aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Possible spin liquid states with parton Fermi surfaces in the
SU(3) ring-exchange model on the triangular lattice
Hsin-Hua Lai
Phys. Rev. B 87, 205131 — Published 23 May 2013
DOI: 10.1103/PhysRevB.87.205131


http://dx.doi.org/10.1103/PhysRevB.87.205131

Possible spin liquid states with parton Fermi surfacesin the SU(3) ring-exchange model on the
triangular lattice

Hsin-Hua Lai
National High Magnetic Field Laboratory, Florida State Weirsity, Tallahassee, Florida 32310, USA
(Dated: May 7, 2013)

We consider a SU(3) ring-exchange model on a trianguldcéattnlike the SU(2) case, under perturbation
expansion of the SU(3) Hubbard model, the three-site rinpamnge is present as well as the usual four-site ring
exchange. Interestingly, the three-site ring exchanderdifrom the usual two-site and four-site exchanges by
a minus sign and is ferromagnetic. We first present numesitaifactorized state studies on this model which
shows a three-sublatticed order phase and a ferromagrwgep We further study the model using slave-
fermion mean field in which we rewrite the exchange operétoterms of three flavors of fermions. We find
the main competing trial states are the trimer state (trilargolaquette state) and the gapless U(1) spin liquid
states with parton Fermi surfaces which include both théoemi zero-flux spin liquid state, and the uniform
m-flux spin liquid state. Furthermore, we find there are pdesiairing instabilities of the zero-flux (Fermi
surface) spin liquid state towardfawave gapless (nodal) spin liquid state and #htux (Fermi surface) spin
liquid state toward an interesting exotievave “gapless” spin liquid state with two flavors of ferméopaired
up while one flavor of fermions remains gapless.

I. INTRODUCTION (two-site exchange) Hamiltonian
_ Hy=J P, )
In recent years, the cold atomic systems have become a Gh

powerful tool to realize strongly-correlated systems]ude ) ) .

ing N-flavor Hubbard model on different lattices. Such sys-WhereP;; is so-called two-site exchange operator, which per-
tems consisting of several flavors of interacting fermioms ¢ Mutes the fermions between two nearest-neighbor sites as
be realized as different hyperfine states of alkali afoonswi- ~ Fjk|, 5) = [, a), where then, 3 represent the spin states
clear spin states of ytterbifif or alkaline-earth atonis’. A atsitesj andk. For N = 3, there has been numerical evidence

model Hamiltonian to describe such systems is the N-flavoPn such SU(3) Heisenberg model on a triangular lattice sug-
fermionic Hubbard modéf-8 gesting three-sublattice ordered ground state in thismedt

The situation becomes more complexft/ ~ O(1), since
in this regime the two-site exchange Hamiltonian is not suffi
H=—t Z Z {C?TC? + H-C-] + UZ Z non?, (1)  cient to capture the essential physics and higher ordened co
(k) @ ioapB tributions such as ring exchanges should be taken into ac-
count. In this paper, we focus on this regime and consider the
SU(3) ring-exchange model on the triangular lattice. Moti-
vated by the perturbative studies of the SU(3) Hubbard model
at1/3 filling, we include the “FM" three-site ring exchanges
. . and the “AFM" four-site ring exchanges in the model whose
The most common case is wheév = 2, which corre-  yamiltonian is given in Eq. (3). With the interplay between
sponds to the usual spiry2 Hubbard model. If we focus he ring exchanges, we conjecture that the Quantum spin lig-
on the half-filling condition, i.e., when each site is ocapi g (QSL) state¥ 25 can arise due to the strong frustration.
by exactly one fermion, the system undergoes metal-to-Mott | this work, we first study the ordered phases using the
insulator phase transition for sufficiently large reputsld.  sjte-factorized ansaf®.We find that the phase diagram con-
In experiments on cold atoms, the Mott insulating state Ofajns the three-sublattice ordered phase, similar to thzseh
fermions have recently been observed at the low tempergyynd in Ref. 23, and the FM state. We further study this
ture compared with the Fermi temperattifé.In the large _model using slave-fermion trial states. After performing n
U regime, it is generally accepted that the ground state ignerical full optimization of the trial energy, we consideet
well-captured by the usual anti-ferromagnetic (AFM) Heise yree ansatz states such as the uniform zero-fluxmafidx
berg model and the charge degrees of freedom are completejypjess (Fermi-surface) spin liquid state and the trimker-(p
frozen out. However, in the regime whéves not sufficiently quette) state. Furthermore, we consider several pairstg-n
large compared with the hopping strengftihe ground state  pjjities and find that there is a pairing instability of theae
is not well-understood. It is possible that the strong cBarg fiyx spin liquid state toward g-wave (nodal) spin liquid state:
fluctuations play important role for stabilizing “gaples®in  there is a pairing instability of the uniform-flux spin liquid
liquid phases in this regime:-*3 state toward a interesting exotievave spin liquid state with
For the more general case with > 2,%-2?if we focus on  two flavors of fermions paired up while one flavor of fermions
certain fillings, the Mott insulating states will also emer¢n  remains gapless.
this case, the spin order is not understood even in the large The paper is organized as follows. In Sec. Il we define ex-
U limit in which we can only focus on the Heisenberg-like plicitly the model Hamiltonian we will study in the paper. In

wherea, S run over the different flavorg;k) runs over pairs
of nearest neighbors on the lattice, ahdins over all lattice
sites.



