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We present an efficient method for calculating the prefactors of harmonic transition state theory
rates. We reformulate the prefactors in terms of the density of states (DOS) of the Hessian matrices
at the basin minimum and the saddle point. The DOS is then approximated using the kernel
polynomial method as an expansion in terms of Chebyshev polynomials. The cost of the calculation
scales linearly with the number of atoms, in contrast with the cubic scaling of the direct method.
This approach hence greatly facilitates the investigations of kinetic processes in very large systems.
We demonstrate the method by calculating the prefactors of the transition rates for two processes
in bulk silver: vacancy hopping and Frenkel pair formation.

I. INTRODUCTION

Transition rates of kinetic processes in materials are
essential ingredients in our understanding and prediction
of material properties. For example, the dislocation nu-
cleation rate controls yield, and hence determines how
much strain pristine materials can sustain. Similarly,
thermal creep is limited by dislocation climb rates, and
pinning/depinning of dislocations controls plastic defor-
mation in materials that contain defects,1 for example in
the Portevin-LeChatelier effect2. Computational capa-
bilities enabling calculations of rates for various processes
occuring in materials is therefore of prime importance to
model materials behavior on long timescales.

While rates can be systematically computed at dif-
ferent levels of approximation for small systems, unfa-
vorable scaling limits the system sizes that can be in-
vestigated. For example, a popular formalism to esti-
mate transition rates is the harmonic approximation to
transition state theory (HTST).3 In HTST, the poten-
tial energy surfaces near the initial minimum and the
saddle point for the transition are approximated by har-
monic potentials, which allows for explicit calculation of
the rate. However, this calculation involves the diago-
nalization of the Hessian matrices involved in the har-
monic expansions, which entails a computational cost
that scales cubically with the number of atoms in the
system. In cases where large simulation cells are re-
quired, e.g., for transitions that strongly couple to long-
range strain fields, such as dislocation nucleation, glide,
or climb4–7, massively parallel calculations,7 or sampling-
based approaches, such as thermodynamic integration,8

have to be employed. Alternatively, other levels of the-
ory can be used to estimate the free energy barrier for
the transition e.g., using the finite-temperature string
method9 or umbrella sampling10, in order to get at the
transition rate.

In this work, we present a scalable approach for calcu-
lating HTST rates using the kernel polynomial method
(KPM), a powerful technique developed to compute
properties of large matrices in a range of settings.11–15

In order to avoid diagonalizing Hessian matrices, we re-
formulate the transition rate in terms of density of states
(DOS) which are then expanded in terms of Chebyshev

polynomials using the KPM. The coefficients in the ex-
pansion, i.e., the moments, are obtained by stochastic
sampling of the trace of appropriate polynomials. The
efficient implementation of this technique enables the cal-
culation of HTST rates at a cost that scales only linearly
with the number of atoms in the system.
The paper is organized as follows. In Sec. II, we formu-

late HTST within the KPM formalism. We discuss the
scaling of the algorithm and propose different strategies
to speed up convergence. The accuracy and efficiency of
the method are demonstrated in Sec. IV by the compu-
tation of the prefactors for vacancy hopping and Frenkel
pair formation in bulk silver.

II. THEORY

One of the most common formalisms used to estimate
transition rates in the canonical ensemble is transition
state theory (TST)16–19. In TST, the transition rate be-
tween two states is given by the canonical expectation of
the flux through the dividing surface (defined in config-
uration space) between these two states. The main as-
sumption that underpins TST is that each crossing of the
dividing surface corresponds to a reactive event, i.e., that
every trajectory that crosses the dividing surface from
the initial state will commit to the final state. In gen-
eral, this does not have to be the case as so-called corre-
lated recrossing, where a trajectory recrosses the dividing
surface before having committed to the final state, does
occur in reality; TST rates are therefore upper bounds on
true transition rates. The missing factor, the dynamical
correction factor20,21, can be computed by simulating dy-
namical trajectories launched from the dividing surface.
In the solid state, that correction factor is often close to
unity, so that TST alone can provide a very good approx-
imation to the true transition rate.
Within TST, the transition rate is given by:

kTST =
kBT

h

Z‡

Zmin

(1)

where Zmin is the partition function of the (initial) basin
and Z‡ is the partition function of the dividing surface
that separates the initial and final basins. While formally
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simple, this definition is seldom used directly because of
the high cost of numerically estimating partition func-
tions with high accuracy.
A simple approximation to the partition function can

be obtained by expanding the Hamiltonian of the system
to second order around a local mechanical equilibrium
state. The system then reduces to an ensemble of uncou-
pled harmonic oscillators and the partition functions can
be evaluated explicitly as:

