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Tomas Löfwander,1 Pablo San-Jose,2 and Elsa Prada3

1Department of Microtechnology and Nanoscience - MC2,
Chalmers University of Technology, SE-412 96 Göteborg, Sweden
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We analyze the quantum Hall effect in single layer graphene with bilayer stripe defects. Such
defects are often encountered at steps in the substrate of graphene grown on silicon carbide. We
show that AB or AA stacked bilayer stripes result in large Hall conductivity fluctuations that destroy
the quantum Hall plateaux. The fluctuations are a result of the coupling of edge states at opposite
edges through currents traversing the stripe. Upon rotation of the second layer with respect to the
continuous monolayer (a twisted-bilayer stripe defect), such currents decouple from the extended
edge states and develop into long-lived discrete quasi bound states circulating around the perimeter
of the stripe. Backscattering of edge modes then occurs only at precise resonant energies, and hence
the quantum Hall plateaux are recovered as twist angle grows.

PACS numbers: 73.50.Jt 72.80.Vp 85.75.Nn

I. INTRODUCTION

The unique half-integer quantum Hall effect (QHE)
in monolayer graphene serves as a fingerprint of mass-
less Dirac electrons.1,2 It is therefore used in the labo-
ratory to distinguish monolayers from multilayers.3 The
electrons in graphene under applied perpendicular mag-
netic field have an unconventional Landau level spec-
trum, leading to a sequence of Hall conductivity plateaux
σxy = G0(2n+1), where G0 is the conductance quantum,
G0 = 2e2/h (h is Planck’s constant and e is the electron
charge), and n is an integer including zero.4 The large en-
ergy level separation between the n = 0 and n = 1 Lan-
dau levels adds robustness to the n = 0 plateau, which
has been observed also at room temperature.5 More im-
portantly, measurements6–8 of the von Klitzing constant
RK = h/e2 have been performed to metrological ac-
curacy on epitaxial graphene on silicon-carbide (SiC).
Large break-down currents have been observed for this
material, and epitaxial graphene at present outperforms
conventional two-dimensional electron gases in semicon-
ducting heterostructures in this respect, and may very
well be the material of choice for metrology in the fu-
ture. Transistors with promising high cut-off frequencies
have also been fabricated from epitaxial graphene.9,10 It
is therefore of high current interest to establish the elec-
tron transport properties of graphene on SiC.11

Inhomogeneities in the two-dimensional material are
often detrimental to its transport properties.12–16 Epi-
taxial graphene on SiC may continuously cover the whole
SiC substrate,17–19 but steps on the substrate influ-
ence the graphene layer along lines running across the
wafer.20,21 At a step, the graphene sheet may be more de-
coupled from the underlaying substrate than on the wide
terraces between steps, which may change the doping
level locally.20,22 Graphene may also suffer strain23 since
the SiC step is atomically sharp, while the graphene sheet
forms a continuous cover. In addition, since the steps
serve as seeds in the growth process of epitaxial graphene,

bilayers or multilayers are often observed,19,24,25 see Fig.
1 (a). Depending on the growth process, several islands
may form near the steps or continuous stripes may be
formed along a large part of the step. After fabrication of
the Hall bar, the bilayer stripe defects can reach from one
side to the other of the Hall bar, resulting in a geometry
similar to the one shown in Fig. 1 (b). Experimentally, it
was recently observed26 that narrow Hall bars intention-
ally fabricated perpendicular or parallel to steps display
markedly different properties. When the current path
crosses many steps, a positive magnetoresistance arises,
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FIG. 1. (a) Illustration of a continuous graphene layer over
a substrate with two terraces separated by a step. A sec-
ond layer is formed at the step. (b) Schematics of a graphene
monolayer-twisted bilayer-monolayer junction in a perpendic-
ular magnetic field. The ribbon’s width is W , the bilayer
patch has a length L and the lattice twist angle between lay-
ers is θ. Allowed edge state paths for electrons are sketched
in each region.
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that can be explained, according to Schumann et al.,26 as
the result of Hall edge channel backscattering caused by
new edge channels developing along the substrate steps,
although the specific mechanism remains an open ques-
tion. In contrast, other experiments19,27,28 show that
the magnetotransport in epitaxial graphene appears ba-
sically insensitive to surface steps. Thus, a theory that
embraces both scenarios is still missing.

