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Theoretical modeling is presented for a free-standing vitreous silica bilayer which has recently
been synthesized and characterized experimentally in landmark work. While such two-dimensional
continuous random covalent networks should likely occur on energetic grounds, no synthetic pathway
had been discovered previously. Here the bilayer is modelled using a computer assembly procedure
initiated from a single layer of a model of amorphous graphene, generated using a bond switching
algorithm from an initially crystalline graphene structure. Each bond is decorated with an oxygen
atom and the carbon atoms are relabeled as silicon, generating a two dimensional network of corner
sharing triangles. Each triangle is transformed into a tetrahedron, by raising the silicon atom
above each triangular base and adding an additional singly coordinated oxygen atom at the apex.
The final step in this construction is to mirror-reflect this layer to form a second layer and attach
the two layers to form the bilayer. We show that this vitreous silica bilayer has the additional
macroscopic degrees of freedom to form easily a network of identical corner sharing tetrahedra if
there is a symmetry plane through the center of the bilayer going through the layer of oxygen ions
that join the upper and lower monolayers. This has the consequence that the upper rings lie exactly
above the lower rings, which are tilted in general. The assumption of a network of perfect corner
sharing tetrahedra leads to a range of possible densities that we characterize as a flexibility window;
with some similarity to flexibility windows in three dimensional zeolites. Finally, using a realistic
potential, we have relaxed the bilayer to determine the density and other structural characteristics
such as the Si-Si pair distribution functions and the Si-O-Si bond angle distribution, which are
compared with experimental results obtained by direct imaging.

INTRODUCTION

The continuous random network model of network
glasses is widely accepted as a model for materials like
vitreous silica and amorphous silicon [1].

Although it is more than eighty years since Zachari-
asen proposed this model of glasses [2], and experimen-
tal evidence has been compelling over the years, espe-
cially through diffraction experiments [1], it has never
been quite conclusive since the probability distribution
of rings of various sizes has been elusive to determine ex-
plicitly experimentally. This situation has now changed
dramatically with the discovery and imaging [3, 4] of two
dimensional bilayers of vitreous silica. Here, not only
the distribution of rings, but the actual detailed atomic
ring structure has been imaged for the first time in real
space, removing all speculation from this subject (at least
for this class of materials). These are the first examples
of which we are aware of real space imaging of a random

network and as such represent tours de force. Previously
only small defect patches have been imaged, as for exam-
ple for graphene as reported by Geim [5].

In this paper, we provide the first atomic level com-
puter model for a vitreous silica bilayer and demonstrate
some intriguing and unexpected features that are shown
to agree with experiment. There is a symmetry plane
through the center of the bilayer where all the oxygen
atoms that connect the tetrahedra in the lower and up-
per planes of the bilayer lie. Each tetrahedron comprises
an SiO4 unit and the whole bilayer is a perfect corner-
sharing continuous random network with the same chem-
ical formula SiO2 as 3d bulk vitreous silica. Each mono-
layer is amorphous with rings from 4 up to about 9 in
size, consistent of course with Euler’s theorem that the
average ring size is 6. Because of the amorphous nature of
the monolayer and the need for oxygen bridges connect-
ing the upper and lower layers, it is necessary for the two
layers to have the same ring structure and be topologically
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identical to form a complete corner sharing tetrahedral
network. The result that the two layers are also geometri-
cal mirror images of each other is quite surprising at first
sight in a system that is a priori without any symmetry,
but comes about from understanding the nature of the
constraints within the network as explained later. This is
consistent with our detailed atomic modeling and also is
in accord with the experimental results [3, 4] which show
that the upper and lower layers do lie one on top of the
other as required by a symmetry plane. We note that this
does not imply that there is a three fold axis between the
two upper and lower tetrahedral units (tetrahedral pair)
through the common central oxygen atom - rather this
Si-O-Si angle through the central oxygen has a distribu-
tion of values throughout the sample, as do all the other
Si-O-Si angles in the bilayer.

FIG. 1. Ring size distributions (fraction of rings containing n
silicon atoms) obtained experimentally for vitreous SiO2 bi-
layers formed on Ru(0001) [3] - red dashed line, and graphene
[4] - black dashed line. Also shown are ring size distributions
of computer-generated a-G seeds used in this study (with dif-
ferent generating protocols but labelled by sample size N).

Thin vitreous SiO2 films (interpreted as bilayers)
have been grown on Mo(112) [6], Ru(0001) [3, 7, 8]
and graphene [4]. Figure 1 shows the experimentally-
obtained ring statistics from references [3] and [4]. A
key observation is that the ring statistics obtained from
the two experimental samples are not the same, although
this is not surprising in view of their different prepara-
tion conditions, analogous to various fictive temperatures
used to characterize the preparation conditions for bulk
silica [9]. Different Monte Carlo annealing temperatures
and/or protocols used computationally to create vitreous
silica bilayers also lead to different ring statistics similar
to those documented previously in amorphous cellular
networks [10] and in amorphous graphene [11].