Zmin =
exp[−βVmin]
∏D

i=1 βh̄ωmin,i

(2)

Z‡ =
exp[−βV‡]
∏D−1

i=1 βh̄ω‡,i

(3)

where Vmin and V‡ are the potential energies at the
minimum and the saddle point for the transition, re-
spectively, and the ω are the real, positive, vibrational
angular frequencies of the phonon modes of the sys-
tem. Here D is the total number of vibrational de-
grees of freedom (excluding free translations and rota-
tions). The angular frequencies are the square-roots of
the eigenvalues λ of the mass-weighted Hessian matrix
Hi,j = (∂2V/∂xi∂xj)/

√
mimj that locally describes the

curvature of the potential.

Inserting into Eq. 1, one obtains

kHTST =
1

2π

∏D

i=1 ωmin,i
∏D−1

i=1 ω‡,i

e−β∆V , (4)

where ∆V = V‡−Vmin is the energy barrier for the tran-
sition, or in terms of the eigenvalues of the mass-weighted
Hessian matrices:

kHTST =





1

2π

√

√

√

√

∏D

i=1 λmin,i
∏D−1

i=1 λ‡,i



 e−β∆V . (5)

This is the celebrated harmonic approximation to TST.3

In the last expression, the term in square brackets is the
so-called prefactor. The calculation of the energy barrier
for a given transition can be carried out with a number of
well established and scalable methods, such as the dimer
method22 or the nudged elastic band method23. In the
following, we therefore focus exclusively on the calcula-
tion of the prefactor.
While formally simple, the evaluation of Eq. 4 requires

the diagonalization of D × D matrices, which entails a
computational cost proportional to D3. This unfavorable
scaling limits the size of systems that can be investigated
in practice. To overcome this limitation, we reformulate
the problem in terms of a quantity that can be approx-
imated in a scalable way. Consider the product of the
real positive eigenvalues of a matrix. Taking the natural
logarithm, one gets

log
∏

j

λj =
∑

j

log λj =

∫ +∞

0+
dλ
∑

j

δ(λ− λj) logλ

=

∫ +∞

0+
dλρ(λ) log λ. (6)

This expression now involves an integral over the eigen-
value density function ρ(λ), i.e. the DOS, of the Hessian
matrix. The key is to accurately approximate the DOS
in such a way that diagonalization of H is not required.
A possible approach is to expand the DOS in terms of

a rapidly convergent series, for example using orthogonal
polynomials; on bounded domains, Chebyshev polynomi-
als Tn(x) are a common choice. For matrix arguments,
this corresponds to the so-called KPM11. Without loss
of generality, we first rescale H so that its spectrum
falls within (-1,1). This can be done simply by form-

ing H̃ = (H − bI)/a with a = (λmax − λmin)/(2 − ǫ),
b = (λmax +λmin)/2, where ǫ is a small positive number.
The DOS of this rescaled matrix can then be expanded
in Chebyshev polynomials as:

ρ̃(x) =
1

π
√
1− x2

[

µ0 + 2

∞
∑

n=1

µnTn(x)

]

, (7)

where the moments µn are given by the trace of the
matrix-valued Chebyshev polynomials Tr[Tn(H̃)].24–27

A direct evaluation of the traces would be expen-
sive, but they can be approximated efficiently through
a stochastic evaluation of the form24,26,28:

Tr[Tn(H̃)] ≃ 1

R

R
∑

r=1

〈r|Tn(H̃) |r〉 . (8)

Here {|r〉} is a set of random vectors that satisfy 〈〈ξrj〉〉 =
0 and 〈〈ξriξr′j〉〉 = δrr′δij , where ξri ∈ R denotes the i-
th element of a vector |r〉 and 〈〈...〉〉 denotes statistical
average with respect to different realizations of random
vectors. To be more specific,the average 〈〈ξriξr′j〉〉 cor-

responds to lim
R→∞

1
R2

∑R−1

r,r′=0 ξriξr′j where the sum ex-

tends over different realizations of random vectors. In
the present context, Dirac’s bra/ket notation denotes the
usual matrix/vector and vector/vector products
An efficient evaluation of Eq. 8 relies on two key prop-

erties. First, one does not need to form Tn(H̃) explicitly,
but simply has to compute its projection on a vector.
Second, Chebyshev polynomials possess a three-term re-
currence relation, which for matrix arguments takes the
form:

