken from the work of Isakov and Moessner. Note
that the triangular lattice Ising model has a substantial
ground state entropy, but that must be removed at T = 0
with quantum fluctuations. This means that all contours
of constant entropy between the values of 0.320 and zero
must originate from the T = 0, Bx = 0 point. That
singular limit is difficult to approach numerically.

We see that a magnetic field of Bx/J slightly less than
unity leads to the largest transition temperature. But,
at the transition the entropy is rather small- only about
one tenth of the total entropy in the system. This shows
that these phase transitions involve a very small fraction
of the states and may not be easy to get to.
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FIG. 10: (Color online) Specific heat C(T ) for the
antiferromagnetic case. The peak in C(T ) is much broader
than when J < 0, but shows a similar suppression towards
T = 0 as Bx grows.
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FIG. 11: (Color online) Phase diagram and isentropes of the
near neighbor antiferromagnetic case obtained from CTQMC
on the 30x30 lattice in the T/J vs Bx/J plane and high
temperature expansions. Phase diagram was obtained by
Isakov and Moessner.

C. Effect of Longer Range Interactions

In the NIST experiments13, spin-1/2 Be ions in a
Penning trap interact with long range interactions which
fall off with a tunable power law Jij ∝ 1/raij with 0 <
a < 3. This range of functional forms allows quantum
simulations going from infinite range (a = 0) to Coulomb
(a = 1), to dipole (a = 3). Because the interactions are
antiferromagnetic as well as long-range, the experiments
correspond to ‘large-scale’ frustration, and, ultimately,
it is hoped they will allow the realization of associated
novel (eg. spin liquid) phases. In this section we will
extend our numerical work on the thermodynamics of
the nearest-neighbor antiferromagnetic transverse field
Ising model on a triangular lattice to include several
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FIG. 12: Isentropes of the antiferromagnetic case with non-

zero next near neighbor interaction J ′ = J/
√
3
(1.4)

. The
change from Fig. 11 with J ′ = 0 is minimal. In particular,
the key message is that the entropy values remain low in the
region where phase transitions might occur.

realizations of longer ranged interactions. While we will
not study systems with Jij non-zero between all pairs,
these simulations give first indications of the evolutions
of the entropy in situations with large-scale frustration.
The isentropes with a non-zero next-nearest neighbors

interaction J ′ are shown in Fig. 12. At low transverse
fields this changes the isentropes as the tremendous
ground state degeneracy of the nearest-neighbor Ising
model is now lifted. However, at and above a transverse
field of Bx/J ≈ 1, the isentropes are very similar to the
nearest-neighbor case and phase transitions would only
occur at very low values of the entropy.

V. CONCLUSIONS

In this paper we have provided quantitative results
for the thermodynamics and phase transitions of the
Ising model in a transverse field, with an emphasis on
frustration and the effect of longer range interactions.
For the isotropic triangular-lattice model, we have
studied the entropy function for both ferromagnetic
and antiferromagnetic exchange interactions. Using
Quantum Monte Carlo simulations together with high
temperature expansions and high field expansions, we
have obtained the contours of constant entropy in
the temperature, transverse-field plane. Our main
conclusion is that phase transitions in the frustrated
antiferromagnetic model occur at very low entropy
compared to the unfrustrated case and these results
are not substantially altered by adding weaker further
neighbor exchange interactions.
We have presented a study of the quantum Ising model

on the anisotropic triangular lattice that interpolates
between the square and triangular lattice limits

that yields new results for the phase diagram and
thermodynamic properties. This model, with frustrating
antiferromagnetic interactions, raises many subtle issues
and presents a real challenge to any computational study.
We first obtained the disorder line where the short-range
order moves away from (π, π). Unlike the Bx = 0
case studied by Stephenson, in presence of a transverse-
field, the ground state order does not stay at (π, π)
all the way from the square-lattice (J ′ = 0) to the
triangular-lattice (J ′ = J) limit. The disorder line
crosses the phase transition line near J ′/J = 0.7 and
heads sharply towards T = 0. While it represents a
crossover from short-range commensurate to short-range
incommensurate order above this crossing, it presumably
becomes a phase transition line separating long range
commensurate order from power-law incommensurate
order. At T = 0, it should turn into a Lifshitz point
marking the onset of incommensurate long-range order.

Once the system has incommensurate order, the
Binder ratios no longer show size independent crossings
and it is difficult to determine the transition temperature
for the expected Kosterlitz-Thouless phase. Rather
than study many J ′/J values, we focused on J ′/J =
0.8. We found that as the temperature was reduced
there was a sharp change in the nature of spin-spin
correlation functions between T = 0.6J and T = 0.2J .
The correlations are very small at large distances and
consistent with exponential decay at T = 0.6J , whereas
at T = 0.2J they remain substantial at the largest
distances accessible to our simulations and only a close
inspection shows a power-law decay. A peak in the
structure factor also moves with the size of the system
making it difficult to precisely locate the transition
temperature. At T = 0.4J , the correlation functions are
consistent with a r−1/4 decay, and hence we take this to
be the transition temperature. At very low temperatures,
the system may lock into other commensurate phases,
as it does for the triangular-lattice case through higher
order anisotropies, but those are beyond our simulation
capabilities.

