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Measuring the Casimir force gradient from graphene on a SiO2 substrate
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The gradient of the Casimir force between a Si-SiO2-graphene substrate and an Au-coated sphere
is measured by means of a dynamic atomic force microscope operated in the frequency shift tech-
nique. It is shown that the presence of graphene leads to up to 9% increase in the force gradient at
the shortest separation considered. This is in qualitative agreement with the predictions of Lifshitz
theory using the dielectric permittivities of Si and SiO2 and the Dirac model of graphene.
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I. INTRODUCTION

In the last few years graphene has attracted considerable attention as a material of much promise for nanotechnology
due to its unique mechanical, electrical and optical properties.1,2 Noting that at short separations between test bodies
the fluctuation-induced dispersion interactions, such as the van der Waals and Casimir forces, become dominant,3 it is
important to investigate them in the presence of a graphene sheet. In this connection much theoretical work has been
done on the calculation of dispersion forces between two graphene sheets,4–9 a graphene sheet and a metallic, dielectric
or semiconductor plate,6–8,10–15 a graphene sheet and an atom or a molecule16–19 etc. The calculations were performed
using phenomenological density-functional methods,20–23 second order perturbation theory,24 and the Lifshitz theory
with some specific form for the reflection coefficients of electromagnetic oscillations on graphene.4,7,11,12 However,
in spite of the impressive progress in measurements of the Casimir force in configurations with metallic, dielectric
and semiconductor test bodies (see reviews in Refs.25–28 and more recent experiments29–31), there is yet no previous
measurement of dispersion forces acting on graphene.
In the present paper we report measurements of the gradient of the Casimir force acting between a graphene sheet

deposited on a SiO2 film covering a Si plate and an Au-coated sphere. Our measurements are performed by means of
dynamic atomic force microscope (AFM) operated in the frequency-shift technique described in detail in Refs.30,31.
We demonstrate significant increase in the gradient of the Casimir force in comparison with that between a Si plate
covered with a SiO2 film and an Au-coated sphere, i.e., in the absence of graphene sheet. At short separations
this increase is up to a factor 4-5 larger than the total experimental error in the measurement of the force gradient
determined at a 67% confidence level. We also compare the experimental results with an approximate theory where
the gradients of the Casimir force between a Si-SiO2 system and Au-coated sphere and between a graphene described
by the Dirac model and the same sphere are computed independently of one another using the Lifshitz theory and
then are added. Some excess of the theoretical force gradient over the experimental one is attributed to the screening
of the Si-SiO2 surface by a graphene sheet. In future it would be interesting to observe the large thermal effect in
the Casimir force between two graphene sheets predicted5 at relatively short separations. At the moment we have
no exact theory to calculate the thermal effect in the Si-SiO2-graphene system interacting with an Au-coated sphere
(see Sec. III). Here, the major contribution to the force gradient is given by the quantum mechanical fluctuations.
The paper is organized as follows. In Sec. II we briefly describe the detection system, the measurement scheem and

the sample preparation. Section III contains the measurement results and their comparison with theory. Section IV
contains our conclusions.

II. EXPERIMENTAL SETUP

The detection system used in our measurements consists of an AFM cantilever with attached hollow glass micro-
sphere coated with Au, piezoelectric actuators, fiber interferometers, light source, and phase locked loop (PLL). The
thickness of the Au coating and the radius of the coated sphere were measured to be 280nm and 54.10 ± 0.09µm
using an AFM and a scanning electron microscope, respectively. A turbo-pump, oil-free dry scroll mechanical-pump
and ion-pump were used to achieve high vacuum down to 10−9Torr (see Refs.30,31 for detail of the setup).
In the dynamic measurement scheme the total force Ftot(a) = Fel(a) + F (a) acting on the sphere [where Fel(a)