Sec. Il Awe use the site-factorized ansatz to study the ectier ® = = - @ = - - @ - - - @ - - -®
states in this ring-exchange model. In Sec. IIB we use the | , “ ' 6—’ ’ “ " “
slave-fermion representation to rephrase the SU(3) Hamilt e . 2 .

nian in terms of the three-flavor fermionic Hamiltonianand ® = - - @ - - = ---@
. . . AN LAERN 4 LARN
perform the fermionic mean-field treatment of the model. We N AN
further study the possible pairing instability in the spguids A4 . "=
regime. In Sec. lll we conclude with some discussions. .‘ - T ".\' - €1 ',.‘
\Y
‘ 4 ‘. A Y ’ . ’ A Y
. . L ! .
1. SU(3) MODEL WITH RING EXCHANGE TERMS o---0---0---0---0
. — — — .
. o €3 = —(€1 + €)™
The model Hamiltonian we consider is A - . .

Hsy(3) :JZ Py — K3 Z [P123 + H.c.] . . . .
FIG. 1. The triangular lattice showing the vectéys.1 » 3 used in the

A text. The three different colored regions represent theethhombi
associated with the site at the vector center and we labél site
+K,y Z [Pr2sa + H.c], 3) counterclockwise from 1 to 4. The angldbetween each vectatis

u 27 /3.

with o ¢ running over all the bonds on the Iatticn;&c
running over all the triangles, up- and down-triangles, on
the lattice, while(123) are the sites on the triangles la-

beled counterclockwisem running over all the rhombi ( K4/J ®  Ferromagnetic XX e X e x
for one site, there are three rhombi associated with itsblue | X Three-sublattice order X X X X X X X X
green and yellow shaded rhombi, see Fig. 1) dheB4) 08F X X X X X X X X X X X X X X X
are the sites on a rhombus labeled counterclockwiBg, k X X X X X X X X X X X X X X X
is the nearest-neighbor two-site exchange operadtps; is 06k % X x x X X X X X X X X X X X
the three-site spin ring exchange operator, which permute 5

the fermions on the triangles &3y la, 8,7) = |v,«, ), [0 X e X e e e e X e X f/’
and Pjo34 is the four-site spin ring exchange operator, with 04 X X X X X X X X X X X X X% ®
ijlm|avﬂvvan>:|T]5a7ﬂ37>’Fig' 1. Thecouplingg!K3! F XXX X X X X X X X X,X/. ¢ o
and K, can be obtained from perturbative analysis of SU(B) o2f x x X x X X X X X x.6 © © @ ®
Hubbard model at/3 filling and the leading-order terms are L % % X X X X X X %06 06 6 ® o o

o
%
\
\

JZF’ (4) 0 02 04 06 08 1 1.2 K3/J
63

KS = 7720 (5) . . . .
U FIG. 2. The phase diagram using the site-factorized stdtes.red
204 crosses represent the three-sublattice ordered statesadh on-site

Ky = NiE (6) vector, Eq. (7), mutually orthogonal to each other and tbeed blue

circles represent the FM state. The dashed line is the exartds

Without the ring exchange terms, previous studies of thee sit ary between the two phases, see texts. The boundary betiveen t
factorized ansatz on the triangular lattice predicted aghr FM state and the three-sublattice ordered state can bendetst
sublattice ordered st&fe?® which was recently confirmed by analytically (see text) and consistent with the numeritadigs. We
Density Matrix Renormalization Group (DMRG) and infinite note that this model contains a four-sublattice orderete $tastrong
Projected Entangled-Pair States (iPEPS) ana%fizsis four-site rirlg exchange,.roughly Wh.ém/J > 14. In such state,

Recently, Ref. 29 did variational studies on the SU(3)ihe numerical site-factorized states indeed show a fobiagiice pe-
model with three-site ring exchange, and they found the FMIOdICIty. _However, Fhe four-sublattice ordered state &chto be
state and the three-sublattice ordered state in the redifid o characterized analytically.
three-site ring exchanges. On the AFM side of the three-site
ring exchanges, they found an interestihgt id,, spin liquid
state with a gapless parton Fermi surface.