Cold atom experiments on the triangular lattice,
transverse field Ising model are ongoing13. Our results
provide quantitative data on the entropies required to
reach possible phase transitions for different values of
Bx. In addition to the connections of the present
work to these experiments, and to triangular-square
lattice interpolations of the Heisenberg model19, similar
experimental studies are now being undertaken on
itinerant electron magnetism as realized in Hubbard
models31, as well as companion theoretical treatments32.
The focus thus far has been on Dirac points on
honeycomb lattices and topological features in the band
structure. However, the behavior of spin correlations on
such tunable lattices is one of the key goals of the next
generation of experiments.
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5 H.W.J. Blöte and Youjin Deng, Phys. Rev. E66, 066110
(2002).

6 S. Sachdev, Quantum Phase Transitions, Cambridge
University Press, Cambridge, United Kingdom (1999).

7 R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev.
Lett. 84, 4457 (2000).

8 G.H. Wannier, Phys. Rev. 79, 357 (1950).
9 S.V. Isakov and R. Moessner, Phys. Rev. B68, 104409
(2003).

10 P.G. de Gennes, Solid St. Comm. 1, 132 (1963).
11 Reference 4 contains an early list of systems related to the

Ising model in a transverse field.
12 E.E. Edwards, S. Korenblit, K. Kim, R. Islam, M.-S.

Chang, J.K. Freericks, G.-D. Lin, L.-M. Duan, and C.
Monroe, Phys. Rev. B82, 060412 (2010); K. Kim, S.
Korenblit, R. Islam, E. E. Edwards, M.-S. Chang, C.
Noh, H. Carmichael, G.-D.Lin, L.-M. Duan, C.-C. Joseph
Wang, J.K. Freericks, and C. Monroe, New J. Physics 13,
105003 (2011); and R. Islam, E. E. Edwards, K. Kim,
S. Korenblit, C. Noh, H. Carmichael, G.-D.Lin, L.-M.
Duan, C.-C. Joseph Wang, J. K. Freericks, and C. Monroe,
Nature Communications 2, 377 (2011).

13 J.W. Britton, B.C. Sawyer, A.C. Keith, C.-C. Joseph
Wang, J.K. Freericks, H. Uys, M.J. Biercuk and J.J.
Bollinger Nature 484, 489 (2012).

14 S.M.A. Tabei, F. Vernay, and M.J.P. Gingras, Phys. Rev.
B77, 014432 (2008); S.M.A. Tabei, M.J.P. Gingras, Y.-J.
Kao, and T. Yavors’kii, Phys. Rev. B78, 184408 (2008).

15 For a recent comprehensive review see A. Dutta, U.

Divakaran, D. Sen, B. K. Chakrabarti, T. F. Rosenbaum,
G. Aeppli, cond-mat:arXiv:1012.0653.

16 J. Oitmaa, C. Hamer and W-H. Zheng, Series Expansion

Methods for strongly interacting lattice models, (Cambridge
University Press 2006).

17 M.P. Gelfand, and R.R.P. Singh, High-order convergent

expansions for quantum many particle systems, Advances
in Physics, 49 N1:93-140 (2000).

18 A. W. Sandvik, Phys. Rev. E68, 056701 (2003).
19 See for example, Zheng Weihong, Ross H. McKenzie, and

Rajiv R. P. Singh, Phys. Rev. B59, 14367 (1999).
20 W. Selke and L. N. Shchur, Phys. Rev. E80, 042104 (2009).
21 J. Stephenson, J. Math. Phys. 5, 1009 (1964); ibid. 11, 420

(1970); ibid. 11, 413 (1970).
22 T.P. Eggarter, Phys. Rev. B12, 1933 (1975).
23 P. Bak, Rep. Prog. Phys. 45, 587 (1982).
24 W. Selke, Physics Reports 170, 213 (1988).
25 J. Oitmaa, C. J. Hamer and Z. Weihong, J. Phys. A: Math.

Gen. 24, 2863 (1991); H-X He, C. J. Hamer and J. Oitmaa,
J. Phys. A: Math. Gen. 23, 1775 (1990).

26 H. Reiger and N. Kawashima, Eur. Phys. Jour. B9, 233
(1999).

27 L. Zhu, M. Garst, A. Rosch and Q. Si, Phys. Rev. Lett.
91, 066404 (2003).

28 P. Sengupta, A. W. Sandvik and R. R. P. Singh, Phys.
Rev. B68, 094423 (2003).

29 J. Merino and R. H. McKenzie, Phys. Rev. Lett. 87,
237002 (2001).

30 J.D. Cone, A. Zujev and R.T. Scalettar, Phys. Rev. B83,
045108 (2011).

31 L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T.
Esslinger, Nature 483, 10871 (2012).

32 N. Bluemer, C-C. Chang, and R.T. Scalettar, unpublished.