and F (a) are the electric and Casimir force, respectively, and a is the separation distance between the sphere and
graphene] modifies the resonant natural frequency of the oscillator. The change in the frequency ∆ω = ωr−ω0, where
ωr and ω0 are the resonance frequencies in the presence and in the absence of external force Ftot(a), respectively,
was recorded by the PLL. This was done at every 0.14nm while the plate was moved towards the grounded sphere
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starting at the maximum separation. This was repeated with one of 10 different voltages Vi in the range from –38.5
to 58.4mV for the first graphene sample and from –5.2 to 97.4mV for the second graphene sample applied to the
graphene sheet while the sphere remained grounded. The application of voltages and respective measurements were
repeated for two times resulting in 20 sets of ∆ω as a function of separation for each graphene sample.
Large area graphene used in our experiment was obtained through a two-step Chemical Vapor Deposition (CVD)

process described.32 In this process 25µm thick polycrystalline copper foil (99.8% purity) was cleaned by diluted
HCl solution followed by deionized water rinse. Then the copper foil was placed into ∼ 5 cm × 3 cm copper bag
which had undergone the same clean process as above. The copper bag was loaded into a ceramic tube furnace
for the CVD process. First the copper bag was annealed at 1000◦C under continuous Ar/H2 (69 sccm/10 sccm)
flow. Graphene was grown on the copper foil by introducing methane/hydrogen gas of 1.3 sccm/4 sccm for one hour
and 35 sccm/4 sccm for another hour. Then the furnace was cooled down to room temperature under a continuous
flow of Ar/H2 (69 sccm/10 sccm). Finally, the grown graphene was transferred from the copper foil to 300 nm SiO2

layer on a B-doped Si layer of 500µm thickness on the bottom by using poly-metil methacrylate (PMMA) as the
graphene support layer and ammonium persulfate solution as the copper etchant. We have examined the quality of
the graphene layer through Raman spectroscopy33,34 and quantum Hall effect measurements,35,36 which show single
layer graphene characteristics. Measurements of 2D-mobility for a large area graphene onto SiO2 substrates performed
in our laboratory demonstrate mobility above 3000 cm2/Vs. A roughly estimate for the concentration of impurities
would be 1.2× 1010 cm−2, if we consider that each impurity adsorbs one electron.
The gradients of the total and Casimir forces were found from the measured frequency shifts using electrostatic

calibration. To perform this calibration of the setup, we used the expression for the electric force in sphere-plate
geometry26

Fel(a) = X(a,R)(Vi − V0)
2. (1)

Here X(a,R) is a known function and V0 is the residual potential difference between a sphere surface and a graphene
sheet which is nonzero even when both surfaces are grounded. In the linear regime which is realized in our setup30

the gradient of the Casimir force is given by

F ′(a) ≡
∂F (a)

∂a
= −

1

C
∆ω −

∂X(a,R)

∂a
(Vi − V0)

2, (2)

where C = ω0/(2k) and k is the spring constant of the cantilever. Note that the absolute separations between the zero
level of the roughness on the sphere and graphene are found from a = zpiezo + z0, where zpiezo is the plate movement
due to the piezoelectric actuator and z0 is the closest approach between the Au sphere and graphene (in dynamic
experiments the latter is much larger than the separation on contact of the two surfaces).
From the position of a maximum in the parabolic dependence of ∆ω on Vi in Eq. (2), one can determine V0 with