However, the situation is not clear if both the three-sité an
four-site ring exchange terms are included. In this sectian
will focus on the regime where the three-site ring exchangetudy the ordered phases, below in Sec. Il A, we first present
is FM and the four-site ring exchange is AFM, motivated byour studies using the site-factorized states. Later in B&c.
the perturbative studies of SU(3) Hubbard model. In order tove will present our studies using the slave-fermion triafess.
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A. Site-factorized state studies FM phase are aligned with each other, sgyfor all sites. The
energy in the FM phase id1sy (3)) rar = 3J — 4K3 + 6 K4.
In this subsection, we consider the site-factorized &ate The boundary between these two phases can be determined

defined as analytically from the conditio3J — 4K3 + 6 K4 = 0. For
K, = 0, the transition point is a8/4, which is consistent
sy =TT 1)), (7)  with our numerical studies.
j
with
X)) = aj]x); + bsly); + ¢ilz);, (8) B. Slave-fermion trial states and energetics

where we fix the overall phase by setting the phase; o6 be
zero such that; € R andb;, ¢; € Cand|a;|> + |b;]* +
lcj|* = 1. Above, we used the usual time-reversal invarian
basis of the SU(3) fundamental representafipdefined as

In this subsection, we follow the approach similar to the
one outlined in Ref. 32 for the spisi = 1. We write the spin
toperators in terms of three flavors of fermionic spinoffs,

;i i o ; o Bt af ra _
o) = PR gy = DDy — i)y, @ ST TR, AL L =1 (0
with |S* = +1) = |+ 1) and|S* = 0) = [0). Ac- Wwith o, 3, v € {z,y,2} andj is the site label. We note

cording to the parametrization of th&’;) vector along with  that the fermionic spinorf is different to the electrom in
the constraint, at each site there drandependent parame- the Hubbard model. Conceptually, we are focusing on the in-
ters. For a lattice withV x N sites, there aré N? indepen-  sulating side of the metal-to-Mott insulator phase traoisjt
dent parameters for the site-factorized state. We numnilgrica in which the charge degrees of freedom are localized. In the
calculate the optimized (lowest) site-factorized statergy, = mean field level, one assumes that the spinons do not interact
Es; = (s|Hsys)|s), on a3 x 3, and on a6 x 6 triangu-  with one another and are hopping freely on the 2D lattice. The
lar lattice with periodic boundary condition using the gead ~ mean field Hamiltonian would have the spinons hopping in
descent method. In the site-factorized state studies, wle finzero magnetic field, and the ground state would correspond to
the energies of the optimal states do not change upon the sy#lling up a spinon Fermi sea. In doing this one has artifigiall
tem size. enlarged the Hilbert space, since the spinon hopping Hamilt
The phase diagram is shown in Fig. 2. The red crossesian allows for unoccupied and doubly-occupied sites, tvhic
represent the states with three-sublattice order withasubl have no meaning in terms of the spin model of interest. It is
tices labeled asi, B, andC. The three-sublatticed states thus necessary to project back down into the physical Hilber
are characterized with each on-site vectd¥;£4), |Xjep),  space for the spin model, restricting the spinons to single o
and|X;cc)) mutually orthogonal to each other and the closedcupancy.
blue circles represent the FM state. We only show the phase The fermion representatioff?, f¥, f#} in Eq. (10) can
diagram of magnetic ordered states up to parameter reginise related to the usual fermion representafign,, f_1, fo?,
of O(K3/J) ~ O(K4/J) ~ 1, because the quantum fluc- where f1; carry S* quantum numbet:1 and f, carriesS=>
tuations would become more important upon increasing thguantum numbeb, based on Eq. (9):
strength of the ring exchanges, and the magnetic ordered
]E_)hases are more likely to be destroyed. The conjectureis con = — - [fo1— fa], f¥= % [fi1+ fo1], f2=ifo.
irmed by the linear flavor wave theory calculation discussed (11)

in the discussion, Sec. Ill. We note that this model shows-fou |, {11, fo} basis, the spin operator can be represented as
sublattice ordered state with strong four-site ring excfean ’

roughly whenK,/J > 1.4. In the regime, the numerical ey i ;

values of the site-factorized states show a four-subéafiie St=5"+i8Y =2 (f+1 fo+fo ffl) , (12
iodicity. H , the four-sublatti dered stateasct =

riodicity. However, the four-sublattice ordered stateaschto R N 13)

be characterized analyticaft}3' In addition, we also numeri-
cally checkd x 4 triangular lattice and find the four-sublattice
ordered state, but its energy is higher than the three-gidela
ordered state in the present parameter regime, which is con-

The exchange operators in terms of fermions are

sistent with our studies of x 6 system. Pyo=> £l e, (14)
The boundary between the three-sublattice order and the oB

ferromangetic phase can be understood analytically. The o at 0B pBt ey et ra

three-sublattice state is a state with each on-site vecter m P = Z T I3 T e Tt (15)

tually orthogonal to each other. The state vector for theeghr b7
sublattice state has the fortg), = |2)jca ® |y)rcs ® Piam = > R (16)
|2)icc with 4, k, [ around a triangle. Since the state vec- aByn

tor at each site is orthogonal to each other, the energy is
(Hsu(3)y)3—sub = 0. On the other hand, the state vectors of awherea, 3,v,n7 = z, y, 2.