Tn(H̃)|r〉 = 2H̃Tn−1(H̃)|r〉 − Tn−2(H̃)|r〉. (9)

Computing the product of Tn on a vector thus reduces
to a sequence of products with H̃ . In turn, this can
be efficiently computed with finite differences as (for
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monoatomic systems)

H̃ |y〉 = (H − bI)|y〉
a

=

1
mξ

(~g(~x + ξ~y)− ~g(~x))− b|y〉
a

,

(10)
where ~g is the gradient of the potential energy evaluated
at ~x, which is the coordinate of either the minimum or
the saddle point. The whole process can therefore be
carried out using only interatomic forces, each of which
can be obtained at a cost that scales as O(D) for short-
ranged potentials. ξ is a small parameter (10−7Å in the
present study). In this work, we varied ξ from 10−2 to
10−8 to study the dependence of prefactors on ξ. We
found that prefactors converged very quickly once ξ was
smaller than 10−4. We also tested the centered differ-
ence formula for evaluating Eq. 10, and found that the
improvement in accuracy is marginal for small enough ξ.
The interatomic potential used in the present study is
evaluated using interpolation arrays; the dependence on
ξ may be different (probably less sensitive) for an ana-
lytical form of potential.
When computing traces with Eq. 8, one should only

consider contributions from eigenmodes that have pos-
itive eigenvalues. Therefore, we need to remove these
unwanted modes, such as the unstable mode at the sad-
dle point or the free translation (rotation) modes that
arise when the energy is translation (rotation) invariant.
Before performing the trace in Eq. 8, the vectors |r〉 are
orthogonalized against the subspace spanned by these un-
wanted modes, i.e.,

|r〉 = |r〉 −
∑

i

〈r|ui〉|ui〉,

where the {|ui〉} form an orthogonal basis of that sub-
space, and can be obtained using a Gram-Schmidt pro-
cedure. Note that orthogonality against this subspace
might be lost during the calculation of the different mo-
ments due to numerical errors; in practice such orthogo-
nalization is therefore repeated after each application of
H̃ on a vector.
Coming back to the original problem, Eq. 6 becomes:

log
∏

j

λj =

∫ 1

−1

dxρ̃(x) log(ax+ b). (11)

We then have:

log

[

∏D

j=1 λmin,j

∏D−1

j=1 λ‡,j

]

=

∫ 1

−1

dx
log(ax+ b)

π
√
1− x2

(

∆µ0 + 2

∞
∑

n=1

∆µnTn(x)

)

= c0∆µ0 + 2
∞
∑

n=1

cn∆µn, (12)

where we have assumed that same scaling (i.e., the same
a and b) for the Hessian matrices at the minimum and the

saddle point so that both spectra of the scaled matrices
are contained within [−1, 1]. cn and ∆µn in Eq. 12 are
given by:

cn =

∫ 1

−1

dx
log(ax + b)

π
√
1− x2

Tn(x), (13)

∆µn = µmin,n − µ‡,n

= Tr
[

Tn(H̃min)− Tn(H̃‡)
]

, (14)

from which the HTST prefactor is directly obtained.
To evaluate Eq. 14, one could sample the traces of

Tn(H̃min) and Tn(H̃‡) separately. Due to the stochastic
nature of the evaluation, the variance of the estimates
of ∆µ will in general be larger than that of each of the
terms. As demonstrated below, using matched random
numbers (the same vectors |r〉) to estimate both µmin,n

and µ‡,n leads to a significant reduction of the variance in
estimating ∆µn,

29 and hence of the computational cost.
This is caused by the positive covariance between the
samplings of µmin,n and µ‡,n.
The random vectors can be further constrained to

exactly impose certain conditions. For example, ∆µ0

should be exactly equal to 1, as it corresponds to the
norm of the difference in DOS between the minimum and
saddle points. This condition can be obeyed exactly by
normalizing the random vectors to D and D − 1 at the
minimum and saddle point, respectively. This procedure
is known to also significantly reduce sampling errors.30