Here, we numerically investigate a scenario that rec-
onciles both observations, wherein a bilayer patch inter-
feres with the currents flowing in the underlaying mono-
layer, as sketched in Fig. 1 (b). We show that the QHE
plateau quantization is strongly suppressed by the pres-
ence of a single AA- or AB-stacked bilayer stripe cross-
ing the Hall bar, which opens up the possibility of edge
state backscattering by connecting opposite edges. This
effect, however, becomes much weaker as the two lay-
ers are rotated by a finite relative angle, breaking the
perfect AA or AB stacking. We find that the QHE is
least distorted as the twist angle approaches 30◦ (mid-
way between AA and AB stacking). Although inter-edge
backscattering remains possible in this case, it becomes
confined to narrow resonances, apparent as narrow dips
in the Hall plateaux, and caused by quasi-bound states
circulating around the patch that are weakly coupled to
the extended edge states. The backscattering resonances
are furthermore smeared out by finite temperature ef-
fects. Hence, a significant suppression of Hall plateaux
in SiC-grown epitaxial graphene typically requires the
Hall bar to lie across substrate steps, as found in Ref.
26, but also good crystallographic alignment of the mul-
tilayer patches seeded by the steps.

II. HALL EFFECT ACROSS A TWISTED
BILAYER

The properties of bilayer graphene, particularly of
twisted bilayers, have been the focus of considerable in-
terest recently.29–32 For AB-stacked bilayer graphene, the
two Dirac cones of a decoupled double monolayer system
are strongly modified by the interlayer hopping, result-
ing in parabolic bands and possibly trigonal warping.33

In twisted graphene, on the other hand, the two cones
within each valley are separated in reciprocal space and
interlayer coupling leads to a finite energy saddle point in
the band structure at the intersection of the two surviv-
ing Dirac cones. The corresponding van Hove singularity
has been observed experimentally.34 The question arises
as to what the QHE looks like across a monolayer-bilayer
graphene junction, including the effect of interlayer twist
in the bilayer part.

It should be recognized that a heterostructure35 con-
sisting of monolayer graphene occupying the half space
x < 0 and bilayer graphene occupying the other half
space x > 0 is rather different from the geometry con-
sidered in this paper, where the bilayer exists between
0 < x < L, see Fig. 1, and plays the role of a complicated
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FIG. 2. Bandstructure of a 10 nm wide zigzag graphene
ribbon at various magnetic fields for a hopping cut-off of
Rc = 3acc and ribbon unit cell size au = 2

√
3acc.

barrier for electron flow in the lower extended monolayer.
The finite length L of the bilayer patch leads to the for-
mation of a spectrum with quasi-bound state resonances.
Such states are chiral and circulate around the perimeter
of the patch, but may escape into the two extended states
at opposite edges of the monolayer (and eventually to
reservoirs) through two opposite corners of the patch [see
Fig. 1 (b)]. When the Fermi energy equals a resonance
energy, a vertically propagating channel is opened that
connects an incoming edge state into an outgoing state at
the opposite edge, allowing for backscattering in the QHE
regime. This appears as a dip of depth G0 in the quan-
tized value of the Hall conductivity across the resonance.
If the width of the resonance levels exceeds the corre-
sponding level separation, the Hall conductivity plateaux
are completely destroyed. Ultimately, the existence of
such transverse backscattering channels has a topologi-
cal origin, since the different Chern-numbers of the mono-
layer and bilayer bands dictates that the number of edge
channels along a monolayer-bilayer interface is odd, as a
consequence of the bulk-surface correspondence.36,37