The Hamiltonian, Eq. (3), can be re-expressed as 1. Without pairing instability
Hsyey =J > > T - In this section, we focus on the non-magnetic trial states.
o—of When we perform numerical calculations, we relax the con-
straint of the fermion number for each flavor to be
6 Y Y | e+ 1

A apfy <f;¥Tqu>trial = g (18)

af pB ¢Bt v gyt 0 ent ra A convenient formulation of the mean field is to consider a
+Ky Z ; {fl il o fs f31a fa +H'C'] a7 general SU(3)-rotation invariant trial Hamiltonian
T: afyn

Hiviap =— Z Z [tjke—iejk fJang +Hel| —

Below, we will calculate the trial energies using the slave (7k) @

fermion trial states. We start from the case without conside at o

) LG - ; ; . — IV ES 19
ing pairing instability. We find that the main competing etat ; za: Hili (19)

are what we call the “trimer” state, the uniforrrflux spin lig-

uid state, and the zero-flux spin liquid state. Later, foegsi with ¢;, being the hopping amplitudd,;;, being the phase
on the regime in which spin liquid states are the optimalesiav of the hoppingt;; in different mean-field ansatz states, and
fermion states, we consider the possible pairing instasli  ;; being the chemical potential which can be used to satisfy
We find that there is a possible pairing instability of theazer the constraint, Eq. (18). With the trial Hamiltonian above,
flux spin liquid state toward @-wave (nodal) spin liquid state we can find the ground state and use it as a trial wave func-
and a pairing instability of the-flux spin liquid state toward tion for the Hamiltonian s;;(3y, Eq. (3). After performing

an exotics-wave spin liquid state with two flavors of fermions “complete” Wick contractions and ignoring the constantepur

paired up while one flavor of fermions remains gapless. density terms, the trial energy can be expressed as
|
2
Bur ==J) |2 x| -
o—eo <

~K3 ) { {ZX?QXSSX?I -3 <n?x5‘3x§2 +ngxGIXYs + ngx‘f‘zx§1> +y° x?3x§2xgl} + H.c.} +
AT B
K ) { [Z <n§‘x‘1"3><§4xi‘1 + nzxizx;gxgl) -
D
-y (n?nsxaxffg + NS ngXGsxGs + N nIXTaxe + NS NEXGiIXTs + NS XS X5 + Xi‘zx§4x§3xfl> +
ap

+ (xi’zxé’4x§1x13 + X55xE XX T + PEXGIX X + ni‘x?sxglx%z) -

afy
- Z X?4X§3Xg2X7271] + HC} (20)
apfyn
|
Above we definedx$, )" = (f;”f;j)m-al. values of the energy per site in the two states

e slavet | - ) | EJHy = —0.7672J + 0.4482K35 — 0.4521K4,  (21)
The slave-fermion trial states which conserve the transla- MF

tional symmetry we consider in this work are the uniform By = —0.4395] + 0.8352K3 — 0.7949K4.  (22)
zero-flux state and uniform-flux state, which represents the We can observe that the optimal translationally invariant
spin liquid states with uniform = 6, = 0and¢ = 6;, =7  slave-fermion state favorg = 0 state whenks > 0 and
respectively for all nearest jk >. The fermions in both ¢ = = state whenk; < 0. The distinguishability between
of these trial states hop isotropically on the latticg, ~ ¢,  these two uniform-flux spin liquid states can be related  th
and therefore the expectation values@f are expected to be origin of the K5 which arises from the third-order perturba-
isotropic, x4, ~ x“ = const. Below we list the numerical tion of the SU(3)Hubbard model a3 filling. However, K4



FIG. 3. lllustration of the trimer state. In slave fermiorcipire, the
fermionic spinons only hop around each triangular plagueatid we
can focus on each triangle separately.

does not distinguish these two uniform-flux (U(1)) spin laju
states from this perspective.

Besides the translationally invariant state, we also d®rsi
what we call the “trimer” state. Fig. 3 shows one example
of the configuration of such a state in which the non-zgfo
form non-overlapping trimer covering of the lattice. These
states break translational invariance, and any trimerraoye _»
produces such a state. Such states can have lower Heisenb
exchange energy. The occupied bonds attain the maximal e
pectation value which is found analytica[h@‘”maz =nd =

: I
1/3. Their contribution can be sufficient to produce the low- |

est total energy and such states are expected to be the40we-30 — i — 2' — ; s "‘ K4/J
energy states witks = 0 and K4 = 0. ®)
EME = —J+0.5926 K3 — 0.3704K . (23)

. . ) . FIG. 4. (a) lllustration of energies of different slaverfeon trial
The energies of different slave-fermion trial states arecfu  states as a function dks with K, = 0 andJ = 1 (b) lllustra-

tions of K3/J andK4/.J and it is expected that different opti- tion of energies of different slave-fermion trial statesaafsinction
mal trial state is realized in different parameter reginmot  of K4 with K3 = 0. WhenK3 = 0 and K4 = 0, the optimal
der to clearly show the cross between the energies of differe state is the trimer state followed by the zero-flux spin kifjstiate and
mean-field ansatz states as functiong@f/J andK,/J, we  the m-flux spin liquid state. Whers increases whileiys = 0,
plot Egs. (21)-(23) with/ = 1 in the limit of eitherKs = 0 the zero-flux spin liquid state bepomes the lowest-energte sit
or Ky = 0. (Kg,_ > 1.61, Ky = 0) as shown in (a). On the other ha_nd,_when
Figure 4 shows the energies of different mean-field stateéfé 'ncreaf‘.ses whilerC, e 0, the ?nerg¥ 'k"ne Of”'ffllux Sp'.n.C:.'q'

as a function ofKs/.J with K, — 0 and as a function of Uid state first crosses the energy line of the zero-flux spjnidi at