the help of a χ2-fitting procedure. From the curvature of the parabola with the help of the same fit it is possible to
determine z0 and C. This was done at different separations for the two graphene samples used in our experiment.
In Fig. 1 we present the values of V0 as a function of separation determined from the fit for the first and second
graphene samples (the lower and upper sets of dots, respectively). The obtained values were corrected for mechanical
drift of the frequency-shift signal, as discussed in Ref.30. As can be seen from Fig. 1, the resulting V0 do not depend
on separation. To check this observation, we have performed the best fit of V0 to the straight lines shown in Fig. 1
leaving their slopes as free parameters. It was found that the slopes are −4.96× 10−6mV/nm and 6.2× 10−4mV/nm
for the first and second samples, respectively, i.e., the independence of V0 on a was confirmed to a high accuracy.
This finally leads to the mean values V0 = 18.4 ± 0.9mV and V0 = 65.7 ± 0.9mV for the first and second samples,
respectively, where errors are determined at a 67% confidence level. Note that different graphene sheets may lead to
different V0 due to occasional impurities. The possible impurities could be organic, H2, O2, N2 and H2O. All these
may become dopants of graphene and change its work function. Next the quantities z0 and C were determined from
the fit at different separations and found to be separation-independent. For the first and second samples the mean
values are equal to z0 = 222.5± 0.4 nm, C = 58.7± 0.17 kHzm/N and z0 = 222.2± 0.4 nm, C = 58.9± 0.17 kHzm/N,
respectively. From the measured resonant frequency we have confirmed that the obtained value of C results in the
spring constant k consistent with the estimated value provided by the cantilever fabricator.

III. MEASUREMENT RESULTS AND COMPARISON WITH THEORY

For each graphene sample the gradients of the Casimir force F ′(a) as a function of a were obtained from the
measured ∆ω in two ways: by applying 10 different voltages Vi with subsequent subtraction of the electric forces (2
repetitions) and by applying the compensating voltage Vi = V0 (22 repetitions). In these cases 20 and 22 force-distance
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relations were obtained, the mean force gradients were computed and their total experimental errors were determined
at a 67% confidence level as a combination of random and systematic errors (see Ref.30 for details). In Fig. 2(a,b) the
mean gradients of the Casimir force and their errors measured for the first sample with applied compensating voltage
are shown as crosses with a step of 1 nm. Table 1 presents the values of mean F ′(a) at several separations measured
in the two different ways for the first (columns a, b) and second (columns c, d) samples. As can be seen in Table 1, the
measurement results for the two graphene samples obtained in two different ways are in very good mutual agreement.
Now we compare the experimental results with theoretical predictions. The problem is that there is no theory

allowing rigorous calculation of the Casimir force between a graphene deposited on a Si-SiO2 substrate and an Au
sphere. We underline that the formalism of Ref.37 is formulated for planar layered structures where the materials of
all layers are described by means of a dielectric permittivity. This allows one to formulate the boundary conditions
and the respective reflection coefficients at any interface between two neighboring layers. In our case the Si and
SiO2 layers are described by means of dielectric permittivity, whereas the reflection coefficient on the boundary of
an infinitely thin graphene layer and vacuum is described by means of the polarization tensor. At the moment the
boundary condition at the interface between graphene described by the polarization tensor and dielectric (SiO2) is not
available. This does not allow one to obtain the reflection coefficient on the boundary of Si-SiO2-graphene structure
by using the formalism developed in Ref.37. The alternative description of graphene in the framework of the random
phase approximation as a dielectric sheet of thickness equal to 1 Å leads to problems, as explained in Ref.9. Because
of this, here we restrict ourselves to the approximate approach, where the contributions of Si-SiO2 substrate and
graphene sheet to the Casimir interaction with an Au sphere are computed separately using the Lifshitz theory and
are then added together. In the framework of the proximity force approximation (PFA), the Lifshitz formula for the
gradient of the Casimir force between an Au sphere and any planar structure takes the form

F ′(a) = 2kBTR

∞∑
l=0

′
∫ ∞

0

qlk⊥dk⊥
∑
α

r
(1)
α r

(2)
α

e2qla − r
(1)
α r

(2)
α

. (3)

Here kB is the Boltzmann constant, T = 300K is the laboratory temperature, at which all measurements have been
performed, k⊥ is the projection of the wave vector on a planar structure, q2l = k2

⊥
+ ξ2l /c

2, and ξl = 2πkBT l/~ with
l = 0, 1, 2, . . . are the Matsubara frequencies. The prime near the summation sign multiplies the term with l = 0
by 1/2, and α = TM,TE denotes the transverse magnetic and transverse electric polarizations of the electromagnetic
field. Note that an error arising from the application of PFA was recently found38–40 using the exact theory for the
sphere-plate geometry and was shown to be less than a/R, i.e., of about 0.5% in our experiment.