What is unclear is the extent to which these differences
in ring statistics reflect the finite system sizes under study
or the more complex and more interesting dependence of
the structure on the precise preparation conditions (in-
cluding the nature of the substrate). The ring statis-
tics are a fundamental quantity and their dependence on

sample size imaged and on preparation conditions will
be an important area for future study, especially exper-
imentally. The simplest non-trivial (second cumulant)
measure of the ring statistics µ2 should be related to the
static structure factor S(0), as in bulk vitreous silica [9].

Recent simulation work, in which amorphous
Graphene (a-G) configurations were generated using
both bond-switching Monte Carlo and molecular dy-
namics methods, highlights how networks constructed
primarily from 5-, 6- and 7-membered rings may adopt
a range of structures [11]. A useful simple metric for
distinguishing between the different samples is the
second moment of the ring size distribution,

µ2 = (< n2 > − < n >2), (1)

where < n > is the mean ring size for an ideal
two-dimensional network constructed from purely three-
coordinated sites (< n >= 6 from Euler’s theorem). This
metric conveniently captures the major changes in ring
statistics from sample to sample in a single number. The
values of µ2 for the experimental data presented in Fig-
ure 1 are 0.904 and 0.886 (from References [3] and [4]
respectively).

FLEXIBILITY WINDOW

A key concept that will emerge is that there is a flex-
ibility window involving O(N) motions among the rigid
corner-sharing tetrahedra. This flexibility window des-
ignates a range of densities over which a framework of
rigid tetrahedra, freely jointed at all corners with a given
topology, can exist. The low density end of the window
is defined by the maximum extension the framework can
sustain without breaking apart, and the high density end
of the window is determined by oxygen-oxygen overlap
between adjacent tetrahedra. We will see that when ad-
ditional terms are included in the potential, particularly
the Coulomb terms, a particular density is selected from
within the flexibility window. Similar ideas have been
explored extensively in zeolites [12] where the origin of
the window is due to symmetry as in the vitreous silica
bilayers studied here. However, in bulk zeolites the sym-
metry is associated with the rotations and translations of
the unit crystallographic cell, whereas here the symme-
try is due to a reflection symmetry, that is maintained
between the two monolayers that comprise the bilayer.
We will return to a full analysis of this latter point in a
later section.

CONSTRUCTION METHOD

The initial SiO2 bilayer configurations are generated
from ideal a-G coordinates (Figure 2), which were them-
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selves generated using a “bond-switching” Monte Carlo
algorithm (as described, for example, in Reference [11];
see also [10]). The a-G configurations generated in this
manner are guaranteed to be constructed exclusively
from three-coordinated carbon local environments. This
method is superior to others in the sense that it pro-
duces no coordination defects or dangling bonds, and is
periodic with a super-cell whose size can be chosen and
varied. Seed a-G configurations were constructed with
a range of different ring statistics and hence µ2 values.
Several different network sizes were employed. For conve-
nience we shall refer to these systems below by their sizes,
N =120, 200, 400, 432 [two configurations, distinguished
as (a) and (b)], 834, 836 and 1792 atoms. The two config-
urations containing 432 carbon atoms are generated with
different ring statistics to give some extra perspective on
the effect of the ring distribution on physical properties.
Table I lists the values of µ2 for these a-G configurations,
while Figure 1 shows the detailed ring size distributions
for these computer generated structures.

N µ2

120 0.467

200 0.500

400 0.480

432a 1.046

432b 0.935

834 0.618

836 0.856

1792 1.014

expt. [3] 0.904

expt. [4] 0.886

TABLE I. Variances, µ2, in the second moment of the ring size
distribution for the eight configurations studied here, labelled
by the number N of atoms in the original graphene layers,
or equivalently the number of Si atoms in a monolayer. The
resulting bilayer therefore has 2N SiO2 units. Also shown are
the two experimentally-observed configurations.