A. Model

To illustrate the resonant backscattering effect, we
have performed quantum transport calculations for two-
terminal and six-terminal nano-ribbon devices in a mag-
netic field. We ignore the effects of inhomogenous doping
and strain, which may also modify magnetotransport as
studied elsewhere,23 and concentrate on the effect of a
bilayer patch. The starting point is the tight-binding
Hamiltonian for graphene

H =
∑
ij

tijc
†
i cj , (1)
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where the hopping elements tij include hopping beyond
nearest neighbors, and are modeled by the π-orbital
overlap at different carbon sites j and i separated by
Rj −Ri = r = (x, y, z)T ,

tij = t(r) = −γ0
x2 + y2

r2
e−λ(|r|−acc) − γ1

z2

r2
e−λ(|r|−d).

(2)
Here, γ0 and γ1 = 0.14γ0 are the nearest neighbor and
interlayer hopping parameters of graphite, acc is the
carbon-carbon distance in-plane and d = 2.4acc is the
interlayer distance. The exponent is λ ≈ 3/acc. The for-
mula in Eq. (2) is applied for atomic distances r = |r|
reaching a cut-off Rc, beyond which tij = 0. This gener-
alization beyond simple nearest-neighbor models is cru-
cial to properly recover the low energy electronic struc-
ture of twisted bilayers, in particular its gapless and
valley-decoupled double-cone spectrum, as described by
the continuum theory of Ref. 29. In practice, a rather
precise description at relevant energy scales is obtained
for Rc & 7acc.

B. Bandstructure of the leads

The band structure of the monolayer graphene
nanoribbon leads converges rapidly with increasing hop-
ping cut-off Rc, and is shown for a 10 nm wide zigzag
nanoribbon with Rc = 3acc in Fig. 2 for varying mag-
netic fields. The magnetic field is included in the model
through a standard Peierl’s substitution. We note that
for large Rc, a large unit cell of length au ≥ Rc is needed
for which the first Brillouin zone in reciprocal space is
small. This correlates with the folding of the bands
of a nearest neighbor tight-binding model but leads to
slightly more complicated bands due to the long range
hoppings, see Fig. 2. For instance, for small magnetic
fields, Fig. 2(a), we see a positive energy shift of the cones
of about 0.3γ0 and the zero-energy edge modes of the
zigzag ribbon display substantial dispersion.38 For small
magnetic fields B the magnetic length `B =

√
~/(|e|B)

is larger or comparable to the ribbon width W and the
spectrum is dominated by size quantization. This is the
case in Fig. 2(a) where the energy split of the zero-mode
is due to the small magnetic field corresponding to a flux
Φ = 10−3Φ0 per hexagon, where Φ0 = h/2e is the mag-
netic flux quantum. For larger fields, the Landau levels
En =

√
2n~vf/`B =

√
nωc (vf is the Dirac electron ve-

locity in the absence of magnetic field) become visible as
flat regions in the dispersion. The dispersive parts of the
bands correspond to edge modes, carrying the current in
the quantum Hall regime.

III. MAGNETOTRANSPORT SIMULATION

To evaluate the effect of the bilayer patch, we compute
magnetotransport properties using recursive Green’s
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FIG. 3. (a) A monolayer graphene Hall bar with 6 leads,
enumerated by L1-L6. The Femi energy of the Hall bar is
EF = 0.5γ0, which corresponds to the n = 2 Landau level [at
the middle of the 3rd plateau in (c)]. Currents are injected at
L6 and L1 and collected at L4 and L3. (b) The current flow
patterns for EF = 0.4507γ0, corresponding the step between
plateaux n = 1 and n = 2. (c) The longitudinal resistance
ρxx (red dots; voltage measured between L3 and L5) and the
transverse conductance σxy (black squares; voltage measured
between L5 and L6). The color scale in (a) and (b) are given
in units of G0V , where V is the small increase of the chemical
potentials in L6 and L1 with respect to the other leads. The
applied field corresponds to a flux Φ = 0.01Φ0 per hexagon,
and the temperature is zero.
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function (RGF) techniques,39,40 where the coupling to
reservoirs are included through self-energies derived from
the surface Green’s functions of semi-infinite leads. The
leads and the system are modeled on equal footing
through the Hamiltonian in Eq. (1). The RGF algorithm
gives the retarded Green’s function of the system. Such
Green’s function is obtained, between certain pairs of
points, by iterative application of the Dyson equation,
and may be then used to compute the Hall conductivity,
the current densities or the scattering matrix of the sys-
tem. The recursive iteration is performed on slices of the
lattice that are connected only to neighboring slices, and
which hence increase in size as the hopping cut-off Rc in-
creases. This has a rather steep computational cost, but
has the advantage that it cleanly avoids fermion doubling
problems that plague strategies based on the discretiza-
tion of low energy effective theories in graphene, and can
moreover quantitatively incorporate the precise edge ter-
mination of each of the Hall bar regions.