The quantity r
(1)
α = r

(1)
α (iξl, k⊥) in Eq. (3) is the standard Fresnel reflection coefficient for an Au surface calculated

at the imaginary frequencies (an Au layer can be considered as a semispace). It is expressed in terms of the dielectric
permittivity εAu(iξl) using the tabulated optical data for Au41 extrapolated to zero frequency either by the Drude or
by the plasma models.25,26

Unlike the case when a graphene layer is present, the Casimir interaction of the Si-SiO2 substrate with an Au sphere

is described by the well tested fundamental Lifshitz theory. Here the quantity r
(2)
α = r

(2)
α (iξl, k⊥) has the meaning of

the reflection coefficient on the two-layer (Si-SiO2) structure
26,37,42 where Si can be considered as a semispace. It is

expressed in terms of ε Si(iξl) and ε SiO2(iξl). In our computations we used ε Si(iξl) obtained
43 from the optical data44

for Si extrapolated to zero frequency either by the Drude or by the plasma models (Si plate used has the resistivity
between 0.001 and 0.005Ω cm which corresponds to a plasma frequency between 5× 1014 and 11× 1014 rad/s and the
relaxation parameter γ ≈ 1.1× 1014 rad/s). A sufficiently accurate expression for ε SiO2(iξl) from Ref.45 was used in
the computations. The r.m.s. roughness on the surfaces of sphere and graphene was measured by means of AFM and
found to be equal to 1.6 nm and 1.5 nm, respectively. It was taken into account using the multiplicative approach,25,26

and its maximum contribution to the force gradient is equal to only 0.1% at the shortest separation.
The computational results for F ′(a) between a Si-SiO2 substrate and an Au sphere are shown by the solid band in

Fig. 2. The width of the band indicates the uncertainty in the value of ωp and a difference between the predictions of
the Drude and plasma model approaches to the description of Au and Si which is small in this experiment. The latter
is illustrated in columns e and f of Table 1. Figure 2 and Table 1 indicate conclusively that within the separation
region from 224 to 320 nm the measured gradients of the Casimir force are larger than that for a Si-SiO2 substrate
interacting with an Au sphere. This demonstrates the influence of the graphene sheet on the Casimir force.
The reflection coefficients for a suspended graphene described by the Dirac model are represented in the form12,14,19

r
(2)
TM =

qlΠ00

qlΠ00 + 2~k2
⊥

, (4)

r
(2)
TE = −

k2
⊥
Πtr − q2l Π00

k2
⊥
(Πtr + 2~ql)− q2l Π00

,
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where Πmn are the components of the polarization tensor in 3-dimensional space-time and the trace stands for the
sum of spatial components. The computational results for the gradient of the Casimir force between the suspended
graphene with the mass gap parameter ∆ = 0 and ∆ = 0.1 eV and an Au sphere as a function of a are shown in
Fig. 3 by the upper and lower lines, respectively (here the results do not depend on whether the Drude or the plasma
model approach for Au is used14). In Fig. 2 the dashed band shows the sum of the force gradients between a Si-SiO2

substrate and an Au sphere and between graphene and the same sphere. The width of the band takes into account
the respective width for a substrate interacting with a sphere and also differences in predictions of the Dirac model of
graphene with the mass gap parameter varying from 0 to 0.1 eV. It can be seen in Fig. 2 that the used approximate
approach overestimates the measured force gradient, as it should, keeping in mind that it does not take into account
the screening of the SiO2 surface by the graphene layer. Thus our results also illustrate nonadditivity of the van der
Waals and Casimir interactions in multilayer structures.46 Note that at short separations our approximate approach
(dashed line in Fig. 2) is in better agreement with the data than the approach which disregards the graphene layer
(solid line in Fig. 2). Thus, at a = 224 nm the relative difference between the prediction of the approach disregarding
graphene and the measured force gradient is equal to –10.1% of the measurement result and between the prediction
of our approximate approach taking graphene into account and the same force gradient is equal to 7.1%. It is quite
natural, however, that at large separations the influence of the graphene layer is overestimated by our approximate
approach. Note that for Si-SiO2 system interacting with an Au-coated sphere the difference between the calculation
results obtained at T = 300K and T = 0K is much less than the experimental error. The detailed calculation of the
Casimir interaction between a graphene sheet and an Au as a function of temperature is performed in Ref.14.