: . (K3 = 0,K4 ~ 0.96) and then crosses the energy line of trimer
K,/J with K3 = 0. For the former, Fig. 4(a) clearly Shows ¢ 16 to become the lowest energy statéfés = 0, Ky ~ 1.32).

that at K3, K4 = 0 the trimer state is the lowest energy gor general cases, the complete mean-field phase diagrdmiiss
state followed by the uniform zero-flux state andlux state.  in Fig. 5

When K3 is gradually increased, the energy line of the zero-

flux state crosses that of the trimer state and the zero-flux

state becomes the lowest energy stat&atJ ~ 1.61. On . o .

the other hand, for the latter, Fig. 4(b) shows that the Qnergpen‘orm numerically ‘_‘fuII optlmlzgnon“_ of the meanjflelah_e

line of r-flux state first crosses that of the zero-flux state a€'9Y Ed. (20), on a triangular lattice with0 > 100 3-site unit

K4/J ~ 0.96 and then crosses that of trimer state. The zeroCells, by treatingy;;-s andd;.-s as varying variables. In the

flux state becomes the lowest energy staté&at.J ~ 1.32. numerical optimization, there are in tote varlaples,9 Xk

For a complete phase diagram, we numerically determine th@nd9 0;x, and we take ;. = 1, uj = p. Numerics suggest

ground states in th&; — K, parameter regimes and the result that the above trial states are the three optimal states.

is summarized in the mean-field phase diagram, Fig. 5. Before leaving this section, we want to remark that the
In order to check if the mean-field ansatz states we consid¥imer state is a singlet state around a triangular plaguattd

ered are sufficient to describe the physics in this model, weve can write down the exact singlet wave function in a closed



parton Fermi surfaces. Focusing on these regimes, we take
the pairing mechanism into consideration and the trial Hiami
tonian becomes

Hipigt ==Y Ktj;&aﬁ £+ Al et f,fT) + H.c.]
(k) o.B

O3 w5 (26)
7 a

with the constraintp$ = <fjan;‘> =1/3 andtj?,C = %t
for flux ¢ = 0/7. For clarity, from now on we will replace
the bond labelingjk) by (r,r + &,), with r running over all
T '1‘ I lattice sites and,—; o, 3 are shown in Fig. 1. We abbreviated
1 &1 2 3 4 Ky/J the sum over alé,—; o 3 asé.
In these regimes, the optimal state are uniform flux states
which suggests uniform trial hopping amplitutie ~ ¢t = 1
FIG. 5. The phase diagram of the mean-field ansatzes. Tiediiee and the uniform expectation values of hopping functions,
the tentative boundaries between different phases. Wethatéhe  (fof(r) fO(r + €,)) = §*#y**(¢,). Furthermore, in these
zero-flux andr-flux spin liquid states are both U(1) Fermi-surface regimes, the hopping functiong (¢, ), should be real and
spin liquid states. The difference is that the zero-flux disjoid ¢ numerically confirmed. Below, we consider two pairing
state only possesses a single Fermi pocket in the centee Wiél o ooo. case (1) corresponds to pairing within the same flavor
w-flux spin liquid state possesses two Fermi pockets nearekadi ) - . .
onal Brillouin zone. The exact wave function of the trimeatetcan of fermions.  This requires the orbital ang_ular mo'"_”em”m
be written down explicitly, Eq. (24), and we can calculate torre-  du@ntumnumberto be= 1, 3, ... corresponding tp,. +p,,
sponding energy exactly. f-wave, ...pairing states; Case (2) corresponds to BCS-type
pairing with different flavor of fermions. This pairing reiges
[l =0, 2, ... corresponding ta-wave,d,, + id,,... pairing
form as states>*? Below, we discuss the mathematical set up for
each case separately.

4+ n-flux Spin Liquid

zero-flux spin liquid

1 Trimer

7 24
Wirimer) = azﬂjv g %500 (&9 Case (1): pairing ansatz with®# = §*# A,
with o = z,y, z. With the trimer wave function, we can cal-  The pairing functions we consider afg* (r) f*(r+¢,)) =
culate the energy per site §*#A%(€,). By symmetry arguments, the model conserves
spatial rotational symmetry and as already explained gbove
Ebrrimer = _lJ - iK3 + 2K4. (25) the angular momentum of pairing functions should be odd,
rimer 37 7 97 9 I = 1, 3, ... corresponding t, + ip,, f-wave pair-