The method for generating the bilayers is motivated
by the observation that the two layers sit on top of each
other. As a result, each layer can be generated from the a-
G configuration and joined with oxide anion bridges. To
generate the initial SiO2 bilayer configurations, each car-
bon atom is transformed into a silicon atom (which will
eventually become the center of each SiO4 tetrahedron).
Oxygen atoms are then placed at the center of each C-C
bond to produce a single layer configuration of stoichiom-
etry Si2O3 confined to (say) the xy plane, which can be
viewed as a two dimensional network of corner sharing
equilateral triangles. Each triangle has oxygen atoms at
the vertices and a silicon (transformed from carbon) atom
at the center. Additional oxygen atoms are then placed
perpendicular to the xy plane (which initially contained

all of the atoms) at the center of each triangle and raised
above to form a tetrahedron, with the silicon atom raised
out of the plane to be at the center of the tetrahedron.
This generates an Si2O5 network formed from tetrahedra;
each sharing three corners with a fourth corner unshared
(for the moment) and with all unshared corners pointing
up. The second layer of the bilayer is created by pro-
ducing a mirror image of the first layer (such that the
tetrahedra are now pointing in the down direction) and
offsetting the layer along the z-direction, to lie above the
first bilayer; see Figure 3(c). Finally, the median oxygen
atoms are coalesced between the two layers giving the re-
quired SiO2 bilayer stoichiometry [Fig 3(d)]. The system
super-cell lengths are then re-scaled so as to generate the
required Si-O bond lengths. As a result, the systems con-
sidered contain 2N [=240, 400, 800, 864(a), 864(b), 1668,
1672 and 3584] SiO2 molecules.

These structures are relaxed using standard Molecu-
lar Dynamics (MD) procedures with appropriate model
inter-ion potentials. Two forms of potential model are
considered. The first, which we will refer to as the har-
monic potential, is designed to produce a corner sharing
network of identical regular tetrahedra, with freedom of
the individual tetrahedra to move and tilt with respect to
each other while maintaining the topology. This allows
for hinging-freedom of the joined tetrahedral corners, and
does not impose reflection symmetry. A convenient way
to accomplish this is to use harmonic springs to join the
four nearest-neighbor Si-O and six nearest-neighbor O-O
atoms in individual tetrahedron. Computationally the
ratios of the O-O and Si-O equilibrium bond lengths of
the potentials are chosen so as to produce ideal tetra-
hedra in isolation; thus the equilibrium separation for
the neighboring oxygens along the edge of the tetrahe-
dron in the O-O potential is taken to be

√
(8/3) ' 1.633

times that for the Si-O nearest neighbor separation. For
computational convenience the spring force constants are
taken to be equal for both the Si-O and O-O pairs within
each tetrahedron. The detail of this interaction is only
significant in the sense of allowing for a relatively rapid
energy minimization.

These simple harmonic potentials do not however, pre-
clude different tetrahedra from overlapping, as would be
the case in reality, for example to prevent oxygen over-
lap, and as limits the motions in zeolites [12]. In order
to prevent this in a computationally convenient manner,
the harmonic potential is augmented with a purely repul-
sive potential which acts between pairs of silicon atoms
effectively acting as an inter-tetrahedron repulsive term.

The physically more realistic imposition of a short-
range repulsion between oxygen atoms requires greater
computational accounting. The chosen form is a shifted
24-12 potential,
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FIG. 2. The free standing vitreous silica bilayer is modeled
by first creating an amorphous graphene layer from a crys-
talline graphene sheet through a bond switching algorithm
(top panel), where the carbon atoms are shown as solid black
dots. An oxygen ion is then placed at the center of each
carbon-carbon bond and the carbon is replaced by a silicon ion
forming a network of corner sharing triangles (second panel).
The silicon atom is then lifted out of the plane and an oxygen
ion (shown as a solid red dot) is placed above this silicon to
form a tetrahedron. This silica monolayer is mirror inverted
and placed directly above the first monolayer (third panel).
Finally these two monolayers are brought together to form the
silicon bilayer (fourth panel) in which the central oxygen ions
are combined to make single bridging oxygen ions between the
two monolayers.

U(r) = 4ε

{(σ
r

)24
−
(σ
r

)12}
+ ε, (2)

where σ is the atom diameter and ε is the well-depth of
the (unshifted) potential. The potential is cut off at the
minimum [rmin = (2)1/12σ] ensuring continuity in both
energy and force. The parameter ε is fixed while σ can
be varied to explore the extent of the flexibility window.
In the second form a more realistic potential model (a TS
potential [13]) is used in which pairwise-additive poten-
tial energy terms (including ion-based charge-charge elec-
trostatic interactions) are augmented with a description

of (many-body) polarization effects [13–15]. This poten-
tial is more realistic than the harmonic potentials plus
repulsions, mainly because Coulomb terms are included
which are known to be important in ionic materials [12]
and we use this for a further optimization of the bilayer
structure. Nevertheless the harmonic potential plus re-
pulsions is useful as the language of flexibility windows
and constraints and the symmetry plane can be used, as
is discussed in the next section.