In practice, the sum in Eq. 12 is truncated at a fi-
nite number of moments (M), usually on the order of
hundreds, depending on the complexity of the DOS dif-
ference between the minimum and the saddle point. In
the regime where the prefactor depends weakly on system
size, changes in DOS, and hence in moments, can also be
expected to be small. Therefore, the required number
of moments, is not expected to signficantly increase with
system size, for large enough systems. The same is true
for the number of random numbers (R, typically of the
order of a thousand) required to converge the results to
a desired accuracy. Therefore, the cost of our method is
expected to scale as O(DMR), i.e., linearly with respect
to the number of atoms in the system, which is a signif-
icant improvement over the O(D3) scaling of the direct
method. Below, we give numerical evidence that this
scaling is indeed achieved in practice and hence that the
method can be used to efficiently investigate very large
systems.

III. NUMERICAL DETAILS

In the following, we demonstrate the method for two
processes in bulk silver: vacancy hopping and Frenkel
pair formation. While we don’t expect the prefactors
for these transitions to be strongly size dependent, they
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FIG. 1. Saddle point configuration for vacancy hopping in
bulk silver. Atom A is moving to vacancy B and creating a
new vacancy C. For clarity, only non-FCC atoms are shown
(as determined by a common-neighbor analysis).

are simple and well understood processes, and hence pro-
vide good test cases for our method.The interactions be-
tween atoms are modeled with an EAM potential taken
from Ref. 31. Saddle points are located using the string
method.32 The unstable mode at the saddle point and
the largest and smallest eigenvalues of the Hessian ma-
trices (required for rescaling the Hessians) are obtained
with the Lanczos method33, whose cost also scales lin-
early with respect to the number of atoms. The elements
of the random vectors |r〉, i.e., normal random numbers
with zero mean and unit variance, are generated with the
Box-Muller scheme34, in which uniform random numbers
are generated by the RAN3 algorithm35. The coefficients
cn (Eq. 13) are integrated with the quadpack code36. The
Jackson kernel11,37,38 is used to regularize the expansion.

IV. RESULTS

A. Vacancy hopping

We first demonstrate our method by computing the
rate prefactor for vacancy hopping in bulk silver. The
saddle point configuration is shown in Figure 1: atom
A is moving towards vacancy B, leaving a new vacancy
C behind. The transition can therefore be seen as an
exchange of the position of the vacancy with that of one
of its neighbors. The energy barrier for this transition is
0.65 eV.
We first explore the impact of the properties of the

random vectors on the quality of the results. We com-
pare four distinct schemes: (1) exact zero-th moments
and matched random vectors, (2) exact zero-th moments
and non-matched random vectors, (3) inexact zero-th
moments and matched random vectors, and (4) inex-
act zeroth-th moments and non-matched random vectors.
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FIG. 2. Comparison of the convergence of prefactors for
the vacancy hopping with respect to the number of random
vectors for a system of 5 × 5 × 5 unit cells, for four differ-
ent schemes: (a) exact zero-th moments and matched ran-
dom vectors (red crosses); exact zero-th moments and non-
matched random vectors (blue triangles); inexact zero-th mo-
ments and matched random vectors (green circles). (b) Inex-
act zero-th moments and non-matched random vectors. Ex-
act prefactors are shown by black dashed lines. All results are
calculated with 400 moments.

The results, shown in Fig. 2, indicate that unnormalized
and unmatched random vectors yield very poor results:
the prefactor varies wildly, by many orders of magni-
tude, as the number of random vectors is increased. In
contrast, imposing normalization and matching random
vectors significantly improve the convergence rate. Taken
together, they enable a very fast convergence: the cor-
rect order of magnitude is obtained with fewer than ten
random vectors and the fluctuation with increasing the
number of random vectors is modest. Unless noted oth-
erwise, all results in this work are obtained with random
vectors that are normalized and matched.