For K5 = 0 and K, = 0, the exact trimer state energy is ing,..... The ansatz can be further simplified toxsge) =
very close to the variational energy of U(1) spin liquid wic X*(€2) = x*(€3) = x*, andA®(&;) = A*(&)e"? =

is —0.34.J29, but much higher than the three-sublattice orderA”(€1)e"" = A%¢"2’, wheref is 2r/3 shown in Fig. 1.
state energy obtained by DMRG which is roughl9.678.J.22  In addition, because the vectofs= {f*, f¥, f*} and ft =
However, such a plaquette state can be stabilized with finitg f*, f¥T, f*7} transform as a three-dimensional vectors un-
K3 before reaching the FM state. To see this, we can comparer spin rotation, we expegt® = x¥ = x* = x and
the energy of the FM state as shown analytically in the end ofA* = A¥ = A* = A. In this pairing scheme, th8U (3)
Sec. Il A with that of the exact trimer state energy. Knowingis broken down t&6O(3). It is straightforward to diagonalize
the energy of the FM staté;r,; = 3J —4K3+6K,, we can  the mean-field Hamiltonian

see that the trimer state indeed has the lower energy thain tha ot a
Hipial = E,(k k)a®(k), 27
of the FM state whet(s < 45/52 + 3K,4/2 ~ 0.86 + 15K, trial ZkezB:Z (k)a™ (k) (k) @7)
with J = 1. oo
where a®(k) are Bogoliubov quasiparticles satisfying the
transformation
2. With pairing instability fT (k) \ _ u i) (o T(k) 7 (28)
[ (=k) Uk Uk a*' (k)

So far, we have ignored the possible pairing instabilittes i \yitp,
the Fermi surface spin liquid states discussed above. Here

we want to address this issue. We now know that besides the lug|? = 1 {1 + So (K) } ,

trimer state, there are actually two spin liquid statess-fkrx 2 a(k)

spin liquid state andr-flux spin liquid state. Both of these g2 = 1 1 ¢a(k) (29)
spin liquid states are gapless and contain a single or nultip kl =9 E, (k)|



The ground state can be written as
K4/ J 1 n-flux
GS) = T TIluk+vrsrotx) ot (=k)] jvac),(30) 1 + s-wave pairing
a=z,y,z k 4 T

where we define

zero-flux
€a(k) ==Y 2cos(k- &) — p, (31) I
g 27
Aa(k) =) iAsin(k- ), (32) 1
- 1.32 >F o
€ b Zero-flux + f-wave pairing
X Trimer
Ea(k) = \/(€a®)/2? + [Ba(0)2. (39 | | | |
We can see there are three degenerate bands in this case. - 1' B 1‘ é - é - 4|1

Case (2):pairing ansatz with®® = 0, A*3|,_.5 # 0.
. . . FIG. 6. The mean-field phase diagram with pairing instabilithe

We consider the pairing function of the fordf,* (r) /°(r+  jines are the tentative bgundariesgbetween dri)fferegtsta?g note
&))azs = A*P(€,). It seems there are three pairing func- that the line separating theflux and zero-flux spin liquid states and
tions we need to consideA™, A¥#, and A**, but in this  the line between zero-flux and trimer state are the same amsho
SU(3) symmetric model, we can perform a global gauge transrig. 5. Compared with Fig. 5, the phase diagram shows thatetee
formation to makeA¥#, A** = ( as long as the length of the flux spin liquid state has a possible pairing instability od a f-
vector formed byAs is conserved A |24 | AY? |2+ |A**|? = wave gapless (nodal) spin liquid state, andzthiéux spin liquid state
A? = constant33-37|f this pairing state is energetically fa- has a possible pairing instability towardsavave spin liquid state
vored, there is always one flavor of gapless fermions in thigvith two flavors of fermions paired up while one flavor of feoms
SU(3) system which we choose to fe. remain gapless.

From now on, we will seA¥? = A** = 0 and A®Y =
V/3A. In this gauge choice, the symmetry breaking process is
more apparent. The symmetry breakingi$(3) — SU(2)®
U(1). TheSU(2) symmetry is generated by the psudo-spin
doubletf® andf¥ and thel/ (1) is generated by the gaplefs
fermion. After Bogoliubov transformation, the ground stest

The result is summarized in Fig. 6. We find that roughly
in the regime where the FM three-site ring exchanges slightl
dominant, the zero-flux spin liquid state (gapless spinitiqu
with parton Fermi surface) has the pairing instability todva
a f-wave gapless (nodal) spin liquid. When the four-site ring
|G'S) :H[“i‘y + viyfIT(k)fyT(—k)Hva@ ® (34) exchangeXy is strong enough, the pairing instability can be
" suppressed and the optimal state is the zero-flux spin liquid
. with Fermi surfaces. However, when we keep increaging
® Z £ ) vac), (35)  the optimal state becomes the uniforaflux spin liquid state.
£ie<0 Interestingly, in ther-flux spin liquid state, roughly when the
where the second part, Eq. (35), is the wave function of théour-site ring exchanges dominant, suctr-flux spin liquid
free f* fermion, andu;” andv; ¥ have the same expression as State has the pairing instability toward an exctiwave spin
in Eq. (29) with¢® (k) = ¢¥(k) = €2 (k) = £(k) the same to liquid state with f* pair with f¥, which forms a psudo-spin

Eq. (31) and singlet, while f* remains gapless. We note that we numer-
B ically find no pairing instability of the uniform spin liquid
A" (k) = Z V3A cos(k - €), (36)  states towarg, +ip, spin liquid states od,, +id, spin liquid

¢ states in the focusing regime whekg, K4 > 0.