We believe the choice of potential model is not crucial
in displaying potentially interesting phenomenology in
systems of this type. The harmonic potential is chosen
as (arguably) the simplest model which constrains the
system to form a series of ideal linked tetrahedral units.
The TS potential is chosen as a potential which accounts
well for a number of key (bulk) properties whilst retaining
a relatively simple functional form.

Anion polarization, which controls the Si-O-Si bond
angles in models of this type, may be crucial in defining
the structures adopted both for silica and potentially for
other, chemically-related, systems. Whilst the structures
formed are low dimensional, the atoms retain their full
(bulk) coordination so it is reasonable (at least in the
first approximation) to apply potentials derived by ref-
erence to bulk three dimensional properties. These will
most probably need further refinement as more precise
experimental results on the vitreous silica bilayers be-
come available.

We are very concerned with variation of the num-
ber density (number of SiO2 molecules per unit area)
or, equivalently, the area occupied by a single molecule.
The number density, n0, is expressed in terms of SiO2

units per unit area projected onto the central plane of
the bilayer, whilst the area, A, is expressed by refer-
ence to an ideal value, A0, which is the area occupied
by a crystalline sample, based on crystalline graphene,
in which all the tetrahedral pairs are aligned vertically
with a three fold axis about the central oxygen ion, and
which would be obtained from bilayers constructed from
an ideal crystalline graphene sheet containing only six-
membered rings.

Energy minimizations are performed over a range of
dimensionless reduced areas A∗ = A/A0; 0.4 ≤ A∗ ≤ 1.4.
Note that A∗ = 1 is the maximum possible area which
can be attained without strain (i.e distortion within the
individual tetrahedra). At each density, the system’s en-
ergy is minimised using a steepest descent method. The
atom positions are allowed to evolve, controlled by stan-
dard Newtonian mechanics, and the velocities are reset to
zero (quenching the kinetic energy) when the kinetic en-
ergy reaches a (local) maximum. In order to allow explic-
itly breaking of the initial imposed reflection symmetry
between the bilayers, several simulations are performed
with randomized starting locations.
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RESULTS

FIG. 3. Showing the structure of the bilayer made of perfect
corner sharing tetrahedra from various perspectives, relaxed
with the harmonic potential and with a dimensionless area of
A∗ = 0.9. This puts the structure into an arbitrary place in
the flexibility window at some density (not the experimental
density). This illustration is a piece from a bilayer with a
periodic super-cell with 864 silicon atoms. Notice that the
central oxygen atoms all lie in the symmetry plane. Each
tetrahedron has four oxygen ions shown as small red spheres
at the vertices and a silicon ion at the center.

In Figure 4, we show comprehensive results for the
harmonic and the, TS potential. These results are given
for two different samples (derived from the 200 and 432a
atom a-G samples, so containing a total of 1200 and 2592
atoms respectively), in the two panels to give some per-
spective on the universality of the results. These two
configurations are chosen as examples of systems with
relatively high and low ring distribution variances (Table
I). The results for the harmonic potential that describes
the corner sharing network of rigid tetrahedra are shown
by the red, blue and green lines and show a distinct flat
region for both samples that is the manifestation of the
flexibility window. These three curves are generated by
different values of σ, with the smaller values of σ, lead-
ing to larger flexibility windows. The flexibility window
exists over a similar range of densities for both samples.

It should be noted that the high density limit of the flex-
ibility window is defined by repulsive potentials between
the Si ions in this model, rather than the more physi-
cal repulsion between the larger O ions that is expected
physically. However repulsion between the Si ions is ex-
pected to closely approximate the O-O repulsion, as the
tetrahedra are all rigid. The low density limit, defined
as the lowest the density can be without breaking the
network of corner sharing tetrahedra, is where almost all
zeolites are found experimentally. This is because when
a more realistic potential than the harmonic potential is
used, Coulomb inflation maximises the pore volume, and
hence the sample volume [12]. The high density limit in
zeolites is determined by that density at which interpen-
etration of the oxygen atomic spheres would onset. A
similar situation is found here for vitreous silica bilayers,
with a well defined flexibility window. This is in contrast
to the case of three dimensional vitreous silica (no pores)
where the flexibility window collapses to a single point
(single density) [12].

Figure 4 also shows the energies obtained by minimis-
ing the energy of the 400 and 864 SiO2 molecular bilayers
using the TS potential. The energies resulting from the
use of this potential function show sharp minima (when
plotted on a logarithmic scale used here). These poten-
tials produce a unique conformational minimum just be-
low the high area limit of the flexibility window (obtained
with the harmonic potential).