The convergence with respect to the number of mo-
ments is extremely rapid for the vacancy hopping. As
shown in Figure 3, the prefactors converge to within 10%
error (with respect to their converged values) with fewer
than ten moments, and within 1% error with fewer than
40 moments, for all cell sizes. A similar trend is also ob-
served for the convergence with respect to the number of
random vectors. As shown in Fig. 4, about 1000 vectors
are required to obtain an error at the 10% level, indepen-
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FIG. 3. Convergence of the prefactors for the vacancy hopping
(using 20000 random vectors) with respect to the number of
moments, for five different cell sizes. With 10, 20, 30, 40, and
50 moments, the prefactors converge to 8%, 4%, 2%, 0.8%,
and 0.6% error, respectively.

dently of system size. As neither the required number of
random vectors, nor the number of moments scales with
system size, the computational cost of the method is lin-
ear in number of atoms, in agreement with the heuristic
arguments discussed above.
Figure 5 compares the prefactors calculated from our

method (with 400 moments and 20000 random vectors)
with the results obtained from direct diagonalization
of the Hessian matrices. The agreement between our
method and the benchmark is excellent, with the errors
below 1.2%. Due to high computational costs, prefactors
for the 19 × 19 × 19 cell were not obtained with direct
diagonalization. It is interesting to note that even for
such a simple transition, very large cells are required to
converge the results to within 1%, as the prefactor varies
by about 10% from the 5× 5× 5 cell to the 11× 11× 11
cell.
The convergence of the prefactor with respect to the

number of moments can be understood from the behav-
ior of the |cn| and ∆µn, as shown in Figure 6 for the
15 × 15 × 15 cell. The results are obtained using 20000
random vectors. Perhaps contrary to intuition, conver-
gence of the prefactors do not follow from the fast decay
of the expansion coefficients (the ∆µn). Instead, these
coefficients fluctuate around 0 with no visible sign of con-
vergence. This can be understood from the fact that the
DOS are not smooth functions but sums of delta func-
tions. Expanding δ(x) in Chebyshev polynomials yields
µn = cos(nπ/2), which is either -1, 1, or 0, depending
on n. Therefore, the moments of the DOS themselves
are not expected to decay with increasing order. On the
other hand, the coefficients cn correspond to the integral
of a Chebyshev polynomial (a strongly oscillatory func-
tion at large n) with a smooth function. Consequently,
the magnitude of cn does decay rapidly with increasing
order, as shown in Figure 6. The rapid convergence of
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FIG. 4. Convergence of the prefactors (s−1) for the vacancy
hopping (using 400 moments) with respect to the number
of random vectors, for five different cell sizes. The dashed
horizontal lines show +/- 10% error windows from the bench-
marks obtained by directly diagonalizing the Hessian matrices
(except for the 19×19×19 cell, where the benchmark is taken
from the converged KPM results at 20000 random vectors).
Arrows indicate convergence to within 10% error.

the prefactor therefore stems from the rapid decay of the
cn combined with the alternating sign of the ∆µn.

B. Frenkel pair formation

We now investigate a more complex transition, namely
the nucleation of a Frenkel (vacancy-interstitial) pair
from a perfect bulk crystal. The saddle point configu-
ration and the fully formed Frenkel pair are shown in
Figure 7. The pair contains a vacancy (marked “V”) and
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FIG. 5. Comparison of the prefactors for vacancy hopping
between the KPM (with 400 moments and 20000 random vec-
tors) and the direct diagonalization for different cell sizes. The
relative errors between the KPM and the direct diagonaliza-
tion are 0.2%, 1.2%, 0.7%, 0.1%, and 0.3% for cell sizes from
5× 5× 5 to 15× 15× 15.

a dumbbell interstitial defect (marked “D”). In this case,
the energy barrier for the transition is 4.4 eV.
The convergence of the prefactor with respect to mo-

ments is shown in Figure 8 for five different cell sizes and
40000 random vectors. For all cell sizes, the prefactor es-
timate peaks at ∼ 20 moments, and then monotonously
converges. A relative error of 1% here requires around
220 moments, significantly more that the 40 that were
required in the case of vacancy hopping. However, as in
the former case, this number is independent of cell size.
The convergence of the prefactor (using 400 moments)

with respect to the number of random vectors is shown
in Figure 9, for five different cell sizes. As marked by
the arrows, the number of random vectors required for
convergence to within 10% error again does not increase
with cells size, and the method’s cost scales linearly with
the number of atoms.
In Figure 10, we demonstrate the accuracy of our

method compared to the direct diagonalization of Hes-
sian matrices. The prefactors are obtained with 400 mo-
ments and 40000 random vectors. For all cell sizes, the
relative errors are less than 5%, again indicating that the
method provides very accurate estimates of the prefac-
tors.
The fact that the prefactor of the Frenkel pair forma-

tion rate requires more moments than that of the va-
cancy hop can be traced back to characteristic of their
DOSs. As seen by comparing Figures 11 and 12, which
show their DOSs at the minima and saddle points, the
difference in DOS is generally smoother for the vacancy
hop than for the Frenkel pair formation. Further, a large
number of new peaks appear in the high energy section
of the saddle point’s DOS for the Frenkel pair forma-
tion, as compared to only four new peaks for the va-
cancy hop. This is consistent with the observation that
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FIG. 6. |cn| (Eq. 13) and ∆µn (Eq. 14) with respect to the
moment index. The results are obtained for vacancy hopping,
with the 15× 15× 15 cell and 20000 random vectors.