A. Multiterminal Hall conductivity

In Fig. 3 we display a 6-terminal monolayer graphene
Hall bar device with six contacts (leads) enumerated by
L1-L6. In a typical experiment, a current is sent from
L1 to L2, and the voltage between L3 and L5 gives the
longitudinal resistance, while the Hall resistance is ob-
tained by measuring the transverse voltage between for
instance L5 and L6. Since this Hall bar is of monolayer
graphene only, it is sufficient to use a nearest neighbor
model. After computation of the full scattering matrix
connecting the six leads, we compute the longitudinal re-
sistance ρxx and the transverse conductance σxy in the
linear response regime. We display both in (c) as func-
tion of Fermi energy of the system (related to the elec-
tron density). The transverse conductance display quan-
tized values σxy = ±(2n + 1)G0, where G0 = 2e2/h
and n = 0, 1, 2, ... This sequence is characteristic for the
monolayer quantum Hall effect. The longitudinal resis-
tance is zero except at the steps between plateaux. The
random fluctuations at the steps are due to the added
randomness of 10% of the nearest neighbor hopping in-
tegral tij around γ0 in this simulation.

The current flows along edge states, as is clearly seen
in Fig. 3(a), which shows the local current flow patterns
throughout the device when currents are injected at L6
and L1 and subsequently collected at L4 and L3. In
Fig. 3(b) we show the current redistribution through-
out the entire device that appears at each step between
plateaux (in this case the n = 1 and n = 2 plateaux at
EF = 0.4507γ0).

In Fig. 4 we show the influence of an AB-stacked bi-
layer stripe defect placed in the middle and connecting
the two edges of the Hall bar. The current can now enter
into a circular path around the bilayer patch and even-
tually go out into both leads L5 and L4, see Fig. 4(a).
This leads to large fluctuations of the longitudinal resis-

patch

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−7/2

−5/2

−3/2

−1/2

1/2

3/2

5/2

7/2

Energy  E / a0

 

 

(b)(b)(b)(b)

l xx * (4e2/h)

m xy / (4e2/h)

m xy / (4e2/h)

FIG. 4. (a) A Hall bar with a L = 10 nm long AB-stacked
bilayer stripe defect in the middle of the device, connecting
the two edges at y = 0 and y = 20 nm. The local current
flow pattern is for the Femi energy EF = 0.5γ0 [the same as
in Fig. 3(a)]. (b) The longitudinal resistance ρxx (red dots;
voltage measured between L3 and L5), and the transverse
conductance σxy computed for a voltage measured either be-
tween L5 and L6 (black squares) or between L3 and L6 (green
squares). The color scale in (a) is given in units of G0V , where
V is the small increase of the chemical potentials in L6 and L1
with respect to the other leads. The applied field corresponds
to a flux Φ = 0.01Φ0 per hexagon, and the temperature is
zero.

tance ρxx, as shown in Fig. 4(a), red circles. At the same
time, the transverse conductance is affected. If the volt-
age probes are set between L5 and L6, the influence of the
patch is minimal. On the other hand, when the voltage
probes span the patch, for instance when they are placed
between L3 and L6, the fluctuations are added into σxy
as well, and the plateaux are destroyed.