Figure 4 also shows the energies plotted against den-
sity; the harmonic potential results are scaled by the Si-O
bond length (1.6Å). Also shown is the density range ob-
tained from experiment [16]. For both configurations,
studied with all potentials, the harmonic potentials pre-
dict structures of slightly higher density than those ob-
served preliminarily experimentally. On the other hand,
for both these configurations the energy minima for the
TS potential do lie within the currently observed exper-
imental density range (n0 = 18.4 and 20.0SiO2/nm2 for
the 400 and 864 molecule configurations respectively).
The higher densities possible using the harmonic poten-
tial compared to the TS are to be expected due to the
lack of electrostatic interactions which act to push the sil-
icon cations apart. It is significant to note that the two
configurations studied in depth produce energy minima
with the TS at different densities implying the density to
be a function of the atomistic detail (ring structure) of
the bilayer configuration.

Figure 5 shows the Si-Si Radial Distribution Functions
(RDFs) obtained for both the harmonic and TS poten-
tials for both the 400 and 864 molecule configurations.
The RDFs are calculated by projecting the Si-Si separa-
tions onto the xy plane (and hence mimicking the ex-
perimental procedure). Energy minimisation using the
TS potential produces structures with order beyond the
nearest-neighbor length-scale of the same form as that
generated by the harmonic potential. The first peak (cor-
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FIG. 4. The energies of the relaxed configurations shown
as a function of the density (upper abscissa)and the reduced
area, A∗ = A/A0 (lower abscissa) obtained for the 400 (upper
panel) and 864 (lower panel) SiO2 molecule system, using
both harmonic and TS potentials. The distances indicated
are for the parameter σ in the box in the upper panel. The
minima for the TS potentials for the 400 and 864 molecule
configurations are at densities of ∼ 18.4 SiO2nm−2 and ∼ 20.0
SiO2nm−2 respectively. The yellow lines and arrows in both
panels highlight the density range observed from experiment
[16].

responding to the nearest-neighbor Si-Si length-scale) ap-
pears considerably sharper for the TS potential, reflect-
ing the ordering imposed by the presence of the electro-
static interactions. The reduced intensities in the 864
molecule system compared with the 400 molecule one
reflects the higher degree of disorder in the former (as
characterised by their respective values of µ2).

Figure 5 also shows the experimentally-determined
functions (from Reference [16]) obtained for both a crys-
talline and an amorphous section of bilayer. The analysis
of the experimental data remains very preliminary, and
a much better determination of the density will be pos-
sible once larger areas of the samples are imaged. For
the moment the fairly wide estimates of the experimen-
tal density [16] are shown by the yellow lines in Figure 4.
These wide estimates are obtained from the relatively
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g
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a-G
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FIG. 5. Radial distribution functions g(r) calculated for the
silicon sublattice using the Si-Si separations projected onto
the xy plane. The RDFs are calculated for the 400 and 864
SiO2 molecule systems (respectively µ2 = 0.500 and 1.046) us-
ing the harmonic (black lines) and TS potential (blue lines).
Successive functions are offset along the ordinate axes for
clarity. In each case the lower curve is for the 400 molecule
configuration and the upper for the 864 molecule case. The
original carbon RDF determined from the a-G sample is also
shown (red). This function has been scaled along the ab-
scissa in terms of the first peak positions for comparison.
The harmonic potential functions are obtained at a density
of A∗ = 0.81 (at which the energy can be quenched) while
the TS functions are obtained at the respective energy min-
ima. The uppermost curves are the amorphous (magenta) and
crystalline (cyan) functions obtained from experiment [16].

small field of view of the vitreous silica bilayers currently
available, and we await larger fields of view from which a
more accurate density can be obtained. Note this density
is obtained directly from the atomic imaging [16]. The
density is a very important parameter to know, both in
regards to the flexibility window and for detailed vali-
dation of the potentials used here. It is quite possible
that the potentials we have used will have to be fine
tuned later to reflect the experimental density but for the
present we are concentrating principally on the concep-
tual physics. The preliminary experimental RDF shown
in Figure 5 is broadly consistent with all the model struc-
tures in this paper, and data from much larger experi-
mental areas should discriminate between the nuances of
various computer generated structures.

Figure 6(a) shows the Si-O-Si Bond Angle Distribu-
tions (BADs) determined for the harmonic potential (at
A∗ = 0.81 for which the energy could be driven to zero),
and at the energy minimum determined from the TS po-
tential for the 400 molecule system. The Si-O-Si BAD
determined with either form of the TS potential is sig-
nificantly narrower than that determined from the har-
monic potential, reflecting the higher degree of order-
ing imposed by the presence of the electrostatic inter-
actions. The harmonic distribution shows a major peak
at θ ∼ 125o of width ∆θ ∼25o while the TS shows a
peak position (width) of θ ∼132o (∆θ ∼15o). Note that
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FIG. 6. (a) Si-O-Si bond angle distributions determined at a
density of A∗ = 0.90 for the harmonic potential (black) and at
the densities corresponding to the respective energy minima
for the TS (blue) for the 400 molecule system. The light
blue plot shows the corresponding function for the bulk glass
at ambient pressure using the TS potential [17]. (b) Si-Si-Si
bond angle distributions obtained under the same conditions
as for panel (a). For reference the additional red line shows
the C-C-C distribution from the original two dimensional a-G
configuration.