IV. CONCLUSIONS

To conclude, we have demonstrated the influence of a graphene layer on the Casimir force between a Si-SiO2

substrate and an Au sphere. At the shortest separation measured the relative excess in the force gradient due to the
presence of graphene deposited on a substrate reaches 9% and decreases with increasing separation. Our experimental
results are found to be in qualitative agreement with an approximate theoretical approach describing the reflection
coefficients on graphene via the polarization tensor in 3-dimensional space-time, whereas the layers of the substrate are
described by means of the dielectric permittivity. The standard Lifshitz theory for layered structures is not applicable
to such cases. A more exact theoretical description than the one used in this work remains a challenge to theory. The
present work will serve as a motivation in this direction. The Casimir interaction of graphene should be taken into
account in future applications of carbon nanostructures in nanotechnology.
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FIG. 1: The residual potential difference between an Au-coated sphere and the first (lower dots) and second (upper dots)
graphene sheets on a Si-SiO2 substrate as a function of separation. The mean values of V0 are shown by the gray lines.



8

240 260 280 300 320 340

10

15

20

25

30

35

a (nm)
F0 (�N/m)

360 380 400 420 440 460 480 500

1

2

3

4

5

6

7

8

a (nm)
F0 (�N/m)

(b)
(a)

FIG. 2: (Color online) The experimental data for the gradient of the Casimir force F ′ at (a) short and (b) long separations
are shown as crosses plotted at a 67% confidence level (measured with the applied compensating voltage for the first sample).
The theoretical F ′ between an Au-coated sphere and a Si-SiO2 substrate calculated using the Lifshitz theory and between an
Au-coated sphere and graphene deposited on this substrate calculated using an additive approach are shown as the solid and
dashed bands, respectively.
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FIG. 3: (Color online) The gradient of the Casimir force between an Au-coated sphere and a suspended graphene sheet
calculated using the Dirac model with the mass gap parameter equal to 0.1 eV (lower line) and 0 (upper line) as a function of
separation.



10

Tables



11

TABLE I: The mean values of the gradient of the Casimir force together with their total experimental errors at different
separations (first column) measured in this work with applied compensating voltage (column a) and with different applied
voltages (column b) for the first graphene sample (columns c and d, respectively, for the second graphene sample). Columns e
and f contain theoretical values for the gradients of the Casimir force between the Au sphere and Si-SiO2 substrate calculated
when Au and Si are described by the plasma and Drude model approaches, respectively.

Gradients of the Casimir force F ′ (µN/m)

a (nm) a b c d e f

224 34.27 ± 0.64 33.58 ± 0.65 34.12 ± 0.64 33.76 ± 0.65 30.90 30.70

250 22.62 ± 0.64 22.27 ± 0.64 22.72 ± 0.64 22.42 ± 0.64 20.67 20.51

300 11.50 ± 0.64 11.19 ± 0.64 11.65 ± 0.64 11.53 ± 0.64 10.66 10.54

350 6.52± 0.64 6.28 ± 0.64 6.30 ± 0.64 6.60± 0.64 6.12 6.03

400 3.98± 0.64 3.67 ± 0.64 3.99 ± 0.64 3.70± 0.64 3.81 3.73

500 1.90± 0.64 1.76 ± 0.64 1.78 ± 0.64 1.60± 0.64 1.73 1.68