E™V(k) = \/ (£(K))? + |A=v (k). 37

We can see in the SU(3)-symmetric point, the energy bands 1. DISCUSSION

always show one gapless branch corresponding to one flavor

of gapless fermions. We study the SU(3) ring-exchange model with “FM*" three

With the two pairing ansatzes above, we focus on thesite ring exchanges and “AFM* four-site ring exchanges. We
regimes of the zero-flux spin liquid state and thélux spin  first use the site-factorized ansatz to study the model add fin
liquid state in Fig. 5. We again perform full Wick contract®  the three-sublattice ordered states, FM states in a lagjmee
and ignore the pure constant density terms. The trial energyf K3 — K, parameter regime.
expression after Wick contractions is too complextowrite 0 In the slave-fermion trial states studies, we find the main
explicitly. We test all different pairing ansatzes abovd an-  competing states are the trimer state, unifarfiux spin lig-
merically calculate the trial energies with the optimalrjmey ~ uid state and the zero-flux spin liquid. The trimer state is
functionsA in the uniform-flux spin liquids regime on the tri- strongly suppressed by increasing the strength of the sing e
angular lattice witt800 x 300 sites. changes. We also find that the zero-flux state has a possible



pairing instability toward af-wave gapless (nodal) spin lig- ments of the quadrupolar tensor can be expressed as
uid and ther-flux spin liquid state has a pairing instability
toward an exotig-wave spin liquid state withf* pairing with (QU" Q) conn = 4
Y fermions whilef* fermions remain gapless. 9
We note that it is not legitimate to compare the phase di- : B caf _ pat pa g
agram obtained from the site-factorized state studies, Zig where abO\{e we uifd the ldzegnt@’; =90 fj. f3 with
with those obtained from the mean-field slave-fermion triathe constraind_ , f7*' fi* = 1.”2 We can see the first constant
state StudieS, F|gs 5-6. It is more appropriate to Comls universal for different spin |IC1UId States, but the seaton
pare the energetics of the site-factorized states withethoscontribution is qualitatively different in different spiiquid
of the Gutzwiller-projected states, which can be obtainedtates can be used for characterizing different spin liquid
by performing Variational Monte Carlo (VMC) studies and State. For simplicity of discussion, we defif@§ Q).
Gutzwiller projection on the mean-field states we obtain inVWe Wwill also discuss the thermal properties of each spiridiqu
this paper® which is beyond the scope of the paper. BesidesState.
in the slave-fermion trial states studies, we only focusten t . . o
non-magnetic trial states and fix the number density of each Properties of uniform-flux (U(1)) spin liquid stateSthe
flavor to be equaly® = <qufq> = 1/3. In principle, we can uniform zero-flux andr-flux spin liquid states are both U(1)
: " Iy ' f fFermi-surface) spin liquid states. The zero-flux spinitiqu
also consider the magnetic ordered states by making the nur- ? : )
ber density of each flavor per site different as, for exampIePc}TsesseS ‘I"‘ sw:jgle parton Fermi pocket in the cen'Ler and the
2t ot ey o eyt gy . m-flux spin liquid possesses two parton Fermi pockets near
Ay =1,and(f f¥y =0 = (f'f7). However, similar S .
sgjth‘éjgreviousdifsjccijusjgiz)n, we st<iIJIc'7nefé(§ to perform Gutewil the hexagonal Brillouin zone. In these two different U(linsp

projection on all these fermionic mean-field states (magnet liquid states,

ordered states and non-magnetic states) in order to compare <§_ g ymf - (Qae Qaa>mf N

the energies of different states even within the slave-ifemm 3" Pk conn gk =

trial studies. 1+ cos[(krr — kpr) - (ric — )] (40)
For further clarifying in which regime the spin liquid state [ric — ;3 ’

are more robust and qualitatively relate the phase diagedims

the site-factorized studies and mean-field slave-fermiah t

state studies, Fig. 2 and Figs. 5-6, we follow Ref. 23 to per

form linear flavor wave theory (LFWT), an extension of spin s o ] )
gave different geometric information of Fermi surfaces th

wave theory to SU(N) model, on the three-sublattice ordere i o .
state?839We find that the energy per site after taking the quan C0Tresponding wave vectors are quantitatively differerd a
tum fluctuations into account is can be detected by studying the corresponding spin steictur
factors. Since the uniform-flux spin liquid states have gagpl
Es_suwlorwr =~ —0.6295J + 0.5462 K3 + 0.2568 K,,(38)  parton Fermi surface(s), we expect to see linear-temperatu

o ) _ ) dependent specific he&f', « T') and thermal conductivity
which is consistent with the result in Ref. 23/&§, K, — 0. Ko T).