the removal of anion polarization terms from the TS po-
tential (to generate a rigid-ion model) results in a peak
position (width) of θ ∼150o (∆θ ∼10o). The change in
the peak position in the bond angle distribution is consis-
tent with the inclusion of anion polarization which acts
to effectively screen the Si-Si (repulsive) electrostatic in-
teractions and hence stabilises more acute Si-O-Si bond
angles. The distribution appears very different from that
obtained for the bulk glass using the TS potential [17]
(also shown in Figure 6) which shows a broader dis-
tribution (∆θ ∼50o) with a peak at θ ∼ 150o consis-
tent with experiment [18]. Note that in an unrelaxed
crystalline bilayer, based on a crystalline graphene seed
with a median symmetry plane, the Si-O-Si bond angle
is cos−1(−7/9)'142o within a monolayer and 180o be-
tween monolayers. It is interesting to note that 142o is
very close to the chemically preferred Si-O-Si bond angle
in the absence of any topological strains due to rings [19].
The component at lower angles in the middle blue panel
in Figure 6(a) is associated with in-plane angles and the
other peak with angles involving both planes. In the
other two panels in Figure 6(a), there is only a single
very broad peak.

The difference between the bilayer and bulk BADs can
be rationalised as follows. The mirror symmetry rela-
tionship between the top and bottom layers of the bilayer
means that ions of the same charge sit on top of one an-
other perpendicular to the plane containing the bilayer.
As a result, the (repulsive) like-like electrostatic interac-
tions are effectively maximised, leading to relatively ob-
tuse Si-O-Si bond angles centred about the oxygen ions
which bridge the two layers, and resulting in the peak at

2N Potential A∗ ∆z/Å

upper lower center

400 harm. 0.81 0.124 0.124 3.9×10−14

harm. 1.00 0.087 0.087 2.8×10−14

864 harm. 0.81 0.184 0.184 4.0×10−14

harm. 1.00 0.137 0.137 3.9×10−14

400 TS 0.92 0.151 0.151 7.2×10−14

864 TS 0.85 0.274 0.274 9.0×10−14

TABLE II. Variances in the position of the oxygen atoms per-
pendicular to the bilayer plane, ∆z, for the 400 and 864 SiO2

molecule configurations determined using both the harmonic
and TS potentials at the reduced areas indicated. The oxygen
atoms sit in three layers; upper, lower and central. The small
variances for the atoms in the central plane (of the order of
the numerical error associated with the calculation), coupled
with the identical variances of the atoms above and below
this plane are indicative of the existence of a mirror plane
containing the central oxygen atoms.

∼175o. A simple geometric argument indicates that the
presence of these relatively obtuse angles has a knock-
on effect for the Si-O-Si angles centred about the oxygen
ions which are in one of the bilayer planes, which will be
relatively acute. This is an area that needs more study as
there will always be a competition between the preferred
Si-O-Si angles from chemistry and the requirements of
the network topology. This effect will influence whether
similar vitreous bilayers can be made from germanium
and also whether aluminum ions can be alloyed with sil-
icon ions in these vitreous silica bilayers.

Figure 6(b) shows the Si-Si-Si bond angle distributions
obtained using the harmonic and the TS potentials at the
same densities as in Figure 6(a). The results are com-
pared to the C-C-C BAD generated from the original a-
G configuration. Recall that for crystalline graphene the
bond angle is θ ∼120o. The bilayer BADs show a sharp
peak at θ ∼90o which corresponds to Si-Si-Si triplets in
which the Si atoms are split between the two layers com-
prising the bilayer, while the higher broader peak corre-
sponds to in-plane Si. The harmonic and TS potentials
show similar distributions which are significantly broader
than the a-G distribution.