B. Two-terminal conductance and twist angle

Next we study the influence of a finite twist angle on
the fluctuations of the Hall conductance. In contrast
to the AB-stacked bilayer patch explored above, this re-
quires that we include long-range hopping tij with a cut-
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off Rc = 7acc. For this study it is convenient to limit the
calculations to a two-terminal set-up, as in Fig. 1(b). In
the absence of contact resistances, like in the present case,
the two-terminal conductance equals the Hall conductiv-
ity σxy. In Fig. 5 we show the conductance for a W = 10
nm wide ribbon in a quantizing magnetic field as func-
tion of Fermi energy (i.e. doping). The bandstructure
of the underlaying monolayer is shown in Fig. 2(d). The
bilayer patch length is L = 10 nm. The twist angle θ = 0
corresponds to a bilayer patch with AB stacking, while
θ = 60◦ would correspond to AA stacking. For small
twist angles, all plateaux are destroyed by backscatter-
ing caused by a number of resonance states in the patch,
which are rather broad and tend to overlap. For increas-
ing twist angle, these resonances become sharper, signal-
ing a decoupling of the quasibound states from the edge
modes in the underlying monolayer that is connected to
source and drain reservoirs. The plateaux become better
defined, starting with the n = 0 plateau at small twist
angle and continuing with the higher Landau level in-
dex plateaux at higher twist angles (higher index require
larger twist angle to recover).41

The dependence with twist angle of the width of the
backscattering resonances, or in other words, of the cou-
pling between the corresponding quasibound state and
the monolayer edge states, can be traced to the band
structure of the twisted bilayer. In the limit of a van-
ishing interlayer coupling γ1 � γ0, the states become
perfectly bound and lie fully on the decoupled layer.
Their momentum components are concentrated around
the Dirac point of said layer. In contrast, the delocalized
edge states in the extended monolayer are spectrally con-
centrated around the monolayer Dirac point, which has
a shift ∆K = 2 sin(θ/2)× 4π/(3

√
3acc) [for 0 < θ < 30◦]

with respect to the former. The momentum spread grows
linearly with energy. Therefore, for a given energy, the
larger the momentum mismatch of the two Dirac points,
the smaller the overlap between delocalized edge states
and localized patch states will be. Since this overlap is a
measure of the inverse lifetime of the quasibound state in
the limit of small γ1/γ0, we see that twist angles around
30◦ (half-way between AB and AA stacking, maximum
∆K) will correspond to least coupling, narrower reso-
nances, and cleaner Hall plateaux, as seen in Fig. 5.

A second consequence of this analysis is that, as soon
as the Fermi energy approaches the van Hove singu-
larity where the two Dirac cones intersect (at energy
∼ vF∆K/2 − γ1), the spectral spread becomes compa-
rable to ∆K, so the overlap will increase greatly, and
the backscattering will be enhanced. Hence, higher Hall
plateaux will be eventually destroyed for any value of the
twist angle as the filling factor grows. This is also appar-
ent in Fig. 5(a). For instance, for θ = 20◦ (blue curve),
it is clear that the n = 0 and n = 1 plateaux have sharp
resonances, while plateau n = 2 and especially plateaux
n ≥ 3 at higher doping (i.e. higher E/γ0) are destroyed.
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FIG. 5. (a) Conductance at zero temperature for a 10 nm wide
zigzag ribbon with a 10 nm long bilayer patch at various twist
angles θ. The magnetic field corresponds to a flux Φ = 0.01Φ0

per hexagon. The hopping cut-off is Rc = 7acc. (b) Energy
blow-up of (a) around the first conductance step from Landau
level n = 0 to n = 1. The blue arrow in the figure points to the
conductance fluctuation at which we display the local current
flow patterns in Fig. 6. The curves are shifted by 3G0 relative
to each other for clarity.