We can see that even though the quantum fluctuations lower

the (two-site exchange) Heisenberg energy ftoim —0.63.7, Properties off-wave gapless (nodal) spin liquid stafhis

the ring exchange energies increase. At stréngand Ku,  gpin liquid state possesses gapless nodal points. Iriteglyst
itis expected that quantum fluctuations eventually dedtiey  gyen though the pairing break the original SU(3) symmetry,
three-.subllattlce_ ordered state. On the other hand, since Fije SO(3) rotational symmetry related to the spin rotation i
state in Fig. 2 is an exact eigenstate of the SU(3)-ring eXgij| preserved (because of the fact tb%and fT with f =

change Hamiltonian, the FM is a much stable phase and the iq'f:”, ¥, f7) transform as three-dimensional vectors). As far
as the low-energy physics is concerned, this spin liquitesta

teresting quantum spin liquid states are unlikely to arngheé
®ossesses

2

st @9

where thekgg /1, represent the momenta of the right patch
and the left patch of the Fermi surface for an observable
direction. Since the two Fermi surface spin liquid states

FM regime. Therefore, in this SU(3)-ring exchange model, w
expect that the interesting quantum spin liquid states dae a
in the largeKs, K, parameter regime of the three-sublattice - . m 1+ coslke - (rx — 15
ordered sgtate. P ’ (S - Sk)eotn ~ <Q?QQ?Q>—JI ~ o - (e~ )
The gapless spin liquid states have different properties an
can be distinguished, at least in the mean-field picture. Fowith k. being the vectors connecting different Dirac points
clarity, below we will consider specifically the spin coael and we ignore all the pre-factors of each term in the above
tions, <§j . §k>com and the (nematic) correlations of diago- eq_uatior_L Since this spin liquid state contains gaples_s_xlnod
nal elements of tranceless quandrupolar te@* OF) conn EJComts,T|2t) should possess square-temperature specific heat
i af o B B qa _ afl _ v X .
V_VIth Q" = (5755 + 5555 )/2 T26 /3. Above we de Properties of the exotis-wave spin liquid stateThis spin
fined the connected correlatiof®; Or)conn = (Oj0r) = liquid state possessahort-ranged spin correlations due to
<(’);><(9k>, with O; = §; or Q;. Before jumping into the the superconducting gap in they channel. In order to de-
discussions of the properties of different spin liquidetatve  tect the gaplessness of such a spin liquid state, we can mea-
first note that the correlation functions of the diagonal ele sure the correlation functions of different diagonal elatse

41
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of the quadrupolar tensor. For example, & correlation  nected to other mode24which can explain the gapless

will show the power-law behavior spin-1 spin liquids possibly realized in BdiSb,0y*2 or other
theoretical spin-1 modefd:28:43-45
e eoimy 1+ cos|(Kap — K&p) - (v — 1)) In the present model studies, we treat the parameters
<Qj Q)= ~ e — 133 ,(42) K3, andKy as three independent parameters. However, from

the perspective of the perturbation studies on the Hubbard-
to-Mott insulator transition, as pointed out in the begimmi

the parameterd, K3, and K4 are actually not independent
to each other. According to the mean-field phase diagram,
Fig. 5, the interesting gapless spin liquid states are nilceby|

with ki 1, being the momenta of the right patch and the left
patch of thef# Fermi surface. But the correlations related to
Q¥ and Q¥Y exponentially decay. As for the thermal proper-

ies, we expect to se@, oc T'ands oc T due to the gapless to arise in the parameter regime wilty /J, K4/J of the or-

N .
f* parton Fermi surfa_ce. ) ) der one or greater, which means the system on the insulating
From the perspective of numerics, since there have beegqe is closer to the transition point. In this regime, the pe

DMRG and iPEPS studies on the SU(3) Heisenberg modgl;rhation theory breaks and higher order terms need to be in-
of three-flavor fermions on the triangular lattice which rfiou cluded, which not only makes the theoretical analysis out of
the three-sublattice ordered ;té&eWe suggest possibly the  ¢qnirol but also points out the possibility that the expexittal
interesting zero-flux spin liquid state be also detected& t re5ization of the interesting gapless spin liquid stasemit of
DMRG and iPEPS studies on the SU(3) ring-exchange modeteach. |n order to have a well-controlled theoretical asialy
From the view of cold atom experiments. Recently, the coldg get access to such interesting gapless spin liquid siatbs
atom experiment demonstrated a method to be able to add a8 possibly shad light on the experimental realization i@ th
artificial tunable gauge potential to the systéhwith the tun-  cold atom systems, we would like to study a Fermi-Hubbard-
able gauge potential, it may be possible to tune the signeof thtype model on a two-leg ladder system with on-site or more

three-site ring exchanges from FM to AFM. In that case, forextended repulsion in the future, similar to the analysis ou
strong four-site ring exchange, the main competing stats alined in Ref. 46.

still the zero-flux andr-flux spin liquid states, with the trial

energies similar to Eqgs (21)-(22) witki; < 0. However, for

small K4, the main competing slave-fermion trial states are ACKNOWLEDGMENTS
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