To quantify the presence of a mirror plane after relax-
ation, which does not impose any symmetry, we deter-
mine the variance of the oxygen atom positions (∆z) per-
pendicular to the bilayer plane. The oxygen atoms can
be considered as sitting in three distinctive quasi-planes
corresponding to the central layer (which joins the two
original monolayers) and the two layers above and be-
low this central layer. Table II lists the variances for the
400 and 864 SiO2 molecule systems obtained using the
harmonic potential (at two densities) and the TS (in the
respective energy minima densities). The central atoms
are clearly confined to a single plane while the atoms in
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the upper and lower layers show identical variances. The
existence of the mirror plane is confirmed by determin-
ing the variance in the positions of the mirrored atoms
in the upper and lower planes which is ∼ 0 to within the
numerical precision used. In principle the mirror symme-
try can be broken once the potential contains Coulomb
terms etc., as the argument given in the section Sym-
metry Planes based upon constraints does not hold with
more complex forces. However in practice it seems these
deviations are very small, although in principle present.
We also note that this symmetry in the ∆z perpendicular
to the bilayer plane, holds not only at the macroscopic
9(average) level, but also at the local level between cor-
responding atoms above and below the central symmetry
plane.

The most important results of this section, and paper,
are summarised in Figure 7 where the flexibility windows
and corresponding energy minima for the two amorphous
and one crystalline sample are shown. It should be noted
that the TS minima lies within the flexibility window
as expected. In addition it lies towards the top, high
area end, of the window reminiscent of the relationship
observed in 3d zeolites [9]. The argument given for the
zeolites was that Coulomb inflation in the pores between
the negative oxide ions caused the sample to swell to
be very close to the maximum allowed while remaining
inside the flexibility window. Such an argument cannot
be given here, as there are no large pores as in zeolites
- but we propose that Coulomb inflation, between the
oxide ions, may still be the explanation within the rings
of the bilayer. The silicon ions are less important as
they are smaller. However we do not find this argument
entirely convincing, and more work on understanding the
subtleties of the effects of Coulomb interactions in ionic
framework structures is needed.

FIG. 7. The low density end of the flexibility window (for the
harmonic potential case) for the two amorphous (green and
red - sample sizes as indicated) and one crystalline (black)
sample shown as lines ending in a + symbol. Note that the
The high density end of the window for harmonic potentials is
to the left and determined by repulsive forces between neigh-
boring ions. The figure also shows the corresponding energy
minima from the TS potential (×) coloured as for the cor-
responding flexibility windows. The blue line highlights the
experimental density range.

SYMMETRY PLANE

The existence of a symmetry plane in an amorphous
sample is surprising and quite unlike anything that we
have encountered before. This symmetry emerges from
the disordered state as the network takes advantage of the
larger conformational space available when a symmetry
plane is present compared to without. Hence symmetry
is induced in a system which at first sight seems a canon-
ical example of a system without symmetry. The argu-
ment for it is compelling as outlined here, and confirmed
both by detailed atomic computer modeling and by ex-
periment. Of course the individual tetrahedral units are
close to perfect tetrahedra because of the strong local
chemical bonding, but these pack in a disordered way.
The local symmetry of perfect tetrahedra is not neces-
sary for the argument for the symmetry plane to hold.
Residual degrees of freedom in a structural unit are often
referred to as floppy modes [20].

Consider two tetrahedral units (which we will call a
tetrahedral pair) with a common oxygen atom - that is
Si2O7 as shown in Figure 8. There are N such units made
from the 2N units of SiO2 in the bilayer structure. A
rigid body has 6 degrees of freedom in three dimensions,
and for any two vertices of adjacent tetrahedra to coin-
cide requires 3 constraints ( x1 = x2, y1 = y2 and z1 = z2,
where 1 and 2 refer to the two tetrahedral vertices that
come together). We now give counting arguments [20]
for the case without symmetry and then with symmetry
between the bilayers from a (proposed) reflection plane
in the middle of the two layers.

FIG. 8. Showing a tetrahedral pair; one from the upper layer
and one from the lower layer. Each tetrahedron has four
oxygen ions shown as small red spheres at the vertices and
a silicon ion (not shown) at the center.

1. Without symmetry. Consider the two separate
tetrahedra in the tetrahedral pair shown in Figure 8;
each with the usual 6 degrees of freedom for a rigid body
in three dimensions. That makes 12 degrees of freedom
in total. Joining the common oxygen atom requires 3
constraints (to make the tetrahedral pair) and the 6 re-
maining oxygen ions each require 3 constraints, which are
shared so that there are 12− 3− (6× 3)/2 = 0 floppy
modes, which is the expected result that the system is
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isostatic [12] - that is the structure just has enough con-
straints to be rigid and cannot be moved (subject to the
usual remarks about boundary conditions etc. [21]). This
result is expected as the bilayer is just a special case of a
network of corner sharing tetrahedral units which are all
isostatic [12]. This can be seen easily as each individual
isolated tetrahedron has 6 degrees of freedom, and four
shared corners each with 3 constraints - hence the number
of floppy modes per tetrahedron is 6− (4× 3)/2 = 0 and
we have an isostatic network; that is no floppy modes.