FIG. 7. Configurations of (a) the saddle point during the
Frenkel pair formation and (b) the final Frenkel pair. For
clarity, only non-FCC atoms are shown (as determined by a
common-neighbor analysis). New vacancies are marked with
“V”, and the two atoms that form the dumbbell interstitial
defect are marked with “D”.

more moments are required to converge the prefactors for
the Frenkel pair formation. The complexity of the DOS
difference between the minimum and the saddle point
is therefore the determining factor that controls the re-
quired order of the Chebyshev expansion.
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FIG. 8. Convergence of the prefactors for Frenkel pair forma-
tion (using 40000 random vectors) with respect to the number
of moments, for five different cell sizes. For the 15 × 15 × 15
cell, the KPM results converge to within 20%, 10%, 5%, and
1% error with 60, 80, 110, and 220 moments, respectively.

V. DISCUSSION

The results above demonstrate that our method is able
to accurately compute HTST prefectors for large systems
at an affordable cost. To put this in perspective, consider
a system where 1000 moments and 1000 random vec-
tors are required for high accuracy results. As each mo-
ment requires the calculations of the interatomic forces
at the minimum and saddle point for each random vec-
tor, on the order of 106 force calculations are required
overall. This corresponds to the same computational ef-
fort as a few nanoseconds of molecular dynamics (MD)
simulation on the whole system, a non-negligible invest-
ment, but still very competitive compared to what can
be expected from MD-based sampling techniques such as
thermodynamic integration8. Furthermore, calculation
corresponding to different random vectors can be done
totally independently. Our method is therefore trivial to
parallelize and extremely scalable as parallelization can
be carried out over both individual force calculation (us-
ing spatial decomposition techniques) and over random
vector realizations. The wall-clock time required for the
calculation of the prefactor could therefore in principle
be reduced to the time needed for, in this example, 1000
parallel force calculations. Based on the examples dis-
cussed here, we estimate that the cross-over point where
the KPM method requires less computing effort than the
direct diagonalization to be between the 15x15x15 and
the 19x19x19 cell, assuming 40000 random vectors, which
provides an error at the level of a few percents. We em-
phasize again however that the KPM can be massively
parallelized over the different random vector realization
with no loss in efficiency, which enables faster wall-clock
time solutions at even smaller cell sizes. Another strength
of our method is that the level of accuracy is tunable.
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FIG. 9. Convergence of the prefactors (s−1) for Frenkel pair
formation (using 400 moments) with respect to the number
of random vectors, for five different cell sizes. The dashed
horizontal lines show the +/- 10% error windows from the
benchmarks obtained by directly diagonalizing the Hessian
matrices (except for the 19×19×19 cell, where the benchmark
is taken from the converged KPM results at 40000 random
vectors). Arrows indicate convergence to within 10% error.

Based on the results given above, errors at the 50% lev-
els can be achieved with only tens of random numbers
and moments, which in turn costs only a few picosec-
onds worth of MD, a routine calculation even on systems
containing millions of atoms. Finally, this method only
requires interatomic forces, a quantity that is available
from any MD code. Implementation of our method into
existing codes is therefore straightforward.
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VI. CONCLUSIONS

Using the kernel polynomial method, we have devel-
oped an efficient technique for calculating the prefactors
of transition rates in large systems within the HTST ap-
proximation. The method is based on the expansion of
the vibrational DOS in terms of Chebyshev polynomials.
As the order of the expansion is a user-tunable parame-
ter, the method offers an adjustable balance between ac-
curacy and computational cost. Using two prototypical
processes, namely the diffusion of vacancies and the nu-
cleation of Frenkel pairs in bulk silver, we demonstrated
its high accuracy and efficiency. As the computational
cost scales only linearly with system size for short-range
potentials, it can be use to investigate important kinetic
processes in very large systems.
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