C. Circulating quasi-bound states

To demonstrate the connection between resonant
backscattering and quasibound states of circulating cur-
rents around the patch, we present in Fig. 6 the local cur-
rent flow pattern throughout the system for filling factors
near and at the resonance dip indicated by the blue arrow
in Fig. 5(b). In the first panel the edge current flows from
left to right, from source to drain, along the upper edge
in the n = 0 Landau level of the monolayer undisturbed
by the patch. On resonance (fourth panel) the current
circulates in the patch and suffers perfect back reflection
at the lower edge (blue back-flowing current), and the
conductance from such edge state is zero on resonance.
Similar resonances occur at higher plateaux, where res-
onant backscattering from each patch state always re-
moves at most one conductance quantum G0 from the
Hall conductivity (assuming unbroken spin symmetry).

D. Effects of Disorder

In the above two-termainal simulations of the bilayer
stripe defect we have neglected disorder. A simple model
of disorder was included in the 6-terminal simulations in
Section III A through a 10% randomization of the nearest
neighbor hopping integrals tij around γ0 in that case. To
simulate the influence of disorder on the bilayer patch
induced conductance fluctuations, we do the same for
the tij in Eq. (2). In practice, we make the substitu-
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FIG. 6. Local current flow (x-component of the bond currents
in units of G0V ) at zero temperature at a twist angle θ = 12◦.
The four frames corresponds to energies near the conductance
fluctuation indicated by the blue arrow in Fig. 5(b), starting
at an energy below the conductance dip on the plateau and
ending near the minimum of the dip. Model parameters are
the same as in Fig. 5. The source and drain reservoirs are
located to the left and right of the device and the current
flows from left to right for red color (positive sign).

tion tij → tij(1 + λρij), where the level of disorder is
λ and ρij is a random number between −0.5 and 0.5.
In Fig. 7 we show results of this type of disorder for
a bilayer patch with twist angle θ = 20◦ for energies
E ∈ [0.63, 0.66]γ0, which is on the n = 1 plateau in
Fig. 5. We vary the disorder strength from λ = 5% to
λ = 30%, with the same random number sequence ρij .
For small disorder strength, the resonances are shifted in
energy. For increasing disorder strength (bigger λ), res-
onances get broadened. Eventually, resonances overlap
and the plateau is completely destroyed again, despite
its θ = 20◦ twist angle. This destruction can be un-
derstood as due to enhanced momentum relaxation that
reduces the effect of the momentum mismatch between
the Dirac cones of the two layers that in the first place
(without disorder) decoupled the layers and lead to sharp
resonances. We find, thus, that a sizeable amount of dis-
order is necessary to cause an appreciable correction to
the general results found in the clean case.

IV. CONCLUSIONS AND OUTLOOK

We have analyzed the effect of bilayer stripes trans-
verse to graphene Hall bars on the Hall conductivity.
Such stripes are observed to naturally arise at substrate
steps in epitaxially grown graphene. We have found that,
in agreement with Ref. 26, the Hall plateaux are de-
stroyed by the coupling between opposite edge states via
transverse transport channels circulating around the bi-
layer perimeter. Such channels arise as a result of the
jump in Chern number between the band structures of bi-
layer and monolayer graphene, and give rise to the forma-
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FIG. 7. The effect of disorder on the conductance fluctuations
for a bilayer patch with twist angle θ = 20◦. With increasing
amount of disorder, conductance dips are shifted and broad-
ened. Eventually, dips overlap and the plateau is destroyed
despite the large twist angle.

tion of circulating quasibound states in finite length bi-
layer patches. Hall plateaux develop backscattering res-
onances, visible as dips of depth one conductance quan-
tum, whenever the Fermi energy crosses a quasi bound
level in the patch. The width of the backscattering res-
onances diminishes as the bilayer twist angle approaches
30◦, which leads to well defined low energy plateaux de-
spite the patch. However, resonance width grows with
Fermi energy, completely spoiling Hall plateaux above
the van Hove singularity of the twisted bilayer patch.
Both features are explained in terms of the momen-
tum mismatch between the Dirac cones in the two lay-
ers. We propose that this scattering mechanism should
be relevant in understanding deviations of the QHE in
epitaxial graphene Hall bars etched across SiC steps,
like the anomalous positive magnetoresistance and non-
quantized Hall plateaux in Ref. 26.