2. With symmetry. First define an external plane and
position it at z = 0. Then move a single tetrahedron
so one vertex lies in this plane but is free to move in
the x − y plane. This tetrahedron initially has 6 de-
grees of freedom, and putting an atom somewhere in
the external plane requires a single constraint. The 3
other oxygen atoms require (3× 3)/2 constraints to link
the corners - the second tetrahedron in the tetrahedral
pair is fixed by the reflection symmetry and therefore
has neither independent degrees of freedom nor inde-
pendent constraints associated with it. Thus there are
6− 1− (3× 3)/2 = 1/2 remaining degrees of freedom for
each tetrahedral pair and hence a total of N/2 degrees of
freedom for the whole bilayer.

The important observation here is that with corner
sharing tetrahedra, there are a macroscopic number of
degrees of freedom if there is a reflection plane. This
allows the bilayer structure to roam over a region of con-
formational space while maintaining all the constraints.
This leads to a flexibility window analogous to that found
previously in zeolites [12]. As discussed later, we find that
with a more realistic potential the bilayer settles within
the flexibility window at a preferred density. This is a
pretty remarkable and unexpected result.

The above arguments can be streamlined and made
very compact. Looking at the lower monolayer, discon-
nected from the upper monolayer, then if there is a re-
flection plane only a single constraint is required at each
oxygen that is not shared with another tetrahedron in
order to bring it to the reflection plane, whereas three
shared constraints would be required to bring it into co-
incidence with a similar oxygen in an otherwise uncon-
strained second monolayer. Adding the mirror monolayer
adds no extra degrees of freedom. Therefore a reflection
plane leads to a macroscopic number of floppy modes
(3/2− 1)N = N/2.

Yet another distinct demonstration of this result can
be given as follows. Start with planar collection of N
corner-sharing triangles. There are 3N degrees of free-
dom and 3 × 2N/2 constraints giving no remaining de-
grees of freedom. That is such a network (example is a
kagome lattice) is isostatic and only flexible if there is
a surface and (O

√
N) floppy modes. Now consider a 3d

flexible framework of tetrahedra connected with the same
2d topology of corner sharing triangles (each tetrahedron
has three connected corners), then there are 6N degrees

of freedom and 3×3N/2 constraints giving a macroscopic
number of degrees of freedom 3N/2. If further, the re-
maining vertex of each tetrahedron, so fixing one of its
Cartesian coordinates, then the total number of degrees
of freedom per tetrahedron is N/2. Adding the reflected
monolayer to the original monolayer gives 2N SiO2 units
with N/2 degrees of freedom for the bilayer, as before.

Note that these arguments apply to tetrahedra of ar-
bitrary shape and size, so if there are some Al ions
within tetrahedra in the lower layer at some composi-
tion, they should be mirrored in the upper layer based
on the arguments in this sections, although Coulomb
repulsions between them would discourage this. Alu-
minum and silicon tetrahedra are both nearly perfect but
have different sizes [12] and so attempting to construct
such bilayers would be something interesting to try ex-
perimentally. The situation is very different in conven-
tional zeolites, where Loewenstein’s empirical rule [22]
for alumino-silicates states that (in essence) every Al -
containing tetrahedra must be connected to four neigh-
boring silicon-containing tetrahedra. It is possible, there-
fore, that Loewenstein’s rule could sometimes be violated
in bilayer structures.

CONCLUSIONS

We have shown how the recently discovered vitreous
silica bilayer can be computer-modeled by progressive
assembly, starting from an amorphous graphene sheet,
and making various decorations and then relaxation with
appropriate potentials. This pathway is of course not
physical, but represents a convenient way of computer-
generating such structures.

This system is probably the first network glass where
the ring structure can be experimentally observed di-
rectly by STM and STEM measurements with atomic
resolution, making it a paradigm system for future study.
This present study provides a complementary computer-
theoretical study that we hope will encourage further ex-
perimental and theoretical work.

An interesting observation is the unexpected mirror
symmetry plane through the center of the bilayer, which
seems to defy the logic which says that such bilayers
should pucker. The fact that the top monolayer lies
exactly on top of the lower monolayer, means that a
single layer is seen in the experimental STEM image,
making structural interpretations much easier, and con-
firming the symmetry argument given here. This is a
very unusual situation of a symmetry induced in a dis-
ordered system. However it should be noted that such a
reflection symmetry is also expected in crystalline silica
bilayers, where it is less surprising. Although additional
terms in the potential, like the Coulomb terms, may re-
sult in this symmetry being broken, this is not observed
in the experiments, or in the computer simulations, at the



10

current level of accuracy. It should be noted that amor-
phous graphene shows no such symmetry and is expected
to show considerable puckering, unless constrained from
doing so by a sufficient applied tension [11].
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