In this first study of such Hall bars, sketched in
Fig. 1(a), we have neglected effects of strain, inhomoge-
neous doping, and the possibility of a Zeeman term due to
an in-plane component of the magnetic field. In addition,
we have neglected electron-electron interactions that may
lead to wider wavefunctions of the edge states [the cur-
rent paths in for instance Fig. 3(a)]. The relavance of
these effects, which should be present at least to some
extent in real experiments, are left as future work. How-
ever, our expectation is that, since the essential mecha-
nism for the low energy protection of Hall plateux found
in our work stems from the momentum mismatch be-
tween layers, the destructive effect of inhomogeneities,
including those arising from strain and screening, will
be small, as long as their characteristic lengthscales are
greater than the Moiré period of the twisted bilayer patch
LM =

√
3acc/2 sin(θ/2).
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P. Gournay, Comptes Rendus Physique 12, 347 (2011).

8 T. J. B. M. Janssen, J. M. Williams, N. E. Fletcher,
R. Goebel, A. Tzalenchuk, R. Yakimova, S. Lara-Avila,
S. Kubatkin, and V. I. Fal’ko, Metrologia 49, 294 (2012).

9 Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B.
Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, Science 327,
662 (2010).

10 L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu,
Y. Qu, K. L. Wang, Y. Huang, and X. Duan, Nature 467,
305 (09 2010).

11 P. First, W. De Heer, T. Seyller, C. Berger, J. Stroscio,
and J. Moon, MRS bulletin 35, 296 (2010).

12 J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward, J. M.
McCrate, S. A. Kitt, P. M. Campbell, G. G. Jernigan,
J. C. Culbertson, J. C. R. Eddy, and D. K. Gaskill, Appl.
Phys. Lett. 95, 122102 (2009).

13 J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M.
Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz,
D. Snyder, B. L. VanMil, G. G. Jernigan, R. L. Myers-
Ward, C. R. Eddy, and D. K. Gaskill, Nano Lett. 9, 2873
(2009).

14 C. Dimitrakopoulos, A. Grill, T. J. McArdle, Z. Liu,
R. Wisnieff, and D. A. Antoniadis, Appl. Phys. Lett. 98,
222105 (2011).

15 S. E. Bryan, Y. Yang, and R. Murali, Jour. Phys. Chem.
C 115, 10230 (2011).

16 A. Deshpande and B. LeRoy, Physica E 44, 743 (2012).
17 T. Seyller, K. Emtsev, K. Gao, F. Speck, L. Ley,

A. Tadich, L. Broekman, J. Riley, R. Leckey, O. Rader,
A. Varykhalov, and A. Shikin, Surface Science 600, 3906
(2006).

18 J. Jobst, D. Waldmann, F. Speck, R. Hirner, D. K. Maude,
T. Seyller, and H. B. Weber, Phys. Rev. B 81, 195434 (May
2010).

19 J. Jobst, D. Waldmann, F. Speck, R. Hirner, D. K. Maude,
T. Seyller, and H. B. Weber, Solid State Commun. 151,
1061 (2011).

20 M. K. Yakes, D. Gunlycke, J. L. Tedesco, P. M. Campbell,
R. L. Myers-Ward, C. R. Eddy, D. K. Gaskill, P. E. Shee-
han, and A. R. Laracuente, Nano Lett. 10, 1559 (2010).

21 S.-H. Ji, J. B. Hannon, R. M. Tromp, V. Perebeinos, J. Ter-
soff, and F. M. Ross, Nature Mater. 11, 114 (02 2012).

22 T. Low, V. Perebeinos, J. Tersoff, and P. Avouris, Phys.
Rev. Lett. 108, 096601 (Mar 2012).

23 E. Prada, P. San-Jose, G. León, M. M. Fogler, and
F. Guinea, Phys. Rev. B 81, 161402 (Apr 2010